653 lines
18 KiB
Python
653 lines
18 KiB
Python
|
#! /usr/bin/env python3
|
||
|
#
|
||
|
# druwid is machine learning tool for adverse drug discovery
|
||
|
#
|
||
|
# It relies on the Aleph ILP learner, written and maintained by Ashwin Srinivasan\
|
||
|
#
|
||
|
# Authos: Vitor Santos Costa, David Page
|
||
|
# Bugs are from Vitor Santos Costa
|
||
|
#
|
||
|
|
||
|
import matplotlib
|
||
|
import matplotlib.image as mpimg
|
||
|
#matplotlib.use('Agg')
|
||
|
|
||
|
import argparse
|
||
|
import csv
|
||
|
import heapq
|
||
|
import logging
|
||
|
import networkx as nx
|
||
|
import os
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import sys
|
||
|
import threading
|
||
|
import time
|
||
|
import yap
|
||
|
|
||
|
graphics_ability = False
|
||
|
|
||
|
if graphics_ability:
|
||
|
import PIL
|
||
|
def display_pdf(id):
|
||
|
im = Image.open(self.shown_clause[id])
|
||
|
im.show()
|
||
|
|
||
|
|
||
|
logging.basicConfig(level=logging.DEBUG,
|
||
|
format='[%(levelname)s] (%(threadName)-10s) %(message)s',
|
||
|
)
|
||
|
|
||
|
|
||
|
from collections import namedtuple
|
||
|
from enum import IntEnum
|
||
|
from queue import Queue
|
||
|
from dru.druplot import plotClause
|
||
|
from dru.shell import alephShell
|
||
|
|
||
|
# class Console(InteractiveConsole):
|
||
|
|
||
|
# def __init__(*args): InteractiveConsole.__init__(*args)
|
||
|
|
||
|
compile = namedtuple('consult', 'FileName')
|
||
|
ensure_loaded = namedtuple('ensure_loaded', 'FileName')
|
||
|
loadFile = namedtuple('load_file', 'FileName Opts')
|
||
|
add_example = namedtuple('add_example', 'polarity case id b e')
|
||
|
set = namedtuple('set', 'key val')
|
||
|
setting = namedtuple('setting', ' key')
|
||
|
clsrc = namedtuple('clsrc', ' key ids')
|
||
|
clgraph = namedtuple('clgraph', ' key')
|
||
|
clhist = namedtuple('clhist', ' key first pos')
|
||
|
clause_info = namedtuple('clause_info', ' key Text Symbs H1Pos H2Pos CH1Pos CH2Pos ')
|
||
|
learn = namedtuple('learn', 'example')
|
||
|
learn_in_thread = namedtuple('learn_in_thread', 'example')
|
||
|
#learner = namedtuple('learn', 'class')
|
||
|
# assert = namedtuple('assert', 'fact')
|
||
|
load_ptable = namedtuple('load_ptable', 'File')
|
||
|
load_files = namedtuple('load_files', 'File Opts')
|
||
|
|
||
|
|
||
|
# prolog engine
|
||
|
class y:
|
||
|
E = None
|
||
|
|
||
|
def run(g):
|
||
|
y.E.goal(g)
|
||
|
|
||
|
def f(g):
|
||
|
y.E.fun(g)
|
||
|
|
||
|
|
||
|
# Schema information on Marshfiel mode table ( 2016 data )
|
||
|
#
|
||
|
# TBD: make it match/ genrate a mode declaration
|
||
|
#
|
||
|
|
||
|
# column headers, StudyId refers to the study participant
|
||
|
#
|
||
|
class DiagFields:
|
||
|
StudyID = 0
|
||
|
DX_CODE= 1
|
||
|
AGE= 2
|
||
|
FACILITY_NUM= 3
|
||
|
PROV_ID= 4
|
||
|
DX_DESC= 5
|
||
|
DX_TYPE_ID= 6
|
||
|
DX_TYPE_DESC= 7
|
||
|
DX_SUB_TYPE_ID= 8
|
||
|
DX_SUB_TYPE_DESC= 9
|
||
|
DX_CODE_CATEGORY= 10
|
||
|
DX_CODE_CATEGORY_DESC= 11
|
||
|
DX_CODE_SUBCATEGORY= 12
|
||
|
DX_CODE_SUBCATEGORY_DESC= 13
|
||
|
DATA_SOURCE= 14
|
||
|
|
||
|
#
|
||
|
# operations to fetch data from meds
|
||
|
#
|
||
|
class DiagOps(DiagFields):
|
||
|
''' Selects age, id, and one descriptor: we chose to use DX_DESC so that people
|
||
|
can understand the rules easily. '''
|
||
|
|
||
|
def import_row( self ):
|
||
|
return ( DiagFields.StudyID, DiagFields.AGE, DiagFields.DX_DESC )
|
||
|
|
||
|
def pred(self):
|
||
|
return yap.YAPPrologPredicate( self.name, 3 )
|
||
|
|
||
|
def __init__(self, name, ids):
|
||
|
self.name = name
|
||
|
self.ids = ids
|
||
|
|
||
|
# column headers, StudyId refers to the study participant
|
||
|
#
|
||
|
class MedFields( IntEnum ):
|
||
|
StudyID = 0
|
||
|
AGE = 1
|
||
|
GCN_SEQ_NUM= 2
|
||
|
DRUG_NAME= 3
|
||
|
GENERIC_NAME= 4
|
||
|
DOSAGE= 5
|
||
|
FREQUENCY= 6
|
||
|
ACTION_ATTRIBUTE_DESC= 7
|
||
|
ACTION_VALUE_DESC = 8
|
||
|
ACTION_IN_PLAN_CODE= 9
|
||
|
THERAPEUTIC_GENERIC_ID= 10
|
||
|
THERAPEUTIC_GENERIC_DESC= 11
|
||
|
THERAPEUTIC_SPECIFIC_ID= 12
|
||
|
THERAPEUTIC_SPECIFIC_DESC= 13
|
||
|
DRUG_SOURCE= 14
|
||
|
DATA_SOURCE = 15
|
||
|
|
||
|
#
|
||
|
# operations to fetch data from meds
|
||
|
#
|
||
|
class MedOps:
|
||
|
''' Operations as designed for the Marshfield meds table'''
|
||
|
|
||
|
arity = 3
|
||
|
|
||
|
def import_row( self ):
|
||
|
return ( MedFields.StudyID, MedFields.AGE, MedFields.DRUG_NAME )
|
||
|
|
||
|
def pred( self ):
|
||
|
return yap.YAPPredicate( self.name, 3 )
|
||
|
|
||
|
def __init__(self, name, ids):
|
||
|
self.name = name
|
||
|
self.ids = ids
|
||
|
|
||
|
class PrologTable:
|
||
|
'''Access tables in Prolog format'''
|
||
|
|
||
|
def query( self ):
|
||
|
args = [ 0 for x in range(self.arity) ]
|
||
|
return self.pname._make( args )
|
||
|
|
||
|
def __init__(self, p, name):
|
||
|
self.p = p
|
||
|
self.name = name
|
||
|
self.arity = p.arity()
|
||
|
ArgNames = [ "A" + str(x+1) for x in range(self.arity) ]
|
||
|
self.pname = namedtuple(self.name, ArgNames)
|
||
|
|
||
|
def __iter__(self):
|
||
|
goal = self.pname._make( )
|
||
|
return PrologTableIter(self, e, goal)
|
||
|
|
||
|
class PrologTableIter:
|
||
|
|
||
|
def __init__(self, e, goal):
|
||
|
try:
|
||
|
self.e = e
|
||
|
self.q = e.YAPQuery(goal)
|
||
|
except:
|
||
|
print('Error')
|
||
|
|
||
|
def __iter__(self):
|
||
|
# Iterators are iterables too.
|
||
|
# Adding this functions to make them so.
|
||
|
return self
|
||
|
|
||
|
def next(self):
|
||
|
if self.q.next():
|
||
|
return goal
|
||
|
else:
|
||
|
self.q.close()
|
||
|
self.q = None
|
||
|
raise StopIteration()
|
||
|
|
||
|
class DBStore:
|
||
|
'''store operations: csv to pl, and so on'''
|
||
|
|
||
|
def filter ( self, row ):
|
||
|
id = int(row[self.StudyID])
|
||
|
|
||
|
if id in self.ids:
|
||
|
ex1 = self.ids[ id ]
|
||
|
ex2 = self.ids[ -id ]
|
||
|
|
||
|
age = int(float(row[self.AGE])*1000)
|
||
|
if ex2[1] <= age and age <= ex2[2]:
|
||
|
id = -id
|
||
|
elif ex1[1] > age or age > ex1[2]:
|
||
|
return None
|
||
|
desc = row[self.DESC]
|
||
|
return id, age, desc
|
||
|
|
||
|
def __init__(self, File, dbi, ids ):
|
||
|
self.ids = ids
|
||
|
OFile = "data/" + dbi.name + '.yap'
|
||
|
if os.path.isfile(OFile) :
|
||
|
print("loading db from "+OFile)
|
||
|
y.run( load_files( OFile , []) )
|
||
|
return
|
||
|
with open(File) as csvfile:
|
||
|
print("Converting db from "+File+ " to "+OFile)
|
||
|
with open( OFile, "w") as out:
|
||
|
csvfile.seek(0)
|
||
|
reader = csv.reader(csvfile, delimiter = '|', quoting = csv.QUOTE_MINIMAL )
|
||
|
( self.StudyID, self.AGE, self.DESC ) = dbi.import_row()
|
||
|
P = dbi.pred()
|
||
|
reader.__next__()
|
||
|
for row in reader:
|
||
|
tuple = self.filter( row )
|
||
|
if tuple:
|
||
|
out.write( dbi.name + "( " + str(tuple[0]) +" , " + str(tuple[1])+ ", \'" + str(tuple[2]) + "\').\n" )
|
||
|
print("loading db from "+OFile)
|
||
|
y.E.reSet()
|
||
|
y.run( load_ptable( OFile ) )
|
||
|
|
||
|
def save_table(self, File, name):
|
||
|
p = self.YAPPredicate(name, 3)
|
||
|
with open(File, 'w', newline='') as csvfile:
|
||
|
fieldnames = ['Id', 'Age', 'Attribute' ]
|
||
|
writer = csv.writer(csvfile, delimiter='|', fieldnames=fieldnames)
|
||
|
writer.writerows(PrologTable(p, name))
|
||
|
|
||
|
class Examples:
|
||
|
''' Support for the manipulation and processing of examples.
|
||
|
|
||
|
So far, only loadng examples'''
|
||
|
|
||
|
ids = {}
|
||
|
|
||
|
def __init__(self, File):
|
||
|
if File.lower().endswith(('.yap','.pl','.pro','.prolog')):
|
||
|
E.run( add_prolog( File ) )
|
||
|
return
|
||
|
print("loading examples from "+File)
|
||
|
with open(File) as csvfile:
|
||
|
dialect = csv.Sniffer().sniff(csvfile.read(1024))
|
||
|
dialect.delimiter = '|'
|
||
|
dialect.quoting = csv.QUOTE_MINIMAL
|
||
|
csvfile.seek(0)
|
||
|
reader = csv.reader(csvfile, dialect)
|
||
|
reader.__next__()
|
||
|
for row in reader:
|
||
|
( cdb, pdb, id, b, e ) = row
|
||
|
case = cdb == "1" or cdb == 't' or cdb == '+'
|
||
|
Type = pdb == "1" or pdb == 't' or pdb == '+'
|
||
|
if Type:
|
||
|
id = int(id)
|
||
|
ti = 1
|
||
|
else:
|
||
|
id = -int(id)
|
||
|
ti = 0
|
||
|
if case:
|
||
|
ci = 1
|
||
|
else:
|
||
|
ci = 0
|
||
|
b = int(float(b)*1000)
|
||
|
e = int(float(e)*1000)
|
||
|
y.run( add_example(ti, ci, id, b, e) )
|
||
|
self.ids[id] = ( case, b, e )
|
||
|
|
||
|
cols = ['Id', 'Ref', 'Parent', 'TPP', 'TPN', 'TNN', ' CPP', 'CPN', 'CNN']
|
||
|
indx= ['Id']
|
||
|
|
||
|
|
||
|
|
||
|
class ClauseQueue:
|
||
|
'''Auxiliary class that represents the list of visited clauses.'''
|
||
|
|
||
|
''' queue size '''
|
||
|
size = 1024*256
|
||
|
best = 8
|
||
|
q = []
|
||
|
count = 0
|
||
|
|
||
|
def parentText(self, parent):
|
||
|
[row] = self.DF.loc[self.DF.Id==parent].values.tolist( )
|
||
|
return "Parent "+str(parent)+", cases " +repr(row[3:6])+", controls " +repr(row[6:9])
|
||
|
|
||
|
def showQueue(self, n):
|
||
|
L = heapq.nlargest(n, self.q)
|
||
|
S = "[ *********************************************************************\nbest rules at " + repr(self.count) +" nodes:\n"
|
||
|
S += "Node".rjust(6) + "Score".rjust(10) + "Parent".rjust(6) +" | " +"Matches on Cases".center(24) +" | " +"Matches on Controls".center(24) + '|\n'
|
||
|
S += "".rjust(6) + "".rjust(10) + "".rjust(6) + " | " +"Generic".center(8) + "Both".center(8) + "Brand".center(8) + " | " +"Generic".center(8) + "Both".center(8) + "Brand".center(8) + '|\n'
|
||
|
S += "".rjust(6) + "".rjust(10) + "".rjust(6) + " | " + "Only".center(8) + "".center(8) + "Only".center(8) + " | " +"Only".center(8) + "".center(8) + "Only".center(8) + '|\n'
|
||
|
for cl in L:
|
||
|
S += self.clauseToStringRow( cl )
|
||
|
S += "\n[ ********************************************************************* ]\n\n"
|
||
|
for cl in L:
|
||
|
S += self.PrintClbyId( cl )
|
||
|
return S
|
||
|
|
||
|
|
||
|
def loadHists(self):
|
||
|
hists = {}
|
||
|
if self.ipcs[0]:
|
||
|
hists["case_after_first"] = self.histpcs[0][0:self.ipcs[0]]
|
||
|
if self.ipcs[1]:
|
||
|
hists["case_after_last"] = self.histpcs[1][0:self.ipcs[1]]
|
||
|
if self.ipcs[2]:
|
||
|
hists["case_bef_first"] = self.histpcs[2][0:self.ipcs[2]]
|
||
|
if self.ipcs[3]:
|
||
|
hists["case_bef_last"] = self.histpcs[3][0:self.ipcs[3]]
|
||
|
if self.ipcs[4]:
|
||
|
hists["control_after_first"] = self.histpcs[4][0:self.ipcs[4]]
|
||
|
if self.ipcs[5]:
|
||
|
hists["control_after_last"] = self.histpcs[5][0:self.ipcs[5]]
|
||
|
if self.ipcs[6]:
|
||
|
hists["control_bef_first"] = self.histpcs[6][0:self.ipcs[6]]
|
||
|
if self.ipcs[7]:
|
||
|
hists["control_bef_last"] = self.histpcs[7][0:self.ipcs[7]]
|
||
|
return hists
|
||
|
|
||
|
def attendRequests(self):
|
||
|
while not self.command_q.empty():
|
||
|
msg = self.command_q.get()
|
||
|
if msg[0] == "show_clause":
|
||
|
row = msg[1]
|
||
|
y.run( clsrc( row[1], self ) )
|
||
|
parent = row[2]
|
||
|
parentDesc = self.parentText(parent)
|
||
|
self.hists = self.loadHists()
|
||
|
print( hists)
|
||
|
self.reply_q.put( ("show_clause", parentDesc ) )
|
||
|
|
||
|
|
||
|
# this method implements PrintCl if YAP is running
|
||
|
def printClWithThreads(self, row):
|
||
|
try:
|
||
|
id = row[0]
|
||
|
# if id in self.shown_clause:
|
||
|
# im = Image.open(self.shown_clause[id])
|
||
|
# im.show()
|
||
|
# return
|
||
|
#Prolog does the firat half
|
||
|
self.queue.prolog_q.put( ( "show_clause" , row ) )
|
||
|
( x, parentDesc )= self.queue.reply_q.get()
|
||
|
self.shown_clause[id] = plotClause(row[0],parentDesc, row[3:6], row[3:9], Text, (self.GraphV,self.d), self.hists)
|
||
|
except Exception as e:
|
||
|
print( 'trieref = ' + trieref )
|
||
|
raise
|
||
|
|
||
|
# this method implements PrintCl if YAP is not running
|
||
|
def printClNoThreads(self, row):
|
||
|
try:
|
||
|
id = row[0]
|
||
|
if graphics_ability and id in self.shown_clause:
|
||
|
display_pdf( id )
|
||
|
im = Image.open(self.shown_clause[id])
|
||
|
im.show()
|
||
|
return
|
||
|
#Prolog does the real work
|
||
|
y.run( clsrc( row[1], self ) )
|
||
|
parent = row[2]
|
||
|
self.hists = self.loadHists()
|
||
|
parentDesc = self.parentText(parent)
|
||
|
# and then sealib
|
||
|
self.shown_clause[id] = plotClause(row[0],parentDesc, row[3:6], row[6:9], self.Text )
|
||
|
except Exception as e:
|
||
|
print( 'trieref = ' + trieref )
|
||
|
raise
|
||
|
|
||
|
def clauseToStringRow(self, id):
|
||
|
try:
|
||
|
[row] = self.DF.loc[self.DF.Id==id].values.tolist( )
|
||
|
S = "" + repr(id).rjust(6) + "{:10.3f}".format(cl[0]) + repr(row[2]).rjust(6) +" | " + repr(row[3]).rjust(6) + repr(row[4]).rjust(6) + repr(row[5]).rjust(6) + ' | '+ repr(row[6]).rjust(6) + repr(row[7]).rjust(6) + repr(row[8]).rjust(6) + '|\n'
|
||
|
return S
|
||
|
except Exception as e:
|
||
|
print( str(e) )
|
||
|
raise
|
||
|
|
||
|
def printClauseAsRow(self, id):
|
||
|
print( self.clauseToStringRow( id ) )
|
||
|
|
||
|
|
||
|
def printClbyId(self, id):
|
||
|
try:
|
||
|
[row] = self.DF.loc[self.DF.Id==id].values.tolist( )
|
||
|
self.printClause( row )
|
||
|
except Exception as e:
|
||
|
print( str(e) )
|
||
|
raise
|
||
|
|
||
|
def printClbyTrieRef(self, trieref):
|
||
|
try:
|
||
|
[row] = self.DF.loc[self.DF.Ref==trieref].values.tolist()
|
||
|
self.printClause( row )
|
||
|
except Exception as e:
|
||
|
print( str(e) )
|
||
|
raise
|
||
|
|
||
|
def idFromTrieRef( self, trieref ):
|
||
|
try:
|
||
|
row = self.DF.loc[self.DF.Ref==trieref]
|
||
|
return int(row.at['Id','Id' ])
|
||
|
except Exception as e:
|
||
|
print("node = "+str(trieref))
|
||
|
print(self.DF)
|
||
|
raise
|
||
|
|
||
|
def add(self, parent, score, trieref, c):
|
||
|
try:
|
||
|
#import pdb
|
||
|
#pdb.set_trace()
|
||
|
self.count += 1
|
||
|
k = [self.count,trieref,parent,c[0],c[1],c[2],c[3],c[4],c[5]]
|
||
|
heapq.heappush(self.q, (score, self.count))
|
||
|
self.DF = self.DF.append(pd.DataFrame([k],columns=cols,index=indx))
|
||
|
if not self.command_q.empty():
|
||
|
self.attendRequests()
|
||
|
except Exception as e:
|
||
|
print("new node = "+str(self.count))
|
||
|
print("parent = "+str(parent))
|
||
|
print(self.DF)
|
||
|
raise
|
||
|
|
||
|
def link(self, parent, trieref):
|
||
|
try:
|
||
|
row = self.DF.loc[self.DF.Ref==trieref]
|
||
|
if not self.command_q.empty():
|
||
|
self.attendRequests()
|
||
|
except Exception as e:
|
||
|
print("new node = "+str(trieref))
|
||
|
print("parent = "+str(parent))
|
||
|
print(self.DF)
|
||
|
raise
|
||
|
|
||
|
def pushHistogram( self, i, val):
|
||
|
try:
|
||
|
x = self.ipcs[i]
|
||
|
self.histpcs[i][x] = val
|
||
|
self.ipcs[i] = x+1
|
||
|
except Exception as e:
|
||
|
print("i = "+str(i))
|
||
|
print("x = "+str(x))
|
||
|
print(self.DF)
|
||
|
raise
|
||
|
|
||
|
|
||
|
def initHistograms( self ):
|
||
|
self.histpcs = ( [None]*2400, [None]*2400, [None]*2400, [None]*2400,
|
||
|
[None]*2400, [None]*2400, [None]*2400, [None]*2400)
|
||
|
self.resetHistograms()
|
||
|
|
||
|
def resetHistograms( self ):
|
||
|
self.ipcs = [ 0, 0, 0, 0, 0, 0, 0, 0 ]
|
||
|
|
||
|
def setClauseText( self, txt ):
|
||
|
self.Text = txt
|
||
|
|
||
|
def setClauseGraph( self, labels,edges ):
|
||
|
G=nx.DiGraph()
|
||
|
dict = {}
|
||
|
for (i,l) in labels:
|
||
|
G.add_node(i,label=i)
|
||
|
dict[i] = l.strip()[0].lower()
|
||
|
for (i,j) in edges:
|
||
|
G.add_edge(i,j)
|
||
|
self.GraphV = G
|
||
|
self.d = dict
|
||
|
return G
|
||
|
|
||
|
def __repr__(self):
|
||
|
l = heapq.nlargest(self.q, 10)
|
||
|
for i in l:
|
||
|
print( l )
|
||
|
|
||
|
def __init__(self):
|
||
|
self.command_q = Queue()
|
||
|
self.reply_q = Queue()
|
||
|
self.GraphV=nx.Graph()
|
||
|
self.count = 0
|
||
|
self.DF = pd.DataFrame([[0,88998993,0,4,3,2,1,160,400]],columns=cols, index=indx)
|
||
|
self.shown_clause = {}
|
||
|
|
||
|
class LineSettings:
|
||
|
'''Isolate interface with argparse '''
|
||
|
|
||
|
|
||
|
|
||
|
opts = None
|
||
|
|
||
|
def __init__(self):
|
||
|
parser = argparse.ArgumentParser(description='''Search for ADRs using EHR data.
|
||
|
The arguments are CSV files for the databases, with at least 3 fields:
|
||
|
- an integer giving the patient id, called key
|
||
|
- a float point giving the patient\'s age in years, called age
|
||
|
- a string describing the diagnosis, called data
|
||
|
dppb
|
||
|
The case and control files are alos in CSV form, withe the following fields:
|
||
|
Key,AgeBefStart,AgeStartEnd,AgeAfterStart,AGeAfterEnd
|
||
|
|
||
|
p ''')
|
||
|
parser.add_argument('--save-db', dest='save', default=None, help="save the processed DB in Prolog, CSV, pickle")
|
||
|
parser.add_argument('--meds', dest='meds', default="data/meds.csv", help="CSV or Tab like with the medications database")
|
||
|
parser.add_argument('--diags', dest='diags', default="data/diags.csv", help="CSV or Tab like with the medications database")
|
||
|
parser.add_argument('--examples', dest='examples', default="data/exs.csv" , help="CSV or Tab like with the cases and controls")
|
||
|
parser.add_argument('--labs', type=argparse.FileType('r'), default=None, help="unsupported for now")
|
||
|
parser.add_argument('--min_examples', type=int, default=20, help="minimal number of examples to cover")
|
||
|
parser.add_argument('--seed', type=int, default=0, help="examples to start search, 0 if tries to cinsider all")
|
||
|
parser.add_argument('-f', default=" " , help="jupyter notebook")
|
||
|
parser.add_argument('--interactive', type = bool, default=True, help="run as line mode, or run as closed script ()")
|
||
|
self.opts = parser.parse_args()
|
||
|
|
||
|
def map(self):
|
||
|
return vars(self.opts)
|
||
|
|
||
|
|
||
|
class Aleph:
|
||
|
|
||
|
e = None
|
||
|
|
||
|
def add_db(self, p, t):
|
||
|
queue.addClause(t)
|
||
|
|
||
|
def set_options( self, xargs):
|
||
|
|
||
|
if 'min-examples' in xargs:
|
||
|
self.set('minpos', xargs[ 'min_examples' ] )
|
||
|
if 'verbosity' in xargs:
|
||
|
self.set('verbosity', xargs[ 'verbosity' ] )
|
||
|
if 'search' in xargs:
|
||
|
self.set('search', xargs[ 'search' ] )
|
||
|
if 'nodes' in xargs:
|
||
|
self.set('nodes', xargs[ 'nodes' ] )
|
||
|
|
||
|
def set( self, parameter, value):
|
||
|
'''Set an integer parameter, eg nodes, seeds or noise'''
|
||
|
y.run(set(parameter, value))
|
||
|
|
||
|
def setting( self, parameter):
|
||
|
'''Return the Aleph setting for parameter p, or show all
|
||
|
the current settings'''
|
||
|
if parameter:
|
||
|
value = yap.YAPVarTerm()
|
||
|
y.run(setting(parameter, value))
|
||
|
# return value
|
||
|
y.run( settings )
|
||
|
|
||
|
def induce( self, index = 0):
|
||
|
'''Learn clauses'''
|
||
|
y.run( learn( index ) )
|
||
|
|
||
|
def induceInThread( self, index = 0):
|
||
|
'''Learn clauses as a separe thread'''
|
||
|
if self.learning:
|
||
|
print("Already learning" )
|
||
|
return
|
||
|
self.learning = True
|
||
|
y.run( learn_in_thread( index ) )
|
||
|
|
||
|
def query_prolog( self, y, Query):
|
||
|
y.run( Query )
|
||
|
|
||
|
def rule( self, id ):
|
||
|
self.queue.printClause( id )
|
||
|
|
||
|
def histogram( self, Dict ):
|
||
|
pass
|
||
|
|
||
|
def induceInThread( self, index = 0 ):
|
||
|
kw = {}
|
||
|
kw["index"] = index
|
||
|
t = threading.Thread(target=self.induceInThread, kwargs=kw)
|
||
|
t.setDaemon = True
|
||
|
self.queue.printClause = self.queue.printClWithThreads
|
||
|
t.start()
|
||
|
self.queue.printClause = self.queue.printClNoThreads
|
||
|
|
||
|
def rules( self, count = 100 ):
|
||
|
self.queue.showQueue()
|
||
|
|
||
|
def golearn( self ):
|
||
|
|
||
|
try:
|
||
|
# import pdb
|
||
|
# pdb.set_trace()
|
||
|
self.learning = False
|
||
|
alephShell( self ).cmdloop()
|
||
|
q.close()
|
||
|
|
||
|
except SyntaxError as err:
|
||
|
print("Syntax Error error: {0}".format(err))
|
||
|
print( sys.exc_info()[0] )
|
||
|
except EOFError:
|
||
|
return
|
||
|
except RuntimeError as err:
|
||
|
print("YAP Execution Error: {0}".format(err))
|
||
|
print( sys.exc_info()[0] )
|
||
|
except ValueError as err:
|
||
|
print("Could not convert data to an integer: {0}.", format(rr))
|
||
|
print( sys.exc_info()[0] )
|
||
|
except NameError as err:
|
||
|
print("Bad Name: {0}.", format(err))
|
||
|
print( sys.exc_info()[0] )
|
||
|
except Exception as err:
|
||
|
print("Unexpected error:" + sys.exc_info() )
|
||
|
print( sys.exc_info()[0] )
|
||
|
|
||
|
|
||
|
def learn( self ):
|
||
|
|
||
|
while True:
|
||
|
self.golearn()
|
||
|
|
||
|
def __init__(self, queue):
|
||
|
''' Initialize Aleph by loading the data-bases and the example'''
|
||
|
|
||
|
if y.E == None:
|
||
|
y.E = yap.YAPEngine()
|
||
|
y.run( ensure_loaded( sys.druwid_root +'/druwid.yap' ) )
|
||
|
y.E.reSet()
|
||
|
x_args = LineSettings().map()
|
||
|
exf = x_args['examples']
|
||
|
exs = Examples(exf)
|
||
|
di = x_args['diags']
|
||
|
exmap = exs.ids
|
||
|
diags = DBStore( di, DiagOps( "diags", exmap ), exmap )
|
||
|
md = x_args['meds']
|
||
|
meds = DBStore(md, MedOps( "meds", exmap ) , exmap )
|
||
|
y.E.reSet()
|
||
|
save_db = x_args['save']
|
||
|
self.set_options( x_args )
|
||
|
self.interactive = x_args['interactive']
|
||
|
self.queue = queue
|
||
|
self.learning = False
|
||
|
self.queue.initHistograms( )
|
||
|
self.queue.printClause = self.queue.printClNoThreads
|