2001-04-09 20:54:03 +01:00
|
|
|
/*************************************************************************
|
|
|
|
* *
|
|
|
|
* YAP Prolog *
|
|
|
|
* *
|
|
|
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
|
|
|
* *
|
|
|
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
|
|
|
* *
|
|
|
|
**************************************************************************
|
|
|
|
* *
|
|
|
|
* File: utilpreds.c *
|
|
|
|
* Last rev: 4/03/88 *
|
|
|
|
* mods: *
|
|
|
|
* comments: new utility predicates for YAP *
|
|
|
|
* *
|
|
|
|
*************************************************************************/
|
|
|
|
#ifdef SCCS
|
|
|
|
static char SccsId[] = "@(#)utilpreds.c 1.3";
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "Yap.h"
|
|
|
|
#include "Yatom.h"
|
|
|
|
#include "Heap.h"
|
|
|
|
#include "yapio.h"
|
|
|
|
#include "eval.h"
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
Term old_var;
|
|
|
|
Term new_var;
|
|
|
|
} *vcell;
|
|
|
|
|
|
|
|
|
|
|
|
STATIC_PROTO(void copy_complex_term, (CELL *, CELL *, CELL *, CELL *));
|
|
|
|
STATIC_PROTO(CELL vars_in_complex_term, (CELL *, CELL *));
|
|
|
|
STATIC_PROTO(Int p_non_singletons_in_term, (void));
|
|
|
|
STATIC_PROTO(CELL non_singletons_in_complex_term, (CELL *, CELL *));
|
|
|
|
STATIC_PROTO(Int p_variables_in_term, (void));
|
|
|
|
STATIC_PROTO(Int ground_complex_term, (CELL *, CELL *));
|
|
|
|
STATIC_PROTO(Int p_ground, (void));
|
|
|
|
STATIC_PROTO(Int p_copy_term, (void));
|
|
|
|
STATIC_PROTO(Int var_in_complex_term, (CELL *, CELL *, Term));
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
STATIC_PROTO(Int p_force_trail_expansion, (void));
|
|
|
|
#endif /* DEBUG */
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
clean_tr(tr_fr_ptr TR0) {
|
|
|
|
if (TR != TR0) {
|
|
|
|
do {
|
|
|
|
Term p = TrailTerm(--TR);
|
|
|
|
RESET_VARIABLE(p);
|
|
|
|
} while (TR != TR0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void copy_complex_term(register CELL *pt0, register CELL *pt0_end, CELL *ptf, CELL *HLow)
|
|
|
|
{
|
|
|
|
|
|
|
|
CELL **to_visit = (CELL **)(HeapTop + sizeof(CELL));
|
|
|
|
tr_fr_ptr TR0 = TR;
|
|
|
|
CELL *HB0 = HB;
|
|
|
|
HB = HLow;
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0;
|
|
|
|
register CELL *ptd0;
|
|
|
|
++ pt0;
|
|
|
|
ptd0 = pt0;
|
|
|
|
d0 = *ptd0;
|
|
|
|
deref_head(d0, copy_term_unk);
|
|
|
|
copy_term_nvar:
|
|
|
|
{
|
|
|
|
if (IsPairTerm(d0)) {
|
|
|
|
CELL *ap2 = RepPair(d0);
|
|
|
|
if (ap2 >= HB && ap2 < H) {
|
|
|
|
/* If this is newer than the current term, just reuse */
|
|
|
|
*ptf++ = d0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
*ptf = AbsPair(H);
|
|
|
|
ptf++;
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit[3] = (CELL *)*pt0;
|
|
|
|
/* fool the system into thinking we had a variable there */
|
|
|
|
*pt0 = AbsPair(H);
|
|
|
|
to_visit += 4;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit += 3;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = ap2 - 1;
|
|
|
|
pt0_end = ap2 + 1;
|
|
|
|
ptf = H;
|
|
|
|
H += 2;
|
2001-08-08 22:17:27 +01:00
|
|
|
if (H > ENV - 2048) {
|
2001-04-09 20:54:03 +01:00
|
|
|
goto overflow;
|
|
|
|
}
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
if (ap2 >= HB && ap2 < H) {
|
|
|
|
/* If this is newer than the current term, just reuse */
|
|
|
|
*ptf++ = d0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
{
|
|
|
|
*ptf++ = d0; /* you can just copy other extensions. */
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
*ptf = AbsAppl(H);
|
|
|
|
ptf++;
|
|
|
|
/* store the terms to visit */
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit[3] = (CELL *)*pt0;
|
|
|
|
/* fool the system into thinking we had a variable there */
|
|
|
|
*pt0 = AbsAppl(H);
|
|
|
|
to_visit += 4;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit += 3;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
/* store the functor for the new term */
|
|
|
|
H[0] = (CELL)f;
|
|
|
|
ptf = H+1;
|
|
|
|
H += 1+d0;
|
2001-08-08 22:17:27 +01:00
|
|
|
if (H > ENV - 2048) {
|
2001-04-09 20:54:03 +01:00
|
|
|
goto overflow;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* just copy atoms or integers */
|
|
|
|
*ptf++ = d0;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
derefa_body(d0, ptd0, copy_term_unk, copy_term_nvar);
|
|
|
|
if (ptd0 >= HLow && ptd0 < H) {
|
|
|
|
/* we have already found this cell */
|
|
|
|
*ptf++ = (CELL) ptd0;
|
|
|
|
} else {
|
|
|
|
#if COROUTINING
|
|
|
|
if (IsAttachedTerm((CELL)ptd0)) {
|
|
|
|
/* if unbound, call the standard copy term routine */
|
|
|
|
CELL **bp[1];
|
|
|
|
tr_fr_ptr CurTR;
|
|
|
|
|
|
|
|
bp[0] = to_visit;
|
|
|
|
*ptf = (CELL)(H+2);
|
|
|
|
Bind_Global(ptd0,(CELL)ptf);
|
|
|
|
ptf++;
|
|
|
|
CurTR = TR;
|
|
|
|
HB = HB0;
|
|
|
|
if (!attas[ExtFromCell(ptd0)].copy_term_op((Term)(ptd0-2), bp)) {
|
|
|
|
goto overflow;
|
|
|
|
}
|
|
|
|
to_visit = bp[0];
|
|
|
|
HB = HLow;
|
|
|
|
if (CurTR != TR) {
|
|
|
|
/* Problem here is that the attached routine might
|
|
|
|
* have changed the list of suspended goals and stored
|
|
|
|
* new entries in the trail. This should be quite
|
|
|
|
* rare, so for simplicity we just swap cells from
|
|
|
|
* bottom and top of Trail, not nice but not worth
|
|
|
|
* complicating everything else.
|
|
|
|
*/
|
|
|
|
CELL *pt1 = (CELL *)TR0;
|
|
|
|
CELL *pt2 = (CELL *)CurTR;
|
|
|
|
|
|
|
|
while (pt2 < (CELL *)TR) {
|
|
|
|
CELL o = *pt1;
|
|
|
|
pt1++;
|
|
|
|
pt2++;
|
|
|
|
pt1[-1] = pt2[-1];
|
|
|
|
pt2[-1] = o;
|
|
|
|
}
|
|
|
|
TR0 = (tr_fr_ptr)pt1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
#endif
|
|
|
|
/* first time we met this term */
|
|
|
|
RESET_VARIABLE(ptf);
|
|
|
|
Bind_Global(ptd0, (CELL)ptf);
|
|
|
|
ptf++;
|
|
|
|
#ifdef COROUTINING
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit -= 4;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
ptf = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
#else
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
ptf = to_visit[2];
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* restore our nice, friendly, term to its original state */
|
|
|
|
HB = HB0;
|
|
|
|
clean_tr(TR0);
|
|
|
|
return;
|
|
|
|
|
|
|
|
overflow:
|
|
|
|
/* oops, we're in trouble */
|
|
|
|
H = HLow;
|
|
|
|
/* we've done it */
|
|
|
|
/* restore our nice, friendly, term to its original state */
|
|
|
|
HB = HB0;
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
while (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
to_visit -= 4;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
ptf = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
clean_tr(TR0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Term
|
|
|
|
CopyTerm(Term inp) {
|
|
|
|
Term t = Deref(inp);
|
|
|
|
|
|
|
|
if (IsVarTerm(t)) {
|
|
|
|
#if COROUTINING
|
|
|
|
restart_attached:
|
|
|
|
if (IsAttachedTerm(t)) {
|
|
|
|
CELL *ap = VarOfTerm(t), *HB0;
|
|
|
|
H++;
|
|
|
|
HB0 = H;
|
|
|
|
copy_complex_term(ap-1, ap, HB0-1, HB0-1);
|
|
|
|
if (H == HB0-1) { /* handle overflow */
|
|
|
|
gc(3, ENV, P);
|
|
|
|
t = Deref(ARG1);
|
|
|
|
goto restart_attached;
|
|
|
|
}
|
|
|
|
return((CELL)(HB0+2)); /* advance two cells */
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return(MkVarTerm());
|
|
|
|
} else if (IsPrimitiveTerm(t)) {
|
|
|
|
return(t);
|
|
|
|
} else if (IsPairTerm(t)) {
|
|
|
|
Term tf;
|
|
|
|
CELL *ap;
|
|
|
|
CELL *Hi;
|
|
|
|
|
|
|
|
restart_list:
|
|
|
|
ap = RepPair(t);
|
|
|
|
Hi = H;
|
|
|
|
tf = AbsPair(H);
|
|
|
|
H += 2;
|
|
|
|
copy_complex_term(ap-1, ap+1, Hi, Hi);
|
|
|
|
if (H == Hi) { /* handle overflow */
|
|
|
|
gc(3, ENV, P);
|
|
|
|
t = Deref(ARG1);
|
|
|
|
goto restart_list;
|
|
|
|
}
|
|
|
|
return(tf);
|
|
|
|
} else {
|
|
|
|
Functor f = FunctorOfTerm(t);
|
|
|
|
Term tf;
|
|
|
|
CELL *HB0;
|
|
|
|
CELL *ap;
|
|
|
|
|
|
|
|
restart_appl:
|
|
|
|
f = FunctorOfTerm(t);
|
|
|
|
HB0 = H;
|
|
|
|
ap = RepAppl(t);
|
|
|
|
tf = AbsAppl(H);
|
|
|
|
H[0] = (CELL)f;
|
|
|
|
H += 1+ArityOfFunctor(f);
|
|
|
|
copy_complex_term(ap, ap+ArityOfFunctor(f), HB0+1, HB0);
|
|
|
|
if (H == HB0) {
|
|
|
|
gc(3, ENV, P);
|
|
|
|
t = Deref(ARG1);
|
|
|
|
goto restart_appl;
|
|
|
|
}
|
|
|
|
return(tf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_copy_term(void) /* copy term t to a new instance */
|
|
|
|
{
|
|
|
|
return(unify(ARG2,CopyTerm(ARG1)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void copy_complex_term_no_delays(register CELL *pt0, register CELL *pt0_end, CELL *ptf, CELL *HLow)
|
|
|
|
{
|
|
|
|
|
|
|
|
CELL **to_visit = (CELL **)(HeapTop + sizeof(CELL));
|
|
|
|
tr_fr_ptr TR0 = TR;
|
|
|
|
CELL *HB0 = HB;
|
|
|
|
HB = HLow;
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0;
|
|
|
|
register CELL *ptd0;
|
|
|
|
++ pt0;
|
|
|
|
ptd0 = pt0;
|
|
|
|
d0 = *ptd0;
|
|
|
|
deref_head(d0, copy_term_unk);
|
|
|
|
copy_term_nvar:
|
|
|
|
{
|
|
|
|
if (IsPairTerm(d0)) {
|
|
|
|
CELL *ap2 = RepPair(d0);
|
|
|
|
if (ap2 >= HB && ap2 < H) {
|
|
|
|
/* If this is newer than the current term, just reuse */
|
|
|
|
*ptf++ = d0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
*ptf = AbsPair(H);
|
|
|
|
ptf++;
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit[3] = (CELL *)*pt0;
|
|
|
|
/* fool the system into thinking we had a variable there */
|
|
|
|
*pt0 = AbsPair(H);
|
|
|
|
to_visit += 4;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit += 3;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = ap2 - 1;
|
|
|
|
pt0_end = ap2 + 1;
|
|
|
|
ptf = H;
|
|
|
|
H += 2;
|
2001-08-08 22:17:27 +01:00
|
|
|
if (H > ENV - 2048) {
|
2001-04-09 20:54:03 +01:00
|
|
|
goto overflow;
|
|
|
|
}
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
if (ap2 >= HB && ap2 < H) {
|
|
|
|
/* If this is newer than the current term, just reuse */
|
|
|
|
*ptf++ = d0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
*ptf++ = d0; /* you can just copy other extensions. */
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
*ptf = AbsAppl(H);
|
|
|
|
ptf++;
|
|
|
|
/* store the terms to visit */
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit[3] = (CELL *)*pt0;
|
|
|
|
/* fool the system into thinking we had a variable there */
|
|
|
|
*pt0 = AbsAppl(H);
|
|
|
|
to_visit += 4;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = ptf;
|
|
|
|
to_visit += 3;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
/* store the functor for the new term */
|
|
|
|
H[0] = (CELL)f;
|
|
|
|
ptf = H+1;
|
|
|
|
H += 1+d0;
|
2001-08-08 22:17:27 +01:00
|
|
|
if (H > ENV - 2048) {
|
2001-04-09 20:54:03 +01:00
|
|
|
goto overflow;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* just copy atoms or integers */
|
|
|
|
*ptf++ = d0;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
derefa_body(d0, ptd0, copy_term_unk, copy_term_nvar);
|
|
|
|
if (ptd0 >= HLow && ptd0 < H) {
|
|
|
|
/* we have already found this cell */
|
|
|
|
*ptf++ = (CELL) ptd0;
|
|
|
|
} else {
|
|
|
|
/* first time we met this term */
|
|
|
|
RESET_VARIABLE(ptf);
|
|
|
|
Bind_Global(ptd0, (CELL)ptf);
|
|
|
|
ptf++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit -= 4;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
ptf = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
#else
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
ptf = to_visit[2];
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* we've done it */
|
|
|
|
/* restore our nice, friendly, term to its original state */
|
|
|
|
HB = HB0;
|
|
|
|
clean_tr(TR0);
|
|
|
|
return;
|
|
|
|
|
|
|
|
overflow:
|
|
|
|
/* oops, we're in trouble */
|
|
|
|
H = HLow;
|
|
|
|
/* we've done it */
|
|
|
|
/* restore our nice, friendly, term to its original state */
|
|
|
|
HB = HB0;
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
while (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
to_visit -= 4;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
ptf = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
clean_tr(TR0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Term
|
|
|
|
CopyTermNoDelays(Term inp) {
|
|
|
|
Term t = Deref(inp);
|
|
|
|
|
|
|
|
if (IsVarTerm(t)) {
|
|
|
|
return(MkVarTerm());
|
|
|
|
} else if (IsPrimitiveTerm(t)) {
|
|
|
|
return(t);
|
|
|
|
} else if (IsPairTerm(t)) {
|
|
|
|
Term tf;
|
|
|
|
CELL *ap, *Hi;
|
|
|
|
|
|
|
|
restart_list:
|
|
|
|
Hi = H;
|
|
|
|
ap = RepPair(t);
|
|
|
|
tf = AbsPair(H);
|
|
|
|
H += 2;
|
|
|
|
copy_complex_term_no_delays(ap-1, ap+1, H-2, H-2);
|
|
|
|
if (H == Hi) { /* handle overflow */
|
|
|
|
gc(3, ENV, P);
|
|
|
|
t = Deref(ARG1);
|
|
|
|
goto restart_list;
|
|
|
|
}
|
|
|
|
return(tf);
|
|
|
|
} else {
|
|
|
|
Functor f;
|
|
|
|
Term tf;
|
|
|
|
CELL *HB0;
|
|
|
|
CELL *ap;
|
|
|
|
|
|
|
|
restart_appl:
|
|
|
|
f = FunctorOfTerm(t);
|
|
|
|
HB0 = H;
|
|
|
|
ap = RepAppl(t);
|
|
|
|
tf = AbsAppl(H);
|
|
|
|
H[0] = (CELL)f;
|
|
|
|
H += 1+ArityOfFunctor(f);
|
|
|
|
copy_complex_term_no_delays(ap, ap+ArityOfFunctor(f), HB0+1, HB0);
|
|
|
|
if (H == HB0) {
|
|
|
|
gc(3, ENV, P);
|
|
|
|
t = Deref(ARG1);
|
|
|
|
goto restart_appl;
|
|
|
|
}
|
|
|
|
return(tf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_copy_term_no_delays(void) /* copy term t to a new instance */
|
|
|
|
{
|
|
|
|
return(unify(ARG2,CopyTermNoDelays(ARG1)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Term vars_in_complex_term(register CELL *pt0, register CELL *pt0_end)
|
|
|
|
{
|
|
|
|
|
|
|
|
register CELL **to_visit = (CELL **)(HeapTop + sizeof(CELL));
|
|
|
|
register tr_fr_ptr TR0 = TR;
|
|
|
|
CELL *InitialH = H;
|
|
|
|
CELL output = AbsPair(H);
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0;
|
|
|
|
register CELL *ptd0;
|
|
|
|
++ pt0;
|
|
|
|
ptd0 = pt0;
|
|
|
|
d0 = *ptd0;
|
|
|
|
deref_head(d0, vars_in_term_unk);
|
|
|
|
vars_in_term_nvar:
|
|
|
|
{
|
|
|
|
if (IsPairTerm(d0)) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = RepPair(d0) - 1;
|
|
|
|
pt0_end = RepPair(d0) + 1;
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* store the terms to visit */
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
|
|
|
|
/* do or pt2 are unbound */
|
|
|
|
*ptd0 = TermNil;
|
|
|
|
/* leave an empty slot to fill in later */
|
|
|
|
H[1] = AbsPair(H+2);
|
|
|
|
H += 2;
|
|
|
|
H[-2] = (CELL)ptd0;
|
|
|
|
/* next make sure noone will see this as a variable again */
|
|
|
|
TrailTerm(TR++) = (CELL)ptd0;
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
*pt0 = (CELL)to_visit[2];
|
|
|
|
#else
|
|
|
|
to_visit -= 2;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
clean_tr(TR0);
|
|
|
|
if (H != InitialH) {
|
|
|
|
/* close the list */
|
|
|
|
Term t2 = Deref(ARG2);
|
|
|
|
if (IsVarTerm(t2)) {
|
|
|
|
RESET_VARIABLE(H-1);
|
|
|
|
unify((CELL)(H-1),ARG2);
|
|
|
|
} else {
|
|
|
|
H[-1] = t2; /* don't need to trail */
|
|
|
|
}
|
|
|
|
return(output);
|
|
|
|
} else {
|
|
|
|
return(ARG2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_variables_in_term(void) /* variables in term t */
|
|
|
|
{
|
|
|
|
Term t = Deref(ARG1);
|
|
|
|
Term out;
|
|
|
|
|
|
|
|
if (IsVarTerm(t)) {
|
|
|
|
out = AbsPair(H);
|
|
|
|
H += 2;
|
|
|
|
RESET_VARIABLE(H-2);
|
|
|
|
RESET_VARIABLE(H-1);
|
|
|
|
unify((CELL)(H-2),ARG1);
|
|
|
|
unify((CELL)(H-1),ARG2);
|
|
|
|
} else if (IsPrimitiveTerm(t))
|
|
|
|
out = ARG2;
|
|
|
|
else if (IsPairTerm(t)) {
|
|
|
|
out = vars_in_complex_term(RepPair(t)-1,
|
|
|
|
RepPair(t)+1);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
Functor f = FunctorOfTerm(t);
|
|
|
|
out = vars_in_complex_term(RepAppl(t),
|
|
|
|
RepAppl(t)+
|
|
|
|
ArityOfFunctor(f));
|
|
|
|
}
|
|
|
|
return(unify(ARG3,out));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Term non_singletons_in_complex_term(register CELL *pt0, register CELL *pt0_end)
|
|
|
|
{
|
|
|
|
|
|
|
|
register CELL **to_visit = (CELL **)(HeapTop + sizeof(CELL));
|
|
|
|
register tr_fr_ptr TR0 = TR;
|
|
|
|
CELL *InitialH = H;
|
|
|
|
CELL output = AbsPair(H);
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0;
|
|
|
|
register CELL *ptd0;
|
|
|
|
++ pt0;
|
|
|
|
ptd0 = pt0;
|
|
|
|
d0 = *ptd0;
|
|
|
|
deref_head(d0, vars_in_term_unk);
|
|
|
|
vars_in_term_nvar:
|
|
|
|
{
|
|
|
|
if (IsPairTerm(d0)) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = RepPair(d0) - 1;
|
|
|
|
pt0_end = RepPair(d0) + 1;
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
} else if (d0 == TermFoundVar) {
|
|
|
|
CELL *pt2 = pt0;
|
|
|
|
while(IsVarTerm(*pt2))
|
|
|
|
pt2 = (CELL *)(*pt2);
|
|
|
|
H[1] = AbsPair(H+2);
|
|
|
|
H += 2;
|
|
|
|
H[-2] = (CELL)pt2;
|
|
|
|
*pt2 = TermReFoundVar;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
|
|
|
|
/* do or pt2 are unbound */
|
|
|
|
*ptd0 = TermFoundVar;
|
|
|
|
/* next make sure we can recover the variable again */
|
|
|
|
TrailTerm(TR++) = (CELL)ptd0;
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
*pt0 = (CELL)to_visit[2];
|
|
|
|
#else
|
|
|
|
to_visit -= 2;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
clean_tr(TR0);
|
|
|
|
if (H != InitialH) {
|
|
|
|
/* close the list */
|
|
|
|
RESET_VARIABLE(H-1);
|
|
|
|
unify((CELL)(H-1),ARG2);
|
|
|
|
return(output);
|
|
|
|
} else {
|
|
|
|
return(ARG2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_non_singletons_in_term(void) /* non_singletons in term t */
|
|
|
|
{
|
|
|
|
Term t = Deref(ARG1);
|
|
|
|
Term out;
|
|
|
|
if (IsVarTerm(t)) {
|
|
|
|
out = MkPairTerm(t,ARG2);
|
|
|
|
} else if (IsPrimitiveTerm(t))
|
|
|
|
out = ARG2;
|
|
|
|
else if (IsPairTerm(t)) {
|
|
|
|
out = non_singletons_in_complex_term(RepPair(t)-1,
|
|
|
|
RepPair(t)+1);
|
|
|
|
}
|
|
|
|
else out = non_singletons_in_complex_term(RepAppl(t),
|
|
|
|
RepAppl(t)+
|
|
|
|
ArityOfFunctor(FunctorOfTerm(t)));
|
|
|
|
return(unify(ARG3,out));
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int ground_complex_term(register CELL *pt0, register CELL *pt0_end)
|
|
|
|
{
|
|
|
|
|
|
|
|
register CELL **to_visit = (CELL **)(HeapTop + sizeof(CELL));
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0;
|
|
|
|
register CELL *ptd0;
|
|
|
|
|
|
|
|
++pt0;
|
|
|
|
ptd0 = pt0;
|
|
|
|
d0 = *ptd0;
|
|
|
|
deref_head(d0, vars_in_term_unk);
|
|
|
|
vars_in_term_nvar:
|
|
|
|
{
|
|
|
|
if (IsPairTerm(d0)) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = RepPair(d0) - 1;
|
|
|
|
pt0_end = RepPair(d0) + 1;
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
while (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
*pt0 = (CELL)to_visit[2];
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
*pt0 = (CELL)to_visit[2];
|
|
|
|
#else
|
|
|
|
to_visit -= 2;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
return(TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_ground(void) /* ground(+T) */
|
|
|
|
{
|
|
|
|
Term t = Deref(ARG1);
|
|
|
|
|
|
|
|
if (IsVarTerm(t)) {
|
|
|
|
return(FALSE);
|
|
|
|
} else if (IsPrimitiveTerm(t)) {
|
|
|
|
return(TRUE);
|
|
|
|
} else if (IsPairTerm(t)) {
|
|
|
|
return(ground_complex_term(RepPair(t)-1,
|
|
|
|
RepPair(t)+1));
|
|
|
|
} else {
|
|
|
|
Functor fun = FunctorOfTerm(t);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(fun))
|
|
|
|
return(TRUE);
|
|
|
|
else return(ground_complex_term(RepAppl(t),
|
|
|
|
RepAppl(t)+
|
|
|
|
ArityOfFunctor(fun)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int var_in_complex_term(register CELL *pt0,
|
|
|
|
register CELL *pt0_end,
|
|
|
|
Term t)
|
|
|
|
{
|
|
|
|
|
|
|
|
register CELL **to_visit = (CELL **)(HeapTop + sizeof(CELL));
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0;
|
|
|
|
register CELL *ptd0;
|
|
|
|
++ pt0;
|
|
|
|
ptd0 = pt0;
|
|
|
|
d0 = *ptd0;
|
|
|
|
deref_head(d0, vars_in_term_unk);
|
|
|
|
vars_in_term_nvar:
|
|
|
|
{
|
|
|
|
if (IsPairTerm(d0)) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = RepPair(d0) - 1;
|
|
|
|
pt0_end = RepPair(d0) + 1;
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = (CELL *)*pt0;
|
|
|
|
to_visit += 3;
|
|
|
|
*pt0 = TermNil;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit += 2;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
deref_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
|
|
|
|
if ((CELL)ptd0 == t) { /* we found it */
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
while (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
*pt0 = (CELL)to_visit[2];
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return(TRUE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit > (CELL **)(HeapTop + sizeof(CELL))) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
to_visit -= 3;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
*pt0 = (CELL)to_visit[2];
|
|
|
|
#else
|
|
|
|
to_visit -= 2;
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
Int
|
|
|
|
var_in_term(Term v, Term t) /* variables in term t */
|
|
|
|
{
|
|
|
|
|
|
|
|
if (IsPrimitiveTerm(t))
|
|
|
|
return(FALSE);
|
|
|
|
else if (IsPairTerm(t)) {
|
|
|
|
return(var_in_complex_term(RepPair(t)-1,
|
|
|
|
RepPair(t)+1, v));
|
|
|
|
}
|
|
|
|
else return(var_in_complex_term(RepAppl(t),
|
|
|
|
RepAppl(t)+
|
|
|
|
ArityOfFunctor(FunctorOfTerm(t)),v));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The code for TermHash was originally contributed by Gertjen Van Noor */
|
|
|
|
|
|
|
|
/* This code with max_depth == -1 will loop for infinite trees */
|
|
|
|
|
|
|
|
#define GvNht ((UInt *)H)
|
|
|
|
|
|
|
|
#define HASHADD(T) (GvNht[k]+=(T), k=(k<2 ? k+1 : 0))
|
|
|
|
|
|
|
|
static Int TermHash(Term t1, Int depth_lim, Int k)
|
|
|
|
{
|
|
|
|
Int i;
|
|
|
|
if (IsVarTerm(t1)) {
|
|
|
|
return(-1);
|
|
|
|
} else if (IsAtomTerm(t1)) {
|
|
|
|
register char *s = AtomName(AtomOfTerm(t1));
|
|
|
|
for (i=0; s[i]; i++)
|
|
|
|
HASHADD(s[i]);
|
|
|
|
return(k);
|
|
|
|
} else if (IsPairTerm(t1)) {
|
|
|
|
HASHADD('.');
|
|
|
|
depth_lim--;
|
|
|
|
if (depth_lim == 0) return(TRUE);
|
|
|
|
k = TermHash(HeadOfTerm(t1),depth_lim,k);
|
|
|
|
if (k < 0) return(-1);
|
|
|
|
k = TermHash(TailOfTerm(t1),depth_lim,k);
|
|
|
|
return(k);
|
|
|
|
} else if (IsIntTerm(t1)) {
|
|
|
|
HASHADD(IntOfTerm(t1));
|
|
|
|
return(k);
|
|
|
|
} else {
|
|
|
|
Functor f = FunctorOfTerm(t1);
|
|
|
|
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
if (f == FunctorDouble) {
|
|
|
|
Int *iptr = (Int *)(RepAppl(t1)+1);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < sizeof(Float) / sizeof(CELL); i++) {
|
|
|
|
HASHADD(*iptr++);
|
|
|
|
}
|
|
|
|
return(k);
|
|
|
|
} else if (f == FunctorLongInt) {
|
|
|
|
HASHADD(LongIntOfTerm(t1));
|
|
|
|
return(k);
|
|
|
|
} else if (f == FunctorDBRef) {
|
|
|
|
HASHADD((Int)DBRefOfTerm(t1));
|
|
|
|
return(k);
|
|
|
|
/* should never happen */
|
|
|
|
} else {
|
|
|
|
return(-1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
int ar = ArityOfFunctor(FunctorOfTerm(t1));
|
|
|
|
int res = TRUE;
|
|
|
|
register char *s = AtomName(NameOfFunctor(f));
|
|
|
|
|
|
|
|
depth_lim--;
|
|
|
|
if (depth_lim == 0) return(TRUE);
|
|
|
|
for (i=0; s[i]; i++)
|
|
|
|
HASHADD(s[i]);
|
|
|
|
for (i=1; i<=ar && res; i++) {
|
|
|
|
k = TermHash(ArgOfTerm(i,t1),depth_lim,k);
|
|
|
|
if (k == -1 ) return(-1);
|
|
|
|
}
|
|
|
|
return(k);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
GvNTermHash(void)
|
|
|
|
{
|
|
|
|
unsigned int i1,i2,i3;
|
|
|
|
Term t1 = Deref(ARG1);
|
|
|
|
Term t2 = Deref(ARG2);
|
|
|
|
Term t3 = Deref(ARG3);
|
|
|
|
Term result;
|
|
|
|
Int size, depth;
|
|
|
|
|
|
|
|
|
|
|
|
if (IsVarTerm(t2)) {
|
|
|
|
Error(INSTANTIATION_ERROR,t2,"term_hash/4");
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
if (!IsIntegerTerm(t2)) {
|
|
|
|
Error(TYPE_ERROR_INTEGER,t2,"term_hash/4");
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
depth = IntegerOfTerm(t2);
|
|
|
|
if (depth == 0) {
|
|
|
|
if (IsVarTerm(t1)) return(TRUE);
|
|
|
|
return(unify(ARG4,MkIntTerm(0)));
|
|
|
|
}
|
|
|
|
if (IsVarTerm(t3)) {
|
|
|
|
Error(INSTANTIATION_ERROR,t3,"term_hash/4");
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
if (!IsIntegerTerm(t3)) {
|
|
|
|
Error(TYPE_ERROR_INTEGER,t3,"term_hash/4");
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
size = IntegerOfTerm(t3);
|
|
|
|
GvNht[0] = 0;
|
|
|
|
GvNht[1] = 0;
|
|
|
|
GvNht[2] = 0;
|
|
|
|
|
|
|
|
if (TermHash(t1,depth,0) == -1) return(TRUE);
|
|
|
|
|
|
|
|
i1 = GvNht[0];
|
|
|
|
i2 = GvNht[1];
|
|
|
|
i3 = GvNht[2];
|
|
|
|
i2 ^= i3; i1 ^= i2; i1 = (((i3 << 7) + i2) << 7) + i1;
|
|
|
|
result = MkIntegerTerm(i1 % size);
|
|
|
|
return(unify(ARG4,result));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int variant_complex(register CELL *pt0, register CELL *pt0_end, register
|
|
|
|
CELL *pt1)
|
|
|
|
{
|
|
|
|
tr_fr_ptr OLDTR = TR;
|
|
|
|
register CELL **to_visit = (CELL **)ASP;
|
|
|
|
/* make sure that unification always forces trailing */
|
|
|
|
HBREG = H;
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0, d1;
|
|
|
|
++ pt0;
|
|
|
|
++ pt1;
|
|
|
|
d0 = Derefa(pt0);
|
|
|
|
d1 = Derefa(pt1);
|
|
|
|
if (IsVarTerm(d0)) {
|
|
|
|
if (IsVarTerm(d1)) {
|
|
|
|
/* bind the two variables to a new term */
|
|
|
|
Term key = MkDBRefTerm((DBRef)H);
|
|
|
|
*H++ = (CELL)FunctorDBRef;
|
|
|
|
Bind_Global(VarOfTerm(d0), key);
|
|
|
|
if (d0 != d1) {
|
|
|
|
Bind_Global(VarOfTerm(d1), key);
|
|
|
|
}
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
} else if (IsVarTerm(d1)) {
|
|
|
|
goto fail;
|
|
|
|
} else {
|
|
|
|
if (d0 == d1) continue;
|
|
|
|
else if (IsAtomOrIntTerm(d0)) {
|
|
|
|
goto fail;
|
|
|
|
} else if (IsPairTerm(d0)) {
|
|
|
|
if (!IsPairTerm(d1)) {
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
/* now link the two structures so that no one else will */
|
|
|
|
/* come here */
|
|
|
|
to_visit -= 4;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
to_visit[3] = (CELL *)d0;
|
|
|
|
*pt0 = d1;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit -= 3;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = RepPair(d0) - 1;
|
|
|
|
pt0_end = RepPair(d0) + 1;
|
|
|
|
pt1 = RepPair(d1) - 1;
|
|
|
|
continue;
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2, *ap3;
|
|
|
|
if (!IsApplTerm(d1)) {
|
|
|
|
goto fail;
|
|
|
|
} else {
|
|
|
|
/* store the terms to visit */
|
|
|
|
Functor f2;
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
ap3 = RepAppl(d1);
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
f2 = (Functor)(*ap3);
|
|
|
|
if (f != f2)
|
|
|
|
goto fail;
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
if (!unify_extension(f, d0, ap2, d1))
|
|
|
|
goto fail;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
/* now link the two structures so that no one else will */
|
|
|
|
/* come here */
|
|
|
|
to_visit -= 4;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
to_visit[3] = (CELL *)d0;
|
|
|
|
*pt0 = d1;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit -= 3;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
pt1 = ap3;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit < (CELL **)ASP) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
pt1 = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
to_visit += 4;
|
|
|
|
#else
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
pt1 = to_visit[2];
|
|
|
|
to_visit += 3;
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
H = HBREG;
|
|
|
|
/* untrail all bindings made by variant */
|
|
|
|
while (TR != (tr_fr_ptr)OLDTR) {
|
|
|
|
CELL *pt1 = (CELL *) TrailTerm(--TR);
|
|
|
|
RESET_VARIABLE(pt1);
|
|
|
|
}
|
|
|
|
HBREG = B->cp_h;
|
|
|
|
return(TRUE);
|
|
|
|
|
|
|
|
fail:
|
|
|
|
/* failure */
|
|
|
|
H = HBREG;
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
while (to_visit < (CELL **)ASP) {
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
pt1 = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
to_visit += 4;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/* untrail all bindings made by variant */
|
|
|
|
while (TR != (tr_fr_ptr)OLDTR) {
|
|
|
|
CELL *pt1 = (CELL *) TrailTerm(--TR);
|
|
|
|
RESET_VARIABLE(pt1);
|
|
|
|
}
|
|
|
|
HBREG = B->cp_h;
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_variant(void) /* variant terms t1 and t2 */
|
|
|
|
{
|
|
|
|
Term t1 = Deref(ARG1);
|
|
|
|
Term t2 = Deref(ARG2);
|
|
|
|
|
|
|
|
if (t1 == t2)
|
|
|
|
return (TRUE);
|
|
|
|
if (IsVarTerm(t1)) {
|
|
|
|
if (IsVarTerm(t2))
|
|
|
|
return(TRUE);
|
|
|
|
return(FALSE);
|
|
|
|
} else if (IsVarTerm(t2))
|
|
|
|
return(FALSE);
|
|
|
|
if (IsAtomOrIntTerm(t1)) {
|
|
|
|
return(t1 == t2);
|
|
|
|
}
|
|
|
|
if (IsPairTerm(t1)) {
|
|
|
|
if (IsPairTerm(t2)) {
|
|
|
|
return(variant_complex(RepPair(t1)-1,
|
|
|
|
RepPair(t1)+1,
|
|
|
|
RepPair(t2)-1));
|
|
|
|
}
|
|
|
|
else return (FALSE);
|
|
|
|
}
|
|
|
|
if (!IsApplTerm(t2)) return(FALSE);
|
|
|
|
{
|
|
|
|
Functor f1 = FunctorOfTerm(t1);
|
|
|
|
if (f1 != FunctorOfTerm(t2)) return(FALSE);
|
|
|
|
if (IsExtensionFunctor(f1)) {
|
|
|
|
return(unify_extension(f1, t1, RepAppl(t1), t2));
|
|
|
|
}
|
|
|
|
return(variant_complex(RepAppl(t1),
|
|
|
|
RepAppl(t1)+ArityOfFunctor(f1),
|
|
|
|
RepAppl(t2)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int subsumes_complex(register CELL *pt0, register CELL *pt0_end, register
|
|
|
|
CELL *pt1)
|
|
|
|
{
|
|
|
|
register CELL **to_visit = (CELL **)ASP;
|
|
|
|
CELL *OLDH = H;
|
|
|
|
|
|
|
|
loop:
|
|
|
|
while (pt0 < pt0_end) {
|
|
|
|
register CELL d0, d1;
|
|
|
|
++ pt0;
|
|
|
|
++ pt1;
|
|
|
|
d0 = Derefa(pt0);
|
|
|
|
d1 = Derefa(pt1);
|
|
|
|
if (IsVarTerm(d0)) {
|
|
|
|
if (IsVarTerm(d1)) {
|
|
|
|
/* bind the two variables to a new term */
|
|
|
|
Term key = MkDBRefTerm((DBRef)H);
|
|
|
|
Bind_Global(VarOfTerm(d0), d1);
|
|
|
|
H[0] = (CELL)FunctorDBRef;
|
|
|
|
H[1] = d1;
|
|
|
|
H += 2;
|
|
|
|
Bind_Global(VarOfTerm(d1), key);
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
if (IsApplTerm(d1) && RepAppl(d1) >= OLDH && RepAppl(d1) < H) {
|
|
|
|
/* we are binding to a new variable; */
|
|
|
|
Bind_Global(VarOfTerm(d0),(CELL)pt1);
|
|
|
|
} else {
|
|
|
|
Bind_Global(VarOfTerm(d0), d1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (IsVarTerm(d1)) {
|
|
|
|
goto fail;
|
|
|
|
} else {
|
|
|
|
if (d0 == d1) continue;
|
|
|
|
else if (IsAtomOrIntTerm(d0)) {
|
|
|
|
goto fail;
|
|
|
|
} else if (IsPairTerm(d0)) {
|
|
|
|
if (!IsPairTerm(d1)) {
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
/* now link the two structures so that no one else will */
|
|
|
|
/* come here */
|
|
|
|
to_visit -= 4;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
to_visit[3] = (CELL *)d0;
|
|
|
|
*pt0 = d1;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit -= 3;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pt0 = RepPair(d0) - 1;
|
|
|
|
pt0_end = RepPair(d0) + 1;
|
|
|
|
pt1 = RepPair(d1) - 1;
|
|
|
|
continue;
|
|
|
|
} else if (IsApplTerm(d0)) {
|
|
|
|
register Functor f;
|
|
|
|
register CELL *ap2, *ap3;
|
|
|
|
if (!IsApplTerm(d1)) {
|
|
|
|
goto fail;
|
|
|
|
} else {
|
|
|
|
/* store the terms to visit */
|
|
|
|
Functor f2;
|
|
|
|
ap2 = RepAppl(d0);
|
|
|
|
ap3 = RepAppl(d1);
|
|
|
|
f = (Functor)(*ap2);
|
|
|
|
f2 = (Functor)(*ap3);
|
|
|
|
if (f != f2)
|
|
|
|
goto fail;
|
|
|
|
if (IsExtensionFunctor(f)) {
|
|
|
|
if (!unify_extension(f, d0, ap2, d1))
|
|
|
|
goto fail;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
/* now link the two structures so that no one else will */
|
|
|
|
/* come here */
|
|
|
|
to_visit -= 4;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
to_visit[3] = (CELL *)d0;
|
|
|
|
*pt0 = d1;
|
|
|
|
#else
|
|
|
|
/* store the terms to visit */
|
|
|
|
if (pt0 < pt0_end) {
|
|
|
|
to_visit -= 3;
|
|
|
|
to_visit[0] = pt0;
|
|
|
|
to_visit[1] = pt0_end;
|
|
|
|
to_visit[2] = pt1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
d0 = ArityOfFunctor(f);
|
|
|
|
pt0 = ap2;
|
|
|
|
pt0_end = ap2 + d0;
|
|
|
|
pt1 = ap3;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Do we still have compound terms to visit */
|
|
|
|
if (to_visit < (CELL **)ASP) {
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
pt1 = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
to_visit += 4;
|
|
|
|
#else
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
pt1 = to_visit[2];
|
|
|
|
to_visit += 3;
|
|
|
|
#endif
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (H > OLDH) {
|
|
|
|
H -= 2;
|
|
|
|
RESET_VARIABLE(VarOfTerm(H[1]));
|
|
|
|
}
|
|
|
|
return(TRUE);
|
|
|
|
|
|
|
|
fail:
|
|
|
|
#ifdef RATIONAL_TREES
|
|
|
|
while (to_visit < (CELL **)ASP) {
|
|
|
|
pt0 = to_visit[0];
|
|
|
|
pt0_end = to_visit[1];
|
|
|
|
pt1 = to_visit[2];
|
|
|
|
*pt0 = (CELL)to_visit[3];
|
|
|
|
to_visit += 4;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return(FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
p_subsumes(void) /* subsumes terms t1 and t2 */
|
|
|
|
{
|
|
|
|
Term t1 = Deref(ARG1);
|
|
|
|
Term t2 = Deref(ARG2);
|
|
|
|
|
|
|
|
if (t1 == t2)
|
|
|
|
return (TRUE);
|
|
|
|
if (IsVarTerm(t1)) {
|
|
|
|
Bind(VarOfTerm(t1), t2);
|
|
|
|
return(TRUE);
|
|
|
|
} else if (IsVarTerm(t2))
|
|
|
|
return(FALSE);
|
|
|
|
if (IsAtomOrIntTerm(t1)) {
|
|
|
|
return(t1 == t2);
|
|
|
|
}
|
|
|
|
if (IsPairTerm(t1)) {
|
|
|
|
if (IsPairTerm(t2)) {
|
|
|
|
return(subsumes_complex(RepPair(t1)-1,
|
|
|
|
RepPair(t1)+1,
|
|
|
|
RepPair(t2)-1));
|
|
|
|
}
|
|
|
|
else return (FALSE);
|
|
|
|
} else {
|
|
|
|
Functor f1;
|
|
|
|
|
|
|
|
if (!IsApplTerm(t2)) return(FALSE);
|
|
|
|
f1 = FunctorOfTerm(t1);
|
|
|
|
if (f1 != FunctorOfTerm(t2))
|
|
|
|
return(FALSE);
|
|
|
|
if (IsExtensionFunctor(f1)) {
|
|
|
|
return(unify_extension(f1, t1, RepAppl(t1), t2));
|
|
|
|
}
|
|
|
|
return(subsumes_complex(RepAppl(t1),
|
|
|
|
RepAppl(t1)+ArityOfFunctor(f1),
|
|
|
|
RepAppl(t2)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
static Int
|
|
|
|
p_force_trail_expansion()
|
|
|
|
{
|
|
|
|
Int i = IntOfTerm(Deref(ARG1))*1024, j = 0;
|
|
|
|
tr_fr_ptr OTR = TR;
|
|
|
|
|
|
|
|
for (j = 0; j < i; j++) {
|
|
|
|
TrailTerm(TR) = 0;
|
|
|
|
TR++;
|
|
|
|
}
|
|
|
|
TR = OTR;
|
|
|
|
|
|
|
|
return(TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static Int
|
|
|
|
camacho_dum(void)
|
|
|
|
{
|
|
|
|
Term t1, t2;
|
|
|
|
int max = 3;
|
|
|
|
|
|
|
|
/* build output list */
|
|
|
|
|
|
|
|
t1 = MkAtomTerm(LookupAtom("[]"));
|
|
|
|
t2 = MkPairTerm(MkIntegerTerm(max), t1);
|
|
|
|
|
|
|
|
return(unify(t2, ARG1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif /* DEBUG */
|
|
|
|
|
|
|
|
void InitUtilCPreds(void)
|
|
|
|
{
|
|
|
|
InitCPred("copy_term", 2, p_copy_term, 0);
|
|
|
|
InitCPred("$copy_term_but_not_constraints", 2, p_copy_term_no_delays, 0);
|
|
|
|
InitCPred("ground", 1, p_ground, SafePredFlag);
|
|
|
|
InitCPred("$variables_in_term", 3, p_variables_in_term, SafePredFlag);
|
|
|
|
InitCPred("$non_singletons_in_term", 3, p_non_singletons_in_term, SafePredFlag);
|
|
|
|
InitCPred("term_hash", 4, GvNTermHash, SafePredFlag);
|
|
|
|
InitCPred("variant", 2, p_variant, SafePredFlag);
|
|
|
|
InitCPred("subsumes", 2, p_subsumes, SafePredFlag);
|
|
|
|
#ifdef DEBUG
|
|
|
|
InitCPred("$force_trail_expansion", 1, p_force_trail_expansion, SafePredFlag);
|
|
|
|
InitCPred("dum", 1, camacho_dum, SafePredFlag);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|