This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/real/examples/for_real.pl

691 lines
16 KiB
Perl
Raw Normal View History

2015-10-13 08:25:49 +01:00
:- ensure_loaded( library(real) ).
:- ensure_loaded( library(lists) ).
:- use_module( library(apply_macros) ).
:- use_module( library(readutil) ).
:- set_prolog_flag(double_quotes, string).
% for_real.
%
% Some examples illustrating usage of the r..eal library.
for_real :-
( Head = ex(_Ex); Head = tut(_Tut) ),
clause( Head, Body ),
write(running:Head), nl, nl,
portray_clause( (Head:-Body) ), nl, nl,
write( 'Output: ' ), nl,
( catch(Head,Exc,Fex=true) ->
( Fex==true->
write( '! ' ), write( caught(Exc) ), nl, abort
;
write(status:true)
)
;
write( '! ' ), write( failure ), nl, abort
),
nl, nl, write('-----'), nl, nl,
fail.
for_real :-
write( 'All done.' ), nl.
% ex(int).
%
% Pass the salt please.
% The most basic example: pass a Prolog list of integers to an R variable
% and then back again to a Prolog variable.
%
ex(int) :-
i <- [1,2,3,4],
<- i,
I <- i,
write( i(I) ), nl.
% float.
%
% Pass a Prolog list of floats to an R variable and then back again to a Prolog variable.
%
ex(float) :-
f <- [1.0,2,3,4],
<- f,
F <- f,
write( f(F) ), nl.
% ex( float ).
%
% Pass a mixed Prolog list of integers and floats to an R variable and
% then back again to a Prolog variable.
% The returning list is occupied by floats as is the R variable.
%
ex(to_float) :-
m <- [1,2,3,4.0],
<- m,
M1 <- m,
write( m(M1) ), nl,
m <- [1,2,3,4.1],
<- m,
M2 <- m,
write( m(M2) ), nl.
% ex(bool).
%
%
ex(bool) :-
b <- [true,false,true,true],
<- print( b ),
B <- b,
write( b(B) ), nl.
% at_bool.
%
% In cases where disambiguation is needed, boolean values can be represented by @Val terms.
%
ex(at_bool) :-
b <- [@true,@false,@true,@true],
<- print( b ),
B <- b,
write( at_b(B) ), nl.
% ex(bool_f).
%
% This fails since there is a non boolean value in a list.
%
% On SWI this fails...
% On YAP this throuws exception....
%
ex(bool_f) :-
( catch(b <- [true,false,true,true,other],_,fail) ->
fail
;
true
).
% ex(bool_back).
%
% Get some boolean values back from applying a vector element equality to an integer
% vector we just passed to R. Prints the R bools first for comparison.
%
ex(bool_back) :-
t <- [1,2,3,4,5,1],
<- print(t),
s <- t==1,
<- print(s),
S <- s,
write( s(S) ), nl.
% ex(atom_char).
%
% Pass some atoms to an R vector of characters.
%
ex(atom_char) :-
f <- [a,b,c],
<- f,
F <- f,
write( f(F) ), nl.
% ex(matrix_int).
%
% Pass a 2-level list of lists of integers to an R matrix (and back again).
%
ex(matrix_int) :-
a <- [[1,2,3],[4,5,6]],
<- print(a),
A <- a,
nl, write( a(A) ), nl.
% ex(matrix_char).
%
% Pass a 2-level list of lists of characters to an R matrix (and back again).
%
ex(matrix_char) :-
a <- [[a,b,c],[d,e,f]],
<- print(a),
A <- a,
write( a(A) ), nl.
% ex(matrix_idx).
%
ex(matrix_idx) :-
a <- [[1,2,3],[4,5,6]],
<- a,
J <- a[1,_],
write( j(J) ), nl.
% ex(list).
%
% A Prolog = pairlist to an R list. Shows 2 alternative ways to access the list items.
%
ex(list) :-
a <- [x=1,y=0,z=3],
A <- a,
X0 <- a[1],
format( 'First pair of list: ~w~n', [X0] ),
X <- a[[1]],
format( 'First element of list: ~w~n', [X] ),
Y <- a$y,
format( 'Second element of list: ~w~n', [Y] ),
write( a(A) ), nl.
% ex(list).
%
% R allows for unamed lists.
%
ex(unamed) :-
li <- list(),
li[[1]] <- c(1,2,3),
<- li,
L <- li,
write( l(L) ), nl.
% ex(list_ea).
%
% Produces error due to name of constructor: -.
%
ex(list_ea) :- % produces error
catch_controlled( a <- [x=1,y=0,z-3] ),
<- a,
A <- a,
write( a(A) ), nl.
% ex(list_eb).
%
% Produces an error due to mismatch of arity of =.
%
ex(list_eb) :-
catch_controlled( a <- [x=1,y=0,=(z,3,4)] ),
<- a,
A <- a,
write( a(A) ), nl.
% ex(char_list).
%
% Pass a list which has a char value.
%
ex(char_list) :-
a <- [x=1,y=0,z="three"],
<- print(a),
A <- a,
memberchk( Z="three", A ),
write( z(Z):a(A) ), nl.
% ex(mix_list).
%
% An R-list of mixed types.
%
ex(mix_list) :-
a <- [x=1,y=[1,2,3],z=[[a,b,c],[d,e,f]],w=[true,false]],
A <- a,
<- print(a),
write( a(A) ), nl.
% ex(list2).
%
% Illustrates ways of accessing list elements.
%
ex(list2) :-
l <- list(),
l[["what"]] <- c(1,2,3),
l$who <- c(4,5,6),
<- print(l),
L <- l,
write( l(L) ), nl.
% ex(slot).
%
% Creating formal objects and accessing their content.
%
ex(slot) :-
<- setClass("track", representation(x="numeric", y="numeric")),
myTrack <- new("track", x = -4:4, y = exp(-4:4)),
<- print( myTrack@x ),
% [1] -4 -3 -2 -1 0 1 2 3 4
Y <- myTrack@y,
write( y(Y) ), nl,
<- setClass("nest", representation(z="numeric", t="track")),
myNest <- new("nest", z=c(1,2,3) ),
myNest@t <- myTrack,
myNest@t@x <- Y+1, % good ex. for hidden vars.
<- print( myNest ),
% N <- myNest, % unsupported r-type
% X <- myNest@t@x,
<- print(myNest@t@x),
X <- myNest@t@x,
<- print( myNest@t@x ),
write( x(X) ), nl.
% myTrack@x <- c(1,2,3).
% ex(add_element).
%
% Adds a third element to a list after creation.
%
ex(add_element) :-
x <- [a=1,b=2],
x$c <- [3,4],
<- print( x ), % print = $a 3
X <- x,
write( x(X) ), nl. % X = [a=3.0].
% ex(singletons).
%
% Pass an integer and a singleton number list and get them back.
% Although in R both are passed as vectors of length on, when back in Prolog
% the singleton list constructors are stripped, returing a single integer value in both cases.
%
ex(singletons) :-
s <- 3,
<- print(s),
S <- s,
<- print( s ),
t <- [3],
<- print( t ),
T <- t,
write( s(S)-t(T) ), nl.
% ex(assign).
%
% Simple assignment of an R function (+) application on 2 R values originated in Prolog.
%
ex(assign) :-
a <- 3,
<- print( a ),
b <- [2],
<- print( b ),
C <- a + b,
write( c(C) ), nl.
% ex(assign_1).
%
% Assign the result of an R operation on matrix and value to a Prolog variable.
%
ex(assign_1) :-
a <- [[1,2,3],[4,5,6]],
<- a,
B <- a*3,
write( b(B) ), nl.
% ex(assign_2).
%
% Assign the result of an R operation on matrices to a Prolog variable.
%
ex(assign_2) :-
a <- [[1,2,3],[4,5,6]],
<- print( a ),
b <- 3,
<- print( b ),
C <- a*b,
write( c(C) ), nl.
% ex(assign_r).
%
% Assign values to R variables and operate on them.
% Using c as an R variable is also a good test, as we test against c(...).
%
ex(assign_r) :-
a <- [3],
<- print( a ),
b <- [2],
<- print( b ),
c <- a + b,
<- print( c ).
/* disable for now. once Yap supports . in atoms
re-establish this, but make sure you restor
relevant flag back to its original setting. */
% ex(dot_in_function_names).
%
% Test dots in functions names via the .. mechanism.
%
ex(dot_in_function_names) :-
a <- [1.1,2,3],
<- print(a),
x <- as.integer(a),
<- print(x).
/* as above */
% ex(dot_in_rvars).
%
% Test dots in R variable names via the .. mechanism. Generates an error on the last goal.
%
ex(dot_in_rvar) :-
a.b <- [1,2,3],
<- print( a.b ),
<- print( 'a.b' ),
catch_controlled( <- print('a..b') ).
% ex(semi_column).
%
% A:B in R generates a vector of all integers from A to B.
%
ex(semi_column) :-
z <- 1:50,
<- print( z ),
Z <- z,
length( Z, Len ),
write( len(Len) ), nl.
% ex(c_vectors).
%
% r.eal also supports c() R function concatenation.
%
ex(c_vectors) :-
a <- c(1,2,3,5), % this goes via the fast route
<- print(a),
b <- c(1,1,2,2) + c(1:4),
<- print( b ),
C <- a+b,
write( 'C'(C) ), nl.
% ex(empty_args).
%
% Test calling R functions that take no arguments (via foo()).
%
ex(empty_args) :-
<- plot( 1:10, 1:10 ),
findall( I, (between(1,6,I),write('.'), flush_output, sleep(1)), _ ),
nl,
<- dev.off(). % fixme use dev.off() when Yap starts supporting it.
% ex(string).
%
% Test new (2013/11/22) string type in SWI Prolog v7.
%
ex(string) :-
( (current_predicate(string/1),string("abc")) ->
<- plot( 1:10, 1:10, main="native string type has arrived to Prolog" ),
findall( I, (between(1,6,I),write('.'), flush_output, sleep(1)), _ )
;
true
).
% ex(binary_op).
%
% Early versions of r..eal were not handling this example properly.
% Thanks to Michiel Hildebrand for spotting this.
% The correct answer is =|[0.0,4.0]|=. First subtract v1 from v2 and then take power 2.
%
ex(binary_op) :-
v1 <- c(1,1),
<- print( v1 ),
v2 <- c(1,-1),
<- print( v2 ),
P <- (v1-v2)^2,
write( P ), nl.
% not !!! : P = [0.0, 0.0].
% ex(utf).
%
% Plots 3 points with the x-axis label showing some Greek letters (alpha/Omega).
%
ex(utf) :-
<- plot( c(1,2,3), c(3,2,1), xlab= "αω" ),
findall( I, (between(1,4,I),write('.'), flush_output, sleep(1)), _ ),
nl,
<- dev.off().
% ex(utf_atom).
%
% Plots 3 points with the x-axis label showing some Greek letters (alpha/Omega) as atom preceded by +.
%
ex(utf_atom) :-
<- plot( c(1,2,3), c(3,2,1), xlab= "α/Ω" ),
findall( I, (between(1,4,I),write('.'), flush_output, sleep(1)), _ ),
nl,
<-dev.off().
% ex( utf_1 ).
%
% Thanks to Guillem R.
%
ex(utf_1) :-
s <- ['Pour ce garçon être sur une île, y avoir des histoires de cœur ambiguës et vider un fût de bière sur un canoë entouré par des caïmans, ne fut pas un mince affaire.'],
<- print( s ),
S <- s,
write( s(S) ), nl.
% ex( utf1 ).
%
% Mostly Vitor's then Sander and last one from Nicos.
%
ex(utf_2) :-
x <- [hello, 'olá', 'जैसा कहर बरपा तो बर्बाद हो जाएगी मुंबई','Beëindigen','άμπελος'],
<- x,
X <- x,
write( x(X) ), nl.
% ex(plot_cpu).
%
% Create a plot of 4 time points. Each having a push and a pull time component.
% These are the time it takes to push a list through to R and the time to Pull the same
% (very long) list back.
%
ex(plot_cpu) :-
plot_cpu( 1000 ).
ex(debug) :-
real_debug,
write( started_debugging ), nl,
x <- c(1,2,3), % c-vectors
y <- [1,2,3], % PL data lists
X <- x, % R var to PL var
x <- [a=[1,2,4],b=[4,5,6]],
A <- x,
B <- x$b, % R expression to PL var
Y <- x$b + x$a,
x$c <- [6,3,7],
real_nodebug,
write( x(X) ), nl,
write( a(A) ), nl,
write( b(B) ), nl,
write( y(Y) ), nl,
write( stopped_debugging ), nl.
% ex(rtest).
% Some tests from r_session,
%
ex(rtest) :-
<- set.seed(1), % fixme: dot
y <- rnorm(500),
<- print(y),
x <- rnorm(y),
<- print(x),
% <- x11(width=5,height=3.5),
<- plot(x,y),
r_wait,
<- dev.off(),
Y <- y,
write( y(Y) ), nl,
findall( Zx, between(1,9,Zx), Z ),
z <- Z,
<- print( z ),
cars <- [1, 3, 6, 4, 9],
% cars <- c(1, 3, 6, 4, 9),
<- print(cars),
<- pie(cars),
r_wait,
<- dev.off().
% list_times.
%
% Print some timing statistics for operations on a long list of integers.
%
list_times :-
findall( I, between(1,10000000,I), List ),
statistics( cputime, Cpu1 ), write( cpu_1(Cpu1) ), nl,
l <- List,
a <- median( l ),
statistics( cputime, Cpu2 ), write( cpu_2(Cpu2) ), nl,
b <- median( List ),
statistics( cputime, Cpu3 ), write( cpu_3(Cpu3) ), nl,
<- print(a),
<- print(b).
% adapted from YapR
% Intrinsic attributes: mode and length
tut(tut1) :-
z <- 0:9,
<- print(z),
digits <- as.character(z), % fixme: dot
<- print(digits),
d <- as.integer(digits), % fixme: dot
<- print(d).
% changing the length of an object
tut(tut2) :-
e <- numeric(),
(e[3]) <- 17,
<- print(e),
alpha <- 1:10,
alpha <- alpha[2 * 1:5],
<- alpha, % = 2, 4, 6, 8 10
length(alpha) <- 3,
<- print(alpha), % = 2, 4, 6
nl, write( ' on beta now ' ), nl, nl,
beta <- 1:10,
beta <- 2 * beta,
<- print(beta), % 2 4 6 8 10 12 14 16 18 2
length(beta) <- 3,
<- print(beta). % 2 4 6
% Getting and setting attributes
tut(tut3) :-
z <- 1:100,
attr(z, "dim") <- c(10,10),
<- print( z ).
% factors and tapply.
tut(tut4) :-
/* state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",
"qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas",
"sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",
"sa", "act", "nsw", "vic", "vic", "act"), */
state <- [tas,sa,qld,nsw,nsw,nt,wa,wa,qld,vic,nsw,vic,qld,qld,sa,tas,sa,nt,wa,vic,qld,nsw,nsw,wa,sa,act,nsw,vic,vic,act],
<- print( state ),
% <- astate,
statef <- factor(state),
<- print( statef ),
<- levels(statef),
incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
59, 46, 58, 43),
incmeans <- tapply(incomes, statef, mean),
% notice the function definition.
stderr <- ( function(x) -> sqrt(var(x)/length(x)) ),
% <- print( stderr ),
X <- stderr( [1,2,3,4,5,6,7,8,9,10] ),
writeln(stderr=X),
incster <- tapply(incomes, statef, stderr),
<- print( incster ).
tut(tut5) :-
z <- 1:1500,
dim(z) <- c(3,5,100),
a <- 1:24,
dim(a) <- c(3,4,2),
<- print(a[2,_,_]),
<- print(dim(a)),
x <- array(1:20, dim=c(4,5)),
<- print( x ),
i <- array(c(1:3,3:1), dim=c(3,2)),
<- print( i ),
x[i] <- 0,
<- print( x ),
h <- 1:10,
z <- array(h, dim=c(3,4,2)),
<- print( z ),
a <- array(0, dim=c(3,4,2)),
<- print( a ),
% ab <- z '%o%' a,
ab <- z+a, % z @^@ a,
<- ab,
f <- ( function(xx, yy) -> cos(yy)/(1 + xx^2) ),
w <- outer(z, a, f),
<- w.
tut(tut6) :-
d <- outer(0:9, 0:9),
fr <- table(outer(d, d, "-")),
<- plot(as.numeric(names(fr)), fr, type="h", xlab="Determinant", ylab="Frequency"), % fixme: dot
format( '~n type :- "dev.off()." to close the plot display.~n', []).
tut(tut7) :-
m <- function(x) -> [ array(a), (a[x]<- x), while((x > 0), [x <-x-1, a[x] <- a[x+1]+x]), a[0] ],
m(100),
X <- a,
writeln(X).
% auxiliary,
cpu_points( [], [], [] ).
cpu_points( [H|T], [S|Ss], [L|Ls] ) :-
between_1_and(H,Long),
statistics( cputime, _) ,
length( Long, Lengtho ), write( leno(Lengtho) ), nl,
statistics( cputime, S0 ),
( number(S0) -> S0 = S ; S0 = [_,S] ),
% statistics( cputime, [_,S] ),
long <- Long,
Back <- long,
Back = [Hb|_],
Hb =:= 1,
statistics( cputime, L0 ),
( number(L0) -> L0 = L ; L0 = [_,L] ),
% statistics( cputime, [_,L] ),
length( Back, BackLen ),
write( back_len(BackLen) ), nl,
% L = 0,
cpu_points( T, Ss, Ls ) .
% auxiliaries,
catch_controlled( Expr ) :-
catch( Expr, Caught, true ),
( \+ var(Caught) -> write( caught_controlled(Caught) ), nl; fail ).
between_1_and(N,X) :-
( var(N) -> N is 100; true ),
IntN is integer(N),
findall( I, between(1,IntN,I), Is ),
i <- Is,
X <- i.
cpu( R ) :-
( var(R) -> R is 10000; true ),
findall( F, between_1_and(R,F), Fs ),
f <- Fs,
statistics( cputime, Cpu1 ),
write( cputime_to_push(Cpu1) ), nl,
X <- f, % when F <- f the predicate fails midway for large Len !!!
statistics( cputime, Cpu2 ),
write( cputime_to_pull(Cpu2) ), nl,
length( X, Len ),
write( len(Len) ), nl.
plot_cpu( Factor ) :-
nl,
( Factor > 10 ->
M='if your set-up fails on this test increase the size of stack.',
write( M ), nl, nl
;
true
),
points <- [10,100,500,1000],
points <- as.integer( points * Factor ), % fixme: dot
<- points,
Points <- points,
write( points(Points) ), nl,
cpu_points( Points, Push, Pull ),
push <- Push,
pull <- Pull,
write( plotting(Pull,Push) ), nl,
<- plot( points, pull, ylab = "pull & push (red) - in seconds" ),
<- points( points, push, col="red" ).