This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/yap-lbfgs/doc/index.html

215 lines
11 KiB
HTML
Raw Normal View History

2013-06-13 23:57:55 +01:00
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head profile="http://www.w3.org/2005/10/profile">
<title>YAP-LBFGS</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<meta http-equiv="language" content="english,en" />
<meta name="robots" content="index,follow" />
<meta name="revisit-after" content="14 days" />
<link rel="stylesheet" title="Main" type="text/css" href="style.css" />
</head>
<body>
<h1>YAP-LBFGS</h1>
<h2>What is YAP-LBFGS</h2>
<p>YAP-LBFGS is an interface to call <a href="http://www.chokkan.org/software/liblbfgs/">libLBFGS</a> from within
YAP. libLBFGS is a C library for Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) solving the under-constrained
minimization problem:</p>
<p> minimize <span class="math">F(X), X=(x1,x2,..., xN)</span></p>
<p><a href="http://www.dcc.fc.up.pt/~vsc/Yap/">YAP</a> (Yet Another
Prolog) is a Prolog interpreter</p>
<h2>Contact</h2>
<p>YAP-LBFGS has been developed by Bernd Gutmann (<a
href="http://www.cs.kuleuven.be/cgi-bin/e-post.pl?epost=bernd.gutmann">email</a>,
<a href="http://www.cs.kuleuven.be/~bernd/">homepage</a>). In case you publish something using YAP-LBFGS, please give credit to me and to libLBFGS. And if you find YAP-LBFGS useful, or if you find a bug, or if you
port it to another system, ... please send me an email.</p>
<h2>Download</h2>
<p>Latest version (25.04.2009) <a href="yap-lbfgs.tgz">yap-lbfgs.tgz</a></p>
<h2>Installation</h2>
<p>Note: The Make file is currently only working under Mac OS, but with little
effort it is possible to adapt it to your needs.<br />
And in case you are a C expert and can produce a better/more general Make file, please let me know.</p>
<ol>
<li>Download and compile <a
href="http://www.chokkan.org/software/liblbfgs/">libLBFGS</a>.</li>
<li>Download and unpack YAP-LBFGS</li>
<li>Edit the Makefile of
YAP-LBFGS and change the line <span class="code">LIBS= ../lib/lbfgs.o</span> to wherever the
lbfgs.o file can be found.</li>
<li>Execute Make in the YAP-LBFGS folder</li>
<li>Run <span class="code">yap -l ex1.pl</span> and run the query
<span class="code">:-demo.</span> to see whether everything works fine.</li>
</ol>
<h2>License</h2>
<p> YAP-LBFGS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.</p>
<p> YAP-LBFGS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.</p>
<h2>Usage</h2>
<p>The module lbfgs provides the following predicates after you loaded
it by <span class="code">:-use_module(lbfgs).</span></p>
<h3>optimizer_initialize(+N,+Module,+Evaluate,+Progress)</h3>
<p>Create space to optimize a function with N variables (N has to be
integer). <span class="code">Module</span> is the name of the module where the call back
predicates can be found, <span class="code">Evaluate</span> is the call back predicate (arity 3)
to evaluate the function math <span class="math">F</span>, <span class="code">Progress</span> is the call back predicate invoked
(arity 8) after every iteration</p>
<p>Example <span class="code">
optimizer_initialize(1,user,evaluate,progress)</span></p>
<p>The evaluate call back predicate has to be of the type <span class="code">evaluate(-F,+N,+Step)</span>. It has to calculate the current function value <span class="code">F</span>. <span class="code">N</span> is the size of the parameter vector (the value which was used to initialize LBFGS) and <span class="code">Step</span> is the current state of the line search. The call back predicate can access the current values of <span class="math">x[i]</span> by calling <span class="code">optimizer_get_x(+I,-Xi)</span>. Finally, the call back predicate has to calculate the gradient of <span class="math">F</span> and set its value by calling <span class="code">optimizer_set_g(+I,+Gi)</span> for every <span class="math">1&lt;=I&lt;=N</span>.</p>
<p>The progress call back predicate has to be of the type <span class="code">progress(+F,+X_Norm,+G_Norm,+Step,+N,+Iteration,+LS,-Continue)</span>. It is called after every iteration. The call back predicate can access the current values of X and of the gradient by calling <span class="code">optimizer_get_x(+I,-Xi)</span> and <span class="code">optimizer_get_g(+I,-Gi)</span> respectively. Howver, it must not call the setter predicates for <span class="code">X</span> or <span class="code">G</span>. If it tries to do so, the optimizer will terminate with an error. If <span class="code">Continue</span> is set to 0 (int) the optimization process will continue for one more iteration, any other value will terminate the optimization process.</p>
<h3>optimizer_initialize(+N,+Evaluate,+Progress)</h3>
<p>The same as before, except that the user module is the default
value.</p>
<p>Example <span class="code">
optimizer_initialize(1,evaluate,progress)</span></p>
<h3>optimizer_run(-F,-Status)</h3>
<p>Runs the optimization, <span class="code">F</span> is the best (minimal) function value and
Status (int) is the status code returned by libLBFGS. Anything except
0 indicates an error, see the <a href="http://www.chokkan.org/software/liblbfgs/group__liblbfgs__api.html#g06fc87d81c62e9abb8790b6e5713c55b">documentation of libLBFGS</a> for the
meaning.</p>
<h3>optimizer_get_x(+I,-X)</h3>
<p>Get the current value for <span class="math">x[I]</span>. Only possible when the optimizer is
initialized or running.</p>
<h3>optimizer_set_x(+I,+X)</h3>
<p>Set the current value for <span class="math">x[I]</span>. Only possible when the optimizer is
initialized but not running.</p>
<h3>optimizer_get_g(+I,-G)</h3>
<p>Get the current value for <span class="math">g[I]</span> (the partial derivative of <span class="math">F</span> with respect to <span class="math">x[I]</span>). Only possible when the optimizer is
initialized or running.</p>
<h3>optimizer_set_g(+I,+G)</h3>
<p>Set the current value for <span class="math">g[I]</span> (the partial derivative of <span class="math">F</span> with
respect to <span class="math">x[I]</span>). Can only be called from the evaluate call back predicate.</p>
<h3> optimizer_finalize/0</h3>
<p>Clean up the memory.</p>
<h3> optimizer_parameters/0</h3>
<p>Prints a table with the current parameters. See the <a href="http://www.chokkan.org/software/liblbfgs/structlbfgs__parameter__t.html#_details">documentation
of libLBFGS</a> for the meaning of each parameter.</p>
<pre>
?- optimizer_parameters.
==========================================================================================
Type Name Value Description
==========================================================================================
int m 6 The number of corrections to approximate the inverse hessian matrix.
float epsilon 1e-05 Epsilon for convergence test.
int past 0 Distance for delta-based convergence test.
float delta 1e-05 Delta for convergence test.
int max_iterations 0 The maximum number of iterations
int linesearch 0 The line search algorithm.
int max_linesearch 40 The maximum number of trials for the line search.
float min_step 1e-20 The minimum step of the line search routine.
float max_step 1e+20 The maximum step of the line search.
float ftol 0.0001 A parameter to control the accuracy of the line search routine.
float gtol 0.9 A parameter to control the accuracy of the line search routine.
float xtol 1e-16 The machine precision for floating-point values.
float orthantwise_c 0.0 Coefficient for the L1 norm of variables
int orthantwise_start 0 Start index for computing the L1 norm of the variables.
int orthantwise_end -1 End index for computing the L1 norm of the variables.
==========================================================================================
use optimizer_set_paramater(Name,Value) to change parameters
use optimizer_get_parameter(Name,Value) to see current parameters
use optimizer_parameters to print this overview
</pre>
<h3> optimizer_set_parameter(+Name,+Value)</h3>
<p>Set the parameter Name to Value. Only possible while the optimizer
is not running.</p>
<h3> optimizer_get_parameter(+Name,-Value)</h3>
<p>Get the current Value for Name</p>
<h2>Demo</h2>
<p>The following Prolog program (<span class="code">ex1.pl</span>) searches for minimas of the function
<span class="math">f(x0)=sin(x0)</span>. In order to do so, it provides the call back
predicate <span class="code">evaluate</span> which calculates <span class="math">f(x0)</span> and the gradient <span class="math">d/dx0 f=cos(x0)</span>.</p>
<pre>
:- use_module(lbfgs).
% This is the call back function which evaluates F and the gradient of F
evaluate(FX,_N,_Step) :-
optimizer_get_x(0,X0),
FX is sin(X0),
G0 is cos(X0),
optimizer_set_g(0,G0).
% This is the call back function which is invoked to report the progress
% if the last argument is set to anything else than 0, the optimizer will
% stop right now
progress(FX,X_Norm,G_Norm,Step,_N,Iteration,Ls,0) :-
optimizer_get_x(0,X0),
format('~d. Iteration : x0=~4f f(X)=~4f |X|=~4f
|X\'|=~4f Step=~4f Ls=~4f~n',
[Iteration,X0,FX,X_Norm,G_Norm,Step,Ls]).
demo :-
format('Optimizing the function f(x0) = sin(x0)~n',[]),
optimizer_initialize(1,evaluate,progress),
StartX is random*10,
format('We start the search at the random position x0=~5f~2n',[StartX]),
optimizer_set_x(0,StartX),
optimizer_run(BestF,Status),
optimizer_get_x(0,BestX0),
optimizer_finalize,
format('~2nOptimization done~nWe found a minimum at
f(~f)=~f~2nLBFGS Status=~w~n',[BestX0,BestF,Status]).
</pre>
<p>The output of this program is something like:</p>
<pre>
?- demo.
Optimizing the function f(x0) = sin(x0)
We start the search at the random position x0=7.24639
1. Iteration : x0=5.0167 f(X)=-0.9541 |X|=5.0167 |X'|=0.2996 Step=3.9057 Ls=3.0000
2. Iteration : x0=4.7708 f(X)=-0.9983 |X|=4.7708 |X'|=0.0584 Step=0.0998 Ls=2.0000
3. Iteration : x0=4.7113 f(X)=-1.0000 |X|=4.7113 |X'|=0.0011 Step=1.0000 Ls=1.0000
4. Iteration : x0=4.7124 f(X)=-1.0000 |X|=4.7124 |X'|=0.0000 Step=1.0000 Ls=1.0000
Optimization done
We found a minimum at f(4.712390)=-1.000000
LBFGS Status=0
yes
?-
</pre>
<p><a href="http://www.validome.org/referer">
<img id="valimg"
src="http://www.validome.org/images/set3/valid_xhtml_1_0.gif"
alt="Valid XHTML 1.0" width="80" height="15" /></a>
</p>
</body>
</html>