124 lines
3.6 KiB
Perl
124 lines
3.6 KiB
Perl
|
% Slim Abdennadher, Thom Fruehwirth, LMU, July 1998
|
||
|
% Finite (enumeration, list) domain solver over integers
|
||
|
|
||
|
:- use_module( library(chr)).
|
||
|
|
||
|
:- use_module( library(lists),
|
||
|
[member/2,memberchk/2,select/3,
|
||
|
last/2,is_list/1,min_list/2, max_list/2,
|
||
|
remove_duplicates/2]).
|
||
|
|
||
|
handler listdom.
|
||
|
|
||
|
option(debug_compile,on).
|
||
|
option(already_in_heads, on).
|
||
|
option(check_guard_bindings, off).
|
||
|
|
||
|
% for domain constraints
|
||
|
operator( 700,xfx,'::').
|
||
|
operator( 600,xfx,'..').
|
||
|
|
||
|
% for inequality constraints
|
||
|
operator( 700,xfx,lt).
|
||
|
operator( 700,xfx,le).
|
||
|
operator( 700,xfx,ne).
|
||
|
|
||
|
constraints (::)/2, le/2, lt/2, ne/2, add/3, mult/3.
|
||
|
% X::Dom - X must be element of the finite list domain Dom
|
||
|
|
||
|
% special cases
|
||
|
X::[] <=> fail.
|
||
|
%X::[Y] <=> X=Y.
|
||
|
%X::[A|L] <=> ground(X) | (member(X,[A|L]) -> true).
|
||
|
|
||
|
% intersection of domains for the same variable
|
||
|
X::L1, X::L2 <=> is_list(L1), is_list(L2) |
|
||
|
intersection(L1,L2,L) , X::L.
|
||
|
|
||
|
X::L, X::Min..Max <=> is_list(L) |
|
||
|
remove_lower(Min,L,L1), remove_higher(Max,L1,L2),
|
||
|
X::L2.
|
||
|
|
||
|
|
||
|
% interaction with inequalities
|
||
|
|
||
|
X le Y, X::L1, Y::L2 ==> is_list(L1),is_list(L2),
|
||
|
min_list(L1,MinX), min_list(L2,MinY), MinX > MinY |
|
||
|
max_list(L2,MaxY), Y::MinX..MaxY.
|
||
|
X le Y, X::L1, Y::L2 ==> is_list(L1),is_list(L2),
|
||
|
max_list(L1,MaxX), max_list(L2,MaxY), MaxX > MaxY |
|
||
|
min_list(L1,MinX), X::MinX..MaxY.
|
||
|
|
||
|
X lt Y, X::L1, Y::L2 ==> is_list(L1), is_list(L2),
|
||
|
max_list(L1,MaxX), max_list(L2,MaxY),
|
||
|
MaxY1 is MaxY - 1, MaxY1 < MaxX |
|
||
|
min_list(L1,MinX), X::MinX..MaxY1.
|
||
|
X lt Y, X::L1, Y::L2 ==> is_list(L1), is_list(L2),
|
||
|
min_list(L1,MinX), min_list(L2,MinY),
|
||
|
MinX1 is MinX + 1, MinX1 > MinY |
|
||
|
max_list(L2,MaxY), Y :: MinX1..MaxY.
|
||
|
|
||
|
X ne Y \ Y::D <=> ground(X), is_list(D), member(X,D) | select(X,D,D1), Y::D1.
|
||
|
Y ne X \ Y::D <=> ground(X), is_list(D), member(X,D) | select(X,D,D1), Y::D1.
|
||
|
Y::D \ X ne Y <=> ground(X), is_list(D), \+ member(X,D) | true.
|
||
|
Y::D \ Y ne X <=> ground(X), is_list(D), \+ member(X,D) | true.
|
||
|
|
||
|
|
||
|
% interaction with addition
|
||
|
% no backpropagation yet!
|
||
|
|
||
|
add(X,Y,Z), X::L1, Y::L2 ==> is_list(L1), is_list(L2) |
|
||
|
all_addition(L1,L2,L3), Z::L3.
|
||
|
|
||
|
% interaction with multiplication
|
||
|
% no backpropagation yet!
|
||
|
|
||
|
mult(X,Y,Z), X::L1, Y::L2 ==> is_list(L1), is_list(L2) |
|
||
|
all_multiplication(L1,L2,L3), Z::L3.
|
||
|
|
||
|
|
||
|
% auxiliary predicates =============================================
|
||
|
|
||
|
remove_lower(_,[],L1):- !, L1=[].
|
||
|
remove_lower(Min,[X|L],L1):-
|
||
|
X@<Min,
|
||
|
!,
|
||
|
remove_lower(Min,L,L1).
|
||
|
remove_lower(Min,[X|L],[X|L1]):-
|
||
|
remove_lower(Min,L,L1).
|
||
|
|
||
|
remove_higher(_,[],L1):- !, L1=[].
|
||
|
remove_higher(Max,[X|L],L1):-
|
||
|
X@>Max,
|
||
|
!,
|
||
|
remove_higher(Max,L,L1).
|
||
|
remove_higher(Max,[X|L],[X|L1]):-
|
||
|
remove_higher(Max,L,L1).
|
||
|
|
||
|
intersection([], _, []).
|
||
|
intersection([Head|L1tail], L2, L3) :-
|
||
|
memberchk(Head, L2),
|
||
|
!,
|
||
|
L3 = [Head|L3tail],
|
||
|
intersection(L1tail, L2, L3tail).
|
||
|
intersection([_|L1tail], L2, L3) :-
|
||
|
intersection(L1tail, L2, L3).
|
||
|
|
||
|
all_addition(L1,L2,L3) :-
|
||
|
setof(Z, X^Y^(member(X,L1), member(Y,L2), Z is X + Y), L3).
|
||
|
|
||
|
all_multiplication(L1,L2,L3) :-
|
||
|
setof(Z, X^Y^(member(X,L1), member(Y,L2), Z is X * Y), L3).
|
||
|
|
||
|
|
||
|
% EXAMPLE ==========================================================
|
||
|
|
||
|
/*
|
||
|
?- X::[1,2,3,4,5,6,7], Y::[2,4,6,7,8,0], Y lt X, X::4..9, X ne Y,
|
||
|
add(X,Y,Z), mult(X,Y,Z).
|
||
|
*/
|
||
|
|
||
|
% end of handler listdom.pl =================================================
|
||
|
% ===========================================================================
|
||
|
|