This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/CLPQR/clpr/bv.pl

1257 lines
32 KiB
Perl
Raw Normal View History

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% clp(q,r) version 1.3.3 %
% %
% (c) Copyright 1992,1993,1994,1995 %
% Austrian Research Institute for Artificial Intelligence (OFAI) %
% Schottengasse 3 %
% A-1010 Vienna, Austria %
% %
% File: bv.pl %
% Author: Christian Holzbaur christian@ai.univie.ac.at %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% simplex with bounded variables, ch, 93/12
%
%
% TODO: +) var/bound/state classification and maintainance
% +) inc/dec_step: take the best?, at least find unconstrained var first
% +) trivially implied values
% +) avoid eval_rhs through an extra column (Coeff=Rhs)
% +) if an optimum is encountered, record the value as bound !!!
% +) generalized (transparent) attribute handling
% +) coordinate reconsideration cascades
% +) =\=
% +) strict inequalities via =\=
% -) decompose via nonvar test -> no symbolic constants any more ?
% constants complicate the nonlin solver anyway ...
% +) join t_l,l(L), .... into t_l(L), ...
% +) shortcuts for strict ineqs
% -) extra types for vars with l/u bound zero
% -) occurrence lists for indep vars (with coeffs) ???
% each solve produces one dep var -> push
% only complication: pivots
% -) *incremental* REVISED simplex ?!!
%
% sicstus2.1.9.clp conversion:
%
% -) stable ordering through extra attribute ...
% interpreted vs compiled yields different var order
% -> nasty in R (need different eps)
%
% -) check determinism again
%
%
:- public {}/1, maximize/1, minimize/1, sup/2, inf/2, imin/2. % xref.pl
:- use_module( library(ordsets), [ord_add_element/3]).
% :- use_module( library(deterministic)).
%
% For the rhs maint. the following events are important:
%
% -) introduction of an indep var at active bound B
% -) narrowing of active bound
% -) swap active bound
% -) pivot
%
%
% a variables bound (L/U) can have the states:
%
% -) t_none
% -) t_l has a lower bound (not active yet)
% -) t_u
% -) t_L has an active lower bound
% -) t_U
% -) t_lu
% -) t_Lu
% -) t_lU
%
% ----------------------------------- deref ------------------------------------ %
:- mode deref( +, -).
%
deref( Lin, Lind) :-
split( Lin, H, I),
normalize_scalar( I, Nonvar),
length( H, Len),
log_deref( Len, H, [], Restd),
add_linear_11( Nonvar, Restd, Lind).
:- mode log_deref( +, +, -, -).
%
log_deref( 0, Vs, Vs, Lin) :- !,
arith_eval( 0, Z),
Lin = [Z,Z].
log_deref( 1, [v(K,[X^1])|Vs], Vs, Lin) :- !,
deref_var( X, Lx),
mult_linear_factor( Lx, K, Lin).
log_deref( 2, [v(Kx,[X^1]),v(Ky,[Y^1])|Vs], Vs, Lin) :- !,
deref_var( X, Lx),
deref_var( Y, Ly),
add_linear_ff( Lx, Kx, Ly, Ky, Lin).
log_deref( N, V0, V2, Lin) :-
P is N >> 1,
Q is N - P,
log_deref( P, V0,V1, Lp),
log_deref( Q, V1,V2, Lq),
add_linear_11( Lp, Lq, Lin).
/*
%
% tail recursive version
%
deref( Lin, Lind) :-
split( Lin, H, I),
normalize_scalar( I, Nonvar),
lin_deref( H, Nonvar, Lind).
log_deref( _, Lin, [], Res) :- % called from nf.pl
arith_eval( 0, Z),
lin_deref( Lin, [Z,Z], Res).
lin_deref( [], Ld, Ld).
lin_deref( [v(K,[X^1])|Vs], Li, Lo) :-
deref_var( X, Lx),
add_linear_f1( Lx, K, Li, Lii),
lin_deref( Vs, Lii, Lo).
*/
%
% If we see a nonvar here, this is a fault
%
deref_var( X, Lin) :-
get_atts( X, lin(Lin)), !.
deref_var( X, Lin) :- % create a linear var
arith_eval( 0, Z),
arith_eval( 1, One),
Lin = [Z,Z,X*One],
put_atts( X, [order(_),lin(Lin),type(t_none),strictness(2'00)]).
var_with_def_assign( Var, Lin) :-
decompose( Lin, Hom, _, I),
( Hom = [], % X=k
Var = I
; Hom = [V*K|Cs],
( Cs = [],
arith_eval(K=:=1),
arith_eval(I=:=0) -> % X=Y
Var = V
; % general case
var_with_def_intern( t_none, Var, Lin, 2'00)
)
).
var_with_def_intern( Type, Var, Lin, Strict) :-
put_atts( Var, [order(_),lin(Lin),type(Type),strictness(Strict)]),
decompose( Lin, Hom, _, _),
get_or_add_class( Var, Class),
same_class( Hom, Class).
var_intern( Type, Var, Strict) :-
arith_eval( 0, Z),
arith_eval( 1, One),
Lin = [Z,Z,Var*One],
put_atts( Var, [order(_),lin(Lin),type(Type),strictness(Strict)]),
get_or_add_class( Var, _Class).
% ------------------------------------------------------------------------------
%
% [V-Binding]*
% Only place where the linear solver binds variables
%
export_binding( []).
export_binding( [X-Y|Gs]) :-
export_binding( Y, X),
export_binding( Gs).
%
% numerical stabilizer, clp(r) only
%
export_binding( Y, X) :- var(Y), Y=X.
export_binding( Y, X) :- nonvar(Y),
( arith_eval( Y=:=0) ->
arith_eval( 0, X)
;
Y = X
).
'solve_='( Nf) :-
deref( Nf, Nfd),
solve( Nfd).
'solve_=\='( Nf) :-
deref( Nf, Lind),
decompose( Lind, Hom, _, Inhom),
( Hom = [], arith_eval( Inhom =\= 0)
; Hom = [_|_], var_with_def_intern( t_none, Nz, Lind, 2'00),
put_atts( Nz, nonzero)
).
'solve_<'( Nf) :-
split( Nf, H, I),
ineq( H, I, Nf, strict).
'solve_=<'( Nf) :-
split( Nf, H, I),
ineq( H, I, Nf, nonstrict).
maximize( Term) :-
minimize( -Term).
%
% This is NOT coded as minimize(Expr) :- inf(Expr,Expr).
%
% because the new version of inf/2 only visits
% the vertex where the infimum is assumed and returns
% to the 'current' vertex via backtracking.
% The rationale behind this construction is to eliminate
% all garbage in the solver data structures produced by
% the pivots on the way to the extremal point caused by
% {inf,sup}/{2,4}.
%
% If we are after the infimum/supremum for minimizing/maximizing,
% this strategy may have adverse effects on performance because
% the simplex algorithm is forced to re-discover the
% extremal vertex through the equation {Inf =:= Expr}.
%
% Thus the extra code for {minimize,maximize}/1.
%
% In case someone comes up with an example where
%
% inf(Expr,Expr)
%
% outperforms the provided formulation for minimize - so be it.
% Both forms are available to the user.
%
minimize( Term) :-
wait_linear( Term, Nf, minimize_lin(Nf)).
minimize_lin( Lin) :-
deref( Lin, Lind),
var_with_def_intern( t_none, Dep, Lind, 2'00),
determine_active_dec( Lind),
iterate_dec( Dep, Inf),
{ Dep =:= Inf }.
sup( Expression, Sup) :-
sup( Expression, Sup, [], []).
sup( Expression, Sup, Vector, Vertex) :-
inf( -Expression, -Sup, Vector, Vertex).
inf( Expression, Inf) :-
inf( Expression, Inf, [], []).
inf( Expression, Inf, Vector, Vertex) :-
wait_linear( Expression, Nf, inf_lin(Nf,Inf,Vector,Vertex)).
inf_lin( Lin, _, Vector, _) :-
deref( Lin, Lind),
var_with_def_intern( t_none, Dep, Lind, 2'00),
determine_active_dec( Lind),
iterate_dec( Dep, Inf),
vertex_value( Vector, Values),
bb_put( inf, [Inf|Values]),
fail.
inf_lin( _, Infimum, _, Vertex) :-
bb_delete( inf, L),
assign( [Infimum|Vertex], L).
assign( [], []).
assign( [X|Xs], [Y|Ys]) :-
{X =:= Y}, % more defensive/expressive than X=Y
assign( Xs, Ys).
% --------------------------------- optimization ------------------------------- %
%
% The _sn(S) =< 0 row might be temporarily infeasible.
% We use reconsider/1 to fix this.
%
% s(S) e [_,0] = d +xi ... -xj, Rhs > 0 so we want to decrease s(S)
%
% positive xi would have to be moved towards their lower bound,
% negative xj would have to be moved towards their upper bound,
%
% the row s(S) does not limit the lower bound of xi
% the row s(S) does not limit the upper bound of xj
%
% a) if some other row R is limiting xk, we pivot(R,xk),
% s(S) will decrease and get more feasible until (b)
% b) if there is no limiting row for some xi: we pivot(s(S),xi)
% xj: we pivot(s(S),xj)
% which cures the infeasibility in one step
%
%
% fails if Status = unlimited/2
%
iterate_dec( OptVar, Opt) :-
get_atts( OptVar, lin(Lin)),
decompose( Lin, H, R, I),
% arith_eval( R+I, Now), print(min(Now)), nl,
% dec_step_best( H, Status),
dec_step( H, Status),
( Status = applied, iterate_dec( OptVar, Opt)
; Status = optimum, arith_eval( R+I, Opt)
).
iterate_inc( OptVar, Opt) :-
get_atts( OptVar, lin(Lin)),
decompose( Lin, H, R, I),
inc_step( H, Status),
( Status = applied, iterate_inc( OptVar, Opt)
; Status = optimum, arith_eval( R+I, Opt)
).
%
% Status = {optimum,unlimited(Indep,DepT),applied}
% If Status = optimum, the tables have not been changed at all.
% Searches left to right, does not try to find the 'best' pivot
% Therefore we might discover unboundedness only after a few pivots
%
dec_step( [], optimum).
dec_step( [V*K|Vs], Status) :-
get_atts( V, type(W)),
( W = t_U(U),
( arith_eval( K > 0) ->
( lb( V, Vub-Vb-_) ->
Status = applied,
pivot_a(Vub,V,Vb,t_u(U))
;
Status = unlimited(V,t_u(U))
)
;
dec_step( Vs, Status)
)
; W = t_lU(L,U),
( arith_eval( K > 0) ->
Status = applied,
arith_eval( L-U, Init),
basis( V, Deps),
lb( Deps, V, V-t_Lu(L,U)-Init, Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U))
;
dec_step( Vs, Status)
)
; W = t_L(L),
( arith_eval( K < 0) ->
( ub( V, Vub-Vb-_) ->
Status = applied,
pivot_a(Vub,V,Vb,t_l(L))
;
Status = unlimited(V,t_l(L))
)
;
dec_step( Vs, Status)
)
; W = t_Lu(L,U),
( arith_eval( K < 0) ->
Status = applied,
arith_eval( U-L, Init),
basis( V, Deps),
ub( Deps, V, V-t_lU(L,U)-Init, Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U))
;
dec_step( Vs, Status)
)
; W = t_none,
Status = unlimited(V,t_none)
).
inc_step( [], optimum).
inc_step( [V*K|Vs], Status) :-
get_atts( V, type(W)),
( W = t_U(U),
( arith_eval( K < 0) ->
( lb( V, Vub-Vb-_) ->
Status = applied,
pivot_a(Vub,V,Vb,t_u(U))
;
Status = unlimited(V,t_u(U))
)
;
inc_step( Vs, Status)
)
; W = t_lU(L,U),
( arith_eval( K < 0) ->
Status = applied,
arith_eval( L-U, Init),
basis( V, Deps),
lb( Deps, V, V-t_Lu(L,U)-Init, Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U))
;
inc_step( Vs, Status)
)
; W = t_L(L),
( arith_eval( K > 0) ->
( ub( V, Vub-Vb-_) ->
Status = applied,
pivot_a(Vub,V,Vb,t_l(L))
;
Status = unlimited(V,t_l(L))
)
;
inc_step( Vs, Status)
)
; W = t_Lu(L,U),
( arith_eval( K > 0) ->
Status = applied,
arith_eval( U-L, Init),
basis( V, Deps),
ub( Deps, V, V-t_lU(L,U)-Init, Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U))
;
inc_step( Vs, Status)
)
; W = t_none,
Status = unlimited(V,t_none)
).
% ------------------------------ best first heuristic -------------------------- %
%
% A replacement for dec_step/2 that uses a local best first heuristic.
%
%
dec_step_best( H, Status) :-
dec_eval( H, E),
( E = unlimited(_,_),
Status = E
; E = [],
Status = optimum
; E = [_|_],
Status = applied,
keysort( E, [_-Best|_]),
( Best = pivot_a(Vub,V,Vb,Wd), pivot_a(Vub,V,Vb,Wd)
; Best = pivot_b(Vub,V,Vb,Wd), pivot_b(Vub,V,Vb,Wd)
)
).
dec_eval( [], []).
dec_eval( [V*K|Vs], Res) :-
get_atts( V, type(W)),
( W = t_U(U),
( arith_eval( K > 0) ->
( lb( V, Vub-Vb-Limit) ->
arith_eval( float(Limit*K), Delta),
Res = [Delta-pivot_a(Vub,V,Vb,t_u(U)) | Tail],
dec_eval( Vs, Tail)
;
Res = unlimited(V,t_u(U))
)
;
dec_eval( Vs, Res)
)
; W = t_lU(L,U),
( arith_eval( K > 0) ->
arith_eval( L-U, Init),
basis( V, Deps),
lb( Deps, V, V-t_Lu(L,U)-Init, Vub-Vb-Limit),
arith_eval( float(Limit*K), Delta),
Res = [Delta-pivot_b(Vub,V,Vb,t_lu(L,U)) | Tail],
dec_eval( Vs, Tail)
;
dec_eval( Vs, Res)
)
; W = t_L(L),
( arith_eval( K < 0) ->
( ub( V, Vub-Vb-Limit) ->
arith_eval( float(Limit*K), Delta),
Res = [Delta-pivot_a(Vub,V,Vb,t_l(L)) | Tail],
dec_eval( Vs, Tail)
;
Res = unlimited(V,t_l(L))
)
;
dec_eval( Vs, Res)
)
; W = t_Lu(L,U),
( arith_eval( K < 0) ->
arith_eval( U-L, Init),
basis( V, Deps),
ub( Deps, V, V-t_lU(L,U)-Init, Vub-Vb-Limit),
arith_eval( float(Limit*K), Delta),
Res = [Delta-pivot_b(Vub,V,Vb,t_lu(L,U)) | Tail],
dec_eval( Vs, Tail)
;
dec_eval( Vs, Res)
)
; W = t_none,
Res = unlimited(V,t_none)
).
% ------------------------- find the most constraining row --------------------- %
%
% The code for the lower and the upper bound are dual versions of each other.
% The only difference is in the orientation of the comparisons.
% Indeps are ruled out by their types.
% If there is no bound, this fails.
%
% *** The actual lb and ub on an indep variable X are [lu]b + b(X), where b(X)
% is the value of the active bound.
%
% Nota bene: We must NOT consider infeasible rows as candidates to
% leave the basis!
%
ub( X, Ub) :-
basis( X, Deps),
ub_first( Deps, X, Ub).
:- mode ub_first( +, ?, -).
%
ub_first( [Dep|Deps], X, Tightest) :-
( get_atts( Dep, [lin(Lin),type(Type)]),
ub_inner( Type, X, Lin, W, Ub),
arith_eval( Ub >= 0) ->
ub( Deps, X, Dep-W-Ub, Tightest)
;
ub_first( Deps, X, Tightest)
).
%
% Invariant: Ub >= 0 and decreasing
%
:- mode ub( +, ?, +, -).
%
ub( [], _, T0,T0).
ub( [Dep|Deps], X, T0,T1) :-
( get_atts( Dep, [lin(Lin),type(Type)]),
ub_inner( Type, X, Lin, W, Ub),
T0 = _-Ubb,
arith_eval( Ub < Ubb),
arith_eval( Ub >= 0) -> % rare failure
ub( Deps, X, Dep-W-Ub,T1)
;
ub( Deps, X, T0,T1)
).
lb( X, Lb) :-
basis( X, Deps),
lb_first( Deps, X, Lb).
:- mode lb_first( +, ?, -).
%
lb_first( [Dep|Deps], X, Tightest) :-
( get_atts( Dep, [lin(Lin),type(Type)]),
lb_inner( Type, X, Lin, W, Lb),
arith_eval( Lb =< 0) ->
lb( Deps, X, Dep-W-Lb, Tightest)
;
lb_first( Deps, X, Tightest)
).
%
% Invariant: Lb =< 0 and increasing
%
:- mode lb( +, ?, +, -).
%
lb( [], _, T0,T0).
lb( [Dep|Deps], X, T0,T1) :-
( get_atts( Dep, [lin(Lin),type(Type)]),
lb_inner( Type, X, Lin, W, Lb),
T0 = _-Lbb,
arith_eval( Lb > Lbb),
arith_eval( Lb =< 0) -> % rare failure
lb( Deps, X, Dep-W-Lb,T1)
;
lb( Deps, X, T0,T1)
).
%
% Lb =< 0 for feasible rows
%
:- mode lb_inner( +, ?, +, -, -).
%
lb_inner( t_l(L), X, Lin, t_L(L), Lb) :-
nf_rhs_x( Lin, X, Rhs, K),
arith_eval( K > 0),
arith_eval( (L-Rhs)/K, Lb).
lb_inner( t_u(U), X, Lin, t_U(U), Lb) :-
nf_rhs_x( Lin, X, Rhs, K),
arith_eval( K < 0),
arith_eval( (U-Rhs)/K, Lb).
lb_inner( t_lu(L,U), X, Lin, W, Lb) :-
nf_rhs_x( Lin, X, Rhs, K),
case_signum( K,
(
W = t_lU(L,U),
arith_eval( (U-Rhs)/K, Lb)
),
fail,
(
W = t_Lu(L,U),
arith_eval( (L-Rhs)/K, Lb)
)).
%
% Ub >= 0 for feasible rows
%
:- mode ub_inner( +, ?, +, -, -).
%
ub_inner( t_l(L), X, Lin, t_L(L), Ub) :-
nf_rhs_x( Lin, X, Rhs, K),
arith_eval( K < 0),
arith_eval( (L-Rhs)/K, Ub).
ub_inner( t_u(U), X, Lin, t_U(U), Ub) :-
nf_rhs_x( Lin, X, Rhs, K),
arith_eval( K > 0),
arith_eval( (U-Rhs)/K, Ub).
ub_inner( t_lu(L,U), X, Lin, W, Ub) :-
nf_rhs_x( Lin, X, Rhs, K),
case_signum( K,
(
W = t_Lu(L,U),
arith_eval( (L-Rhs)/K, Ub)
),
fail,
(
W = t_lU(L,U),
arith_eval( (U-Rhs)/K, Ub)
)).
% ---------------------------------- equations --------------------------------- %
%
% backsubstitution will not make the system infeasible, if the bounds on the indep
% vars are obeyed, but some implied values might pop up in rows where X occurs
% -) special case X=Y during bs -> get rid of dependend var(s), alias
%
solve( Lin) :-
decompose( Lin, H, _, I),
solve( H, Lin, I, Bindings, []),
export_binding( Bindings).
solve( [], _, I, Bind0,Bind0) :-
arith_eval( I=:=0). % redundant or trivially unsat
solve( H, Lin, _, Bind0,BindT) :-
H = [_|_], % indexing
%
% [] is an empty ord_set, anything will be preferred
% over 9-9
%
sd( H, [],ClassesUniq, 9-9-0,Category-Selected-_, NV,NVT),
isolate( Selected, Lin, Lin1),
( Category = 1,
put_atts( Selected, lin(Lin1)),
decompose( Lin1, Hom, _, Inhom),
bs_collect_binding( Hom, Selected, Inhom, Bind0,BindT),
eq_classes( NV, NVT, ClassesUniq)
; Category = 2,
get_atts( Selected, class(NewC)),
class_allvars( NewC, Deps),
( ClassesUniq = [_] -> % rank increasing
bs_collect_bindings( Deps, Selected, Lin1, Bind0,BindT)
;
Bind0 = BindT,
bs( Deps, Selected, Lin1)
),
eq_classes( NV, NVT, ClassesUniq)
; Category = 3,
put_atts( Selected, lin(Lin1)),
get_atts( Selected, type(Type)),
deactivate_bound( Type, Selected),
eq_classes( NV, NVT, ClassesUniq),
basis_add( Selected, Basis),
undet_active( Lin1),
decompose( Lin1, Hom, _, Inhom),
bs_collect_binding( Hom, Selected, Inhom, Bind0,Bind1),
rcbl( Basis, Bind1,BindT)
; Category = 4,
get_atts( Selected, [type(Type),class(NewC)]),
class_allvars( NewC, Deps),
( ClassesUniq = [_] -> % rank increasing
bs_collect_bindings( Deps, Selected, Lin1, Bind0,Bind1)
;
Bind0 = Bind1,
bs( Deps, Selected, Lin1)
),
deactivate_bound( Type, Selected),
basis_add( Selected, Basis),
% eq_classes( NV, NVT, ClassesUniq), % 4 -> var(NV)
equate( ClassesUniq, _),
undet_active( Lin1),
rcbl( Basis, Bind1,BindT)
).
%
% Much like solve, but we solve for a particular variable of type
% t_none
%
solve_x( Lin, X) :-
decompose( Lin, H, _, I),
solve_x( H, Lin, I, X, Bindings, []),
export_binding( Bindings).
solve_x( [], _, I, _, Bind0,Bind0) :-
arith_eval( I=:=0). % redundant or trivially unsat
solve_x( H, Lin, _, Selected, Bind0,BindT) :-
H = [_|_], % indexing
sd( H, [],ClassesUniq, 9-9-0,_, NV,NVT),
isolate( Selected, Lin, Lin1),
( get_atts( Selected, class(NewC)) ->
class_allvars( NewC, Deps),
( ClassesUniq = [_] -> % rank increasing
bs_collect_bindings( Deps, Selected, Lin1, Bind0,BindT)
;
Bind0 = BindT,
bs( Deps, Selected, Lin1)
),
eq_classes( NV, NVT, ClassesUniq)
;
put_atts( Selected, lin(Lin1)),
decompose( Lin1, Hom, _, Inhom),
bs_collect_binding( Hom, Selected, Inhom, Bind0,BindT),
eq_classes( NV, NVT, ClassesUniq)
).
sd( [], Class0,Class0, Preference0,Preference0, NV0,NV0).
sd( [X*K|Xs], Class0,ClassN, Preference0,PreferenceN, NV0,NVt) :-
( get_atts( X, class(Xc)) -> % old
NV0 = NV1,
ord_add_element( Class0, Xc, Class1),
( get_atts( X, type(t_none)) ->
preference( Preference0, 2-X-K, Preference1)
;
preference( Preference0, 4-X-K, Preference1)
)
; % new
Class1 = Class0,
'C'( NV0, X, NV1),
( get_atts( X, type(t_none)) ->
preference( Preference0, 1-X-K, Preference1)
;
preference( Preference0, 3-X-K, Preference1)
)
),
sd( Xs, Class1,ClassN, Preference1,PreferenceN, NV1,NVt).
%
% A is best sofar, B is current
%
preference( A, B, Pref) :-
A = Px-_-_,
B = Py-_-_,
compare( Rel, Px, Py),
( Rel = =, Pref = B
% ( arith_eval(abs(Ka)=<abs(Kb)) -> Pref=A ; Pref=B )
; Rel = <, Pref = A
; Rel = >, Pref = B
).
%
% equate after attach_class because other classes may contribute
% nonvars and will bind the tail of NV
%
eq_classes( NV, _, Cs) :- var( NV), !,
equate( Cs, _).
eq_classes( NV, NVT, Cs) :-
class_new( Su, NV,NVT, []),
attach_class( NV, Su),
equate( Cs, Su).
equate( [], _).
equate( [X|Xs], X) :- equate( Xs, X).
%
% assert: none of the Vars has a class attribute yet
%
attach_class( Xs, _) :- var( Xs), !.
attach_class( [X|Xs], Class) :-
put_atts( X, class(Class)),
attach_class( Xs, Class).
/**
unconstrained( [X*K|Xs], Uc,Kuc, Rest) :-
( get_atts( X, type(t_none)) ->
Uc = X,
Kuc = K,
Rest = Xs
;
Rest = [X*K|Tail],
unconstrained( Xs, Uc,Kuc, Tail)
).
**/
/**/
unconstrained( Lin, Uc,Kuc, Rest) :-
decompose( Lin, H, _, _),
sd( H, [],_, 9-9-0,Category-Uc-_, _,_),
Category =< 2,
delete_factor( Uc, Lin, Rest, Kuc).
/**/
%
% point the vars in Lin into the same equivalence class
% maybe join some global data
%
same_class( [], _).
same_class( [X*_|Xs], Class) :-
get_or_add_class( X, Class),
same_class( Xs, Class).
get_or_add_class( X, Class) :-
get_atts( X, class(ClassX)),
!,
ClassX = Class. % explicit =/2 because of cut
get_or_add_class( X, Class) :-
put_atts( X, class(Class)),
class_new( Class, [X|Tail],Tail, []). % initial class atts
allvars( X, Allvars) :-
get_atts( X, class(C)),
class_allvars( C, Allvars).
deactivate_bound( t_l(_), _).
deactivate_bound( t_u(_), _).
deactivate_bound( t_lu(_,_), _).
deactivate_bound( t_L(L), X) :- put_atts( X, type(t_l(L))).
deactivate_bound( t_Lu(L,U), X) :- put_atts( X, type(t_lu(L,U))).
deactivate_bound( t_U(U), X) :- put_atts( X, type(t_u(U))).
deactivate_bound( t_lU(L,U), X) :- put_atts( X, type(t_lu(L,U))).
intro_at( X, Value, Type) :-
put_atts( X, type(Type)),
( arith_eval( Value =:= 0) ->
true
;
backsubst_delta( X, Value)
).
%
% The choice t_lu -> t_Lu is arbitrary
%
undet_active( Lin) :-
decompose( Lin, Lin1, _, _),
undet_active_h( Lin1).
undet_active_h( []).
undet_active_h( [X*_|Xs]) :-
get_atts( X, type(Type)),
undet_active( Type, X),
undet_active_h( Xs).
undet_active( t_none, _). % type_activity
undet_active( t_L(_), _).
undet_active( t_Lu(_,_), _).
undet_active( t_U(_), _).
undet_active( t_lU(_,_), _).
undet_active( t_l(L), X) :- intro_at( X, L, t_L(L)).
undet_active( t_u(U), X) :- intro_at( X, U, t_U(U)).
undet_active( t_lu(L,U), X) :- intro_at( X, L, t_Lu(L,U)).
determine_active_dec( Lin) :-
decompose( Lin, Lin1, _, _),
arith_eval( -1, Mone),
determine_active( Lin1, Mone).
determine_active_inc( Lin) :-
decompose( Lin, Lin1, _, _),
arith_eval( 1, One),
determine_active( Lin1, One).
determine_active( [], _).
determine_active( [X*K|Xs], S) :-
get_atts( X, type(Type)),
determine_active( Type, X, K, S),
determine_active( Xs, S).
determine_active( t_L(_), _, _, _).
determine_active( t_Lu(_,_), _, _, _).
determine_active( t_U(_), _, _, _).
determine_active( t_lU(_,_), _, _, _).
determine_active( t_l(L), X, _, _) :- intro_at( X, L, t_L(L)).
determine_active( t_u(U), X, _, _) :- intro_at( X, U, t_U(U)).
determine_active( t_lu(L,U), X, K, S) :-
case_signum( K*S,
intro_at( X, L, t_Lu(L,U)),
fail,
intro_at( X, U, t_lU(L,U))).
%
% Careful when an indep turns into t_none !!!
%
detach_bounds( V) :-
get_atts( V, lin(Lin)),
put_atts( V, [type(t_none),strictness(2'00)]),
( indep( Lin, V) ->
( ub( V, Vub-Vb-_) -> % exchange against thightest
basis_drop( Vub),
pivot( Vub, V, Vb)
; lb( V, Vlb-Vb-_) ->
basis_drop( Vlb),
pivot( Vlb, V, Vb)
;
true
)
;
basis_drop( V)
).
% ----------------------------- manipulate the basis --------------------------- %
basis_drop( X) :-
get_atts( X, class(Cv)),
class_basis_drop( Cv, X).
basis( X, Basis) :-
get_atts( X, class(Cv)),
class_basis( Cv, Basis).
basis_add( X, NewBasis) :-
get_atts( X, class(Cv)),
class_basis_add( Cv, X, NewBasis).
basis_pivot( Leave, Enter) :-
get_atts( Leave, class(Cv)),
class_basis_pivot( Cv, Enter, Leave).
% ----------------------------------- pivot ------------------------------------ %
%
% Pivot ignoring rhs and active states
%
pivot( Dep, Indep) :-
get_atts( Dep, lin(H)),
delete_factor( Indep, H, H0, Coeff),
arith_eval( -1/Coeff, K),
arith_eval( -1, Mone),
arith_eval( 0, Z),
add_linear_ff( H0, K, [Z,Z,Dep*Mone], K, Lin),
backsubst( Indep, Lin).
pivot_a( Dep, Indep, Vb,Wd) :-
basis_pivot( Dep, Indep),
pivot( Dep, Indep, Vb),
put_atts( Indep, type(Wd)).
pivot_b( Vub, V, Vb, Wd) :-
( Vub == V ->
put_atts( V, type(Vb)),
pivot_b_delta( Vb, Delta), % nonzero(Delta)
backsubst_delta( V, Delta)
;
pivot_a( Vub, V, Vb,Wd)
).
pivot_b_delta( t_Lu(L,U), Delta) :- arith_eval( L-U, Delta).
pivot_b_delta( t_lU(L,U), Delta) :- arith_eval( U-L, Delta).
select_active_bound( t_L(L), L).
select_active_bound( t_Lu(L,_), L).
select_active_bound( t_U(U), U).
select_active_bound( t_lU(_,U), U).
select_active_bound( t_none, Z) :- arith_eval( 0, Z).
%
% for project.pl
%
select_active_bound( t_l(_), Z) :- arith_eval( 0, Z).
select_active_bound( t_u(_), Z) :- arith_eval( 0, Z).
select_active_bound( t_lu(_,_), Z) :- arith_eval( 0, Z).
%
% Pivot taking care of rhs and active states
%
pivot( Dep, Indep, IndAct) :-
get_atts( Dep, lin(H)),
put_atts( Dep, type(IndAct)),
select_active_bound( IndAct, Abv), % Dep or Indep
delete_factor( Indep, H, H0, Coeff),
arith_eval( -1/Coeff, K),
arith_eval( 0, Z),
arith_eval( -1, Mone),
arith_eval( -Abv, Abvm),
add_linear_ff( H0, K, [Z,Abvm,Dep*Mone], K, Lin),
backsubst( Indep, Lin).
backsubst_delta( X, Delta) :-
arith_eval( 1, One),
arith_eval( 0, Z),
backsubst( X, [Z,Delta,X*One]).
backsubst( X, Lin) :-
allvars( X, Allvars),
bs( Allvars, X, Lin).
%
% valid if nothing will go ground
%
bs( Xs, _, _) :- var( Xs), !.
bs( [X|Xs], V, Lin) :-
( get_atts( X, lin(LinX)),
nf_substitute( V, Lin, LinX, LinX1) ->
put_atts( X, lin(LinX1)),
bs( Xs, V, Lin)
;
bs( Xs, V, Lin)
).
%
% rank increasing backsubstitution
%
bs_collect_bindings( Xs, _, _, Bind0,BindT) :- var( Xs), !, Bind0=BindT.
bs_collect_bindings( [X|Xs], V, Lin, Bind0,BindT) :-
( get_atts( X, lin(LinX)),
nf_substitute( V, Lin, LinX, LinX1) ->
put_atts( X, lin(LinX1)),
decompose( LinX1, Hom, _, Inhom),
bs_collect_binding( Hom, X, Inhom, Bind0,Bind1),
bs_collect_bindings( Xs, V, Lin, Bind1,BindT)
;
bs_collect_bindings( Xs, V, Lin, Bind0,BindT)
).
%
% The first clause exports bindings,
% the second (no longer) aliasings
%
bs_collect_binding( [], X, Inhom) --> [ X-Inhom ].
bs_collect_binding( [_|_], _, _) --> [].
/*
bs_collect_binding( [Y*K|Ys], X, Inhom) -->
( { Ys = [],
Y \== X,
arith_eval( K=:=1),
arith_eval( Inhom=:=0)
} ->
[ X-Y ]
;
[]
).
*/
%
% reconsider the basis
%
rcbl( [], Bind0,Bind0).
rcbl( [X|Continuation], Bind0,BindT) :-
( rcb( X, Status, Violated) -> % have a culprit
rcbl_status( Status, X, Continuation, Bind0,BindT, Violated)
;
rcbl( Continuation, Bind0,BindT)
).
%
% reconsider one element of the basis
% later: lift the binds
%
reconsider( X) :-
rcb( X, Status, Violated),
!,
rcbl_status( Status, X, [], Binds,[], Violated),
export_binding( Binds).
reconsider( _).
%
% Find a basis variable out of its bound or at its bound
% Try to move it into whithin its bound
% a) impossible -> fail
% b) optimum at the bound -> implied value
% c) else look at the remaining basis variables
%
rcb( X, Status, Violated) :-
get_atts( X, [lin(Lin),type(Type)]),
decompose( Lin, H, R, I),
( Type = t_l(L),
arith_eval( R+I =< L),
Violated = l(L),
inc_step( H, Status)
; Type = t_u(U),
arith_eval( R+I >= U),
Violated = u(U),
dec_step( H, Status)
; Type = t_lu(L,U),
arith_eval( R+I, At),
(
arith_eval( At =< L),
Violated = l(L),
inc_step( H, Status)
;
arith_eval( At >= U),
Violated = u(U),
dec_step( H, Status)
)
%
% don't care for other types
%
).
rcbl_status( optimum, X, Cont, B0,Bt, Violated) :- rcbl_opt( Violated, X, Cont, B0,Bt).
rcbl_status( applied, X, Cont, B0,Bt, Violated) :- rcbl_app( Violated, X, Cont, B0,Bt).
rcbl_status( unlimited(Indep,DepT), X, Cont, B0,Bt, Violated) :- rcbl_unl( Violated, X, Cont, B0,Bt, Indep, DepT).
%
% Might reach optimum immediately without changing the basis,
% but in general we must assume that there were pivots.
% If the optimum meets the bound, we backsubstitute the implied
% value, solve will call us again to check for further implied
% values or unsatisfiability in the rank increased system.
%
rcbl_opt( l(L), X, Continuation, B0,B1) :-
get_atts( X, [lin(Lin),strictness(Strict),type(Type)]),
decompose( Lin, _, R, I),
arith_eval( R+I, Opt),
case_signum( L-Opt,
(
narrow_u( Type, X, Opt), % { X =< Opt }
rcbl( Continuation, B0,B1)
),
(
Strict /\ 2'10 =:= 0, % meets lower
arith_eval( -Opt, Mop),
normalize_scalar( Mop, MopN),
add_linear_11( MopN, Lin, Lin1),
decompose( Lin1, Hom, _, Inhom),
( Hom = [], rcbl( Continuation, B0,B1) % would not callback
; Hom = [_|_], solve( Hom, Lin1, Inhom, B0,B1)
)
),
fail
).
rcbl_opt( u(U), X, Continuation, B0,B1) :-
get_atts( X, [lin(Lin),strictness(Strict),type(Type)]),
decompose( Lin, _, R, I),
arith_eval( R+I, Opt),
case_signum( U-Opt,
fail,
(
Strict /\ 2'01 =:= 0, % meets upper
arith_eval( -Opt, Mop),
normalize_scalar( Mop, MopN),
add_linear_11( MopN, Lin, Lin1),
decompose( Lin1, Hom, _, Inhom),
( Hom = [], rcbl( Continuation, B0,B1) % would not callback
; Hom = [_|_], solve( Hom, Lin1, Inhom, B0,B1)
)
),
(
narrow_l( Type, X, Opt), % { X >= Opt }
rcbl( Continuation, B0,B1)
)).
%
% Basis has already changed when this is called
%
rcbl_app( l(L), X, Continuation, B0,B1) :-
get_atts( X, lin(Lin)),
decompose( Lin, H, R, I),
( arith_eval( R+I > L) -> % within bound now
rcbl( Continuation, B0,B1)
;
% arith_eval( R+I, Val), print( rcbl_app(X:L:Val)), nl,
inc_step( H, Status),
rcbl_status( Status, X, Continuation, B0,B1, l(L))
).
rcbl_app( u(U), X, Continuation, B0,B1) :-
get_atts( X, lin(Lin)),
decompose( Lin, H, R, I),
( arith_eval( R+I < U) -> % within bound now
rcbl( Continuation, B0,B1)
;
dec_step( H, Status),
rcbl_status( Status, X, Continuation, B0,B1, u(U))
).
%
% This is never called for a t_lu culprit
%
rcbl_unl( l(L), X, Continuation, B0,B1, Indep, DepT) :-
pivot_a( X, Indep, t_L(L), DepT), % changes the basis
rcbl( Continuation, B0,B1).
rcbl_unl( u(U), X, Continuation, B0,B1, Indep, DepT) :-
pivot_a( X, Indep, t_U(U), DepT), % changes the basis
rcbl( Continuation, B0,B1).
narrow_u( t_u(_), X, U) :- put_atts( X, type(t_u(U))).
narrow_u( t_lu(L,_), X, U) :- put_atts( X, type(t_lu(L,U))).
narrow_l( t_l(_), X, L) :- put_atts( X, type(t_l(L))).
narrow_l( t_lu(_,U), X, L) :- put_atts( X, type(t_lu(L,U))).
% ----------------------------------- dump -------------------------------------
dump_var( t_none, V, I,H) --> !,
( { H=[W*K],V==W,arith_eval(I=:=0),arith_eval(K=:=1) } -> % indep var
[]
;
{ nf2sum( H, I, Sum) },
[ V = Sum ]
).
dump_var( t_L(L), V, I,H) --> !, dump_var( t_l(L), V, I,H).
dump_var( t_l(L), V, I,H) --> !,
{
H= [_*K|_], % avoid 1 >= 0
get_atts( V, strictness(Strict)),
Sm is Strict /\ 2'10,
arith_eval( 1/K, Kr),
arith_eval( Kr*(L-I), Li),
mult_hom( H, Kr, H1),
arith_eval( 0, Z), nf2sum( H1, Z, Sum),
( arith_eval( K > 0) ->
dump_strict( Sm, Sum >= Li, Sum > Li, Result)
;
dump_strict( Sm, Sum =< Li, Sum < Li, Result)
)
},
[ Result ].
dump_var( t_U(U), V, I,H) --> !, dump_var( t_u(U), V, I,H).
dump_var( t_u(U), V, I,H) --> !,
{
H= [_*K|_], % avoid 0 =< 1
get_atts( V, strictness(Strict)),
Sm is Strict /\ 2'01,
arith_eval( 1/K, Kr),
arith_eval( Kr*(U-I), Ui),
mult_hom( H, Kr, H1),
arith_eval( 0, Z), nf2sum( H1, Z, Sum),
( arith_eval( K > 0) ->
dump_strict( Sm, Sum =< Ui, Sum < Ui, Result)
;
dump_strict( Sm, Sum >= Ui, Sum > Ui, Result)
)
},
[ Result ].
dump_var( t_Lu(L,U), V, I,H) --> !, dump_var( t_l(L), V,I,H),
dump_var( t_U(U), V,I,H).
dump_var( t_lU(L,U), V, I,H) --> !, dump_var( t_l(L), V,I,H),
dump_var( t_U(U), V,I,H).
dump_var( t_lu(L,U), V, I,H) --> !, dump_var( t_l(L), V,I,H),
dump_var( t_U(U), V,I,H).
dump_var( T, V, I,H) -->
[ V:T:I+H ].
dump_strict( 0, Result, _, Result).
dump_strict( 1, _, Result, Result).
dump_strict( 2, _, Result, Result).
dump_nz( _, H, I) -->
{
H = [_*K|_],
arith_eval( 1/K, Kr),
arith_eval( -Kr*I, I1),
mult_hom( H, Kr, H1),
arith_eval( 0, Z), nf2sum( H1, Z, Sum)
},
[ Sum =\= I1 ].