280 lines
7.4 KiB
Perl
280 lines
7.4 KiB
Perl
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
% clp(q,r) version 1.3.3 %
|
||
|
% %
|
||
|
% (c) Copyright 1992,1993,1994,1995 %
|
||
|
% Austrian Research Institute for Artificial Intelligence (OFAI) %
|
||
|
% Schottengasse 3 %
|
||
|
% A-1010 Vienna, Austria %
|
||
|
% %
|
||
|
% File: store.pl %
|
||
|
% Author: Christian Holzbaur christian@ai.univie.ac.at %
|
||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||
|
|
||
|
|
||
|
%
|
||
|
% All constants to canonical rep.
|
||
|
%
|
||
|
normalize_scalar( S, [N,Z]) :-
|
||
|
arith_normalize( S, N),
|
||
|
arith_eval( 0, Z).
|
||
|
|
||
|
renormalize( List, Lin) :-
|
||
|
decompose( List, Hom, R, I),
|
||
|
length( Hom, Len),
|
||
|
renormalize_log( Len, Hom, [], Lin0),
|
||
|
add_linear_11( [I,R], Lin0, Lin).
|
||
|
|
||
|
renormalize_log( 1, [Term|Xs], Xs, Lin) :- !,
|
||
|
Term = X*_,
|
||
|
renormalize_log_one( X, Term, Lin).
|
||
|
renormalize_log( 2, [A,B|Xs], Xs, Lin) :- !,
|
||
|
A = X*_,
|
||
|
B = Y*_,
|
||
|
renormalize_log_one( X, A, LinA),
|
||
|
renormalize_log_one( Y, B, LinB),
|
||
|
add_linear_11( LinA, LinB, Lin).
|
||
|
renormalize_log( N, L0, L2, Lin) :-
|
||
|
P is N>>1,
|
||
|
Q is N-P,
|
||
|
renormalize_log( P, L0, L1, Lp),
|
||
|
renormalize_log( Q, L1, L2, Lq),
|
||
|
add_linear_11( Lp, Lq, Lin).
|
||
|
|
||
|
renormalize_log_one( X, Term, Res) :- var(X),
|
||
|
arith_eval( 0, Z),
|
||
|
Res = [Z,Z,Term].
|
||
|
renormalize_log_one( X, Term, Res) :- nonvar(X),
|
||
|
Term = X*K,
|
||
|
arith_eval( X*K, Xk),
|
||
|
normalize_scalar( Xk, Res).
|
||
|
|
||
|
% ----------------------------- sparse vector stuff ---------------------------- %
|
||
|
|
||
|
add_linear_ff( LinA, Ka, LinB, Kb, LinC) :-
|
||
|
decompose( LinA, Ha, Ra, Ia),
|
||
|
decompose( LinB, Hb, Rb, Ib),
|
||
|
decompose( LinC, Hc, Rc, Ic),
|
||
|
arith_eval( Ia*Ka+Ib*Kb, Ic),
|
||
|
arith_eval( Ra*Ka+Rb*Kb, Rc),
|
||
|
add_linear_ffh( Ha, Ka, Hb, Kb, Hc).
|
||
|
|
||
|
add_linear_ffh( [], _, Ys, Kb, Zs) :- mult_hom( Ys, Kb, Zs).
|
||
|
add_linear_ffh( [X*Kx|Xs], Ka, Ys, Kb, Zs) :-
|
||
|
add_linear_ffh( Ys, X, Kx, Xs, Zs, Ka, Kb).
|
||
|
|
||
|
add_linear_ffh( [], X, Kx, Xs, Zs, Ka, _) :- mult_hom( [X*Kx|Xs], Ka, Zs).
|
||
|
add_linear_ffh( [Y*Ky|Ys], X, Kx, Xs, Zs, Ka, Kb) :-
|
||
|
nf_ordering( X, Y, Rel),
|
||
|
( Rel = =, arith_eval( Kx*Ka+Ky*Kb, Kz),
|
||
|
( arith_eval(Kz=:=0) ->
|
||
|
add_linear_ffh( Xs, Ka, Ys, Kb, Zs)
|
||
|
;
|
||
|
Zs = [X*Kz|Ztail],
|
||
|
add_linear_ffh( Xs, Ka, Ys, Kb, Ztail)
|
||
|
)
|
||
|
; Rel = <, Zs = [X*Kz|Ztail],
|
||
|
arith_eval( Kx*Ka, Kz),
|
||
|
add_linear_ffh( Xs, Y, Ky, Ys, Ztail, Kb, Ka)
|
||
|
; Rel = >, Zs = [Y*Kz|Ztail],
|
||
|
arith_eval( Ky*Kb, Kz),
|
||
|
add_linear_ffh( Ys, X, Kx, Xs, Ztail, Ka, Kb)
|
||
|
).
|
||
|
|
||
|
add_linear_f1( LinA, Ka, LinB, LinC) :-
|
||
|
decompose( LinA, Ha, Ra, Ia),
|
||
|
decompose( LinB, Hb, Rb, Ib),
|
||
|
decompose( LinC, Hc, Rc, Ic),
|
||
|
arith_eval( Ia*Ka+Ib, Ic),
|
||
|
arith_eval( Ra*Ka+Rb, Rc),
|
||
|
add_linear_f1h( Ha, Ka, Hb, Hc).
|
||
|
|
||
|
add_linear_f1h( [], _, Ys, Ys).
|
||
|
add_linear_f1h( [X*Kx|Xs], Ka, Ys, Zs) :-
|
||
|
add_linear_f1h( Ys, X, Kx, Xs, Zs, Ka).
|
||
|
|
||
|
add_linear_f1h( [], X, Kx, Xs, Zs, Ka) :- mult_hom( [X*Kx|Xs], Ka, Zs).
|
||
|
add_linear_f1h( [Y*Ky|Ys], X, Kx, Xs, Zs, Ka) :-
|
||
|
nf_ordering( X, Y, Rel),
|
||
|
( Rel = =, arith_eval( Kx*Ka+Ky, Kz),
|
||
|
( arith_eval(Kz=:=0) ->
|
||
|
add_linear_f1h( Xs, Ka, Ys, Zs)
|
||
|
;
|
||
|
Zs = [X*Kz|Ztail],
|
||
|
add_linear_f1h( Xs, Ka, Ys, Ztail)
|
||
|
)
|
||
|
; Rel = <, Zs = [X*Kz|Ztail],
|
||
|
arith_eval( Kx*Ka, Kz),
|
||
|
add_linear_f1h( Xs, Ka, [Y*Ky|Ys], Ztail)
|
||
|
; Rel = >, Zs = [Y*Ky|Ztail],
|
||
|
add_linear_f1h( Ys, X, Kx, Xs, Ztail, Ka)
|
||
|
).
|
||
|
|
||
|
add_linear_11( LinA, LinB, LinC) :-
|
||
|
decompose( LinA, Ha, Ra, Ia),
|
||
|
decompose( LinB, Hb, Rb, Ib),
|
||
|
decompose( LinC, Hc, Rc, Ic),
|
||
|
arith_eval( Ia+Ib, Ic),
|
||
|
arith_eval( Ra+Rb, Rc),
|
||
|
add_linear_11h( Ha, Hb, Hc).
|
||
|
|
||
|
add_linear_11h( [], Ys, Ys).
|
||
|
add_linear_11h( [X*Kx|Xs], Ys, Zs) :-
|
||
|
add_linear_11h( Ys, X, Kx, Xs, Zs).
|
||
|
|
||
|
add_linear_11h( [], X, Kx, Xs, [X*Kx|Xs]).
|
||
|
add_linear_11h( [Y*Ky|Ys], X, Kx, Xs, Zs) :-
|
||
|
nf_ordering( X, Y, Rel),
|
||
|
( Rel = =, arith_eval( Kx+Ky, Kz),
|
||
|
( arith_eval(Kz=:=0) ->
|
||
|
add_linear_11h( Xs, Ys, Zs)
|
||
|
;
|
||
|
Zs = [X*Kz|Ztail],
|
||
|
add_linear_11h( Xs, Ys, Ztail)
|
||
|
)
|
||
|
; Rel = <, Zs = [X*Kx|Ztail], add_linear_11h( Xs, Y, Ky, Ys, Ztail)
|
||
|
; Rel = >, Zs = [Y*Ky|Ztail], add_linear_11h( Ys, X, Kx, Xs, Ztail)
|
||
|
).
|
||
|
|
||
|
mult_linear_factor( Lin, K, Mult) :-
|
||
|
arith_eval( K=:=1 ), % avoid copy
|
||
|
!,
|
||
|
Mult = Lin.
|
||
|
mult_linear_factor( Lin, K, Res) :-
|
||
|
decompose( Lin, Hom, R, I),
|
||
|
decompose( Res, Mult, Rk, Ik),
|
||
|
arith_eval( I*K, Ik),
|
||
|
arith_eval( R*K, Rk),
|
||
|
mult_hom( Hom, K, Mult).
|
||
|
|
||
|
mult_hom( [], _, []).
|
||
|
mult_hom( [A*Fa|As], F, [A*Fan|Afs]) :-
|
||
|
arith_eval( F*Fa, Fan),
|
||
|
mult_hom( As, F, Afs).
|
||
|
|
||
|
/*
|
||
|
%
|
||
|
% slightly stabilizes clp(r) numerically
|
||
|
%
|
||
|
mult_hom( [], _, []).
|
||
|
mult_hom( [X*Kx|Xs], K, Res) :-
|
||
|
arith_eval( K*Kx, C),
|
||
|
( arith_eval( C=:=0) ->
|
||
|
mult_hom( Xs, K, Res)
|
||
|
;
|
||
|
Res = [X*C|Tail],
|
||
|
mult_hom( Xs, K, Tail)
|
||
|
).
|
||
|
*/
|
||
|
|
||
|
%
|
||
|
% Replace V in H by its new definition, Vh+Vi
|
||
|
%
|
||
|
nf_substitute( V, LinV, LinX, LinX1) :-
|
||
|
delete_factor( V, LinX, LinW, K),
|
||
|
add_linear_f1( LinV, K, LinW, LinX1).
|
||
|
|
||
|
|
||
|
delete_factor( Vid, Lin, Res, Coeff) :-
|
||
|
decompose( Lin, Hom, R, I),
|
||
|
decompose( Res, Hdel, R, I),
|
||
|
delete_factor_hom( Vid, Hom, Hdel, Coeff).
|
||
|
/**/
|
||
|
%
|
||
|
% Makes no use of the nf_ordering and is faster ...
|
||
|
% Depends of course on the price of nf_ordering/3
|
||
|
%
|
||
|
delete_factor_hom( Vid, [Car|Cdr], RCdr, RKoeff) :-
|
||
|
Car = Var*Koeff,
|
||
|
compare( R, Var, Vid),
|
||
|
( R = =, RCdr = Cdr, RKoeff=Koeff
|
||
|
; R = <, RCdr = [Car|RCdr1],
|
||
|
delete_factor_hom( Vid, Cdr, RCdr1, RKoeff)
|
||
|
; R = >, RCdr = [Car|RCdr1],
|
||
|
delete_factor_hom( Vid, Cdr, RCdr1, RKoeff)
|
||
|
).
|
||
|
/**/
|
||
|
/**
|
||
|
%
|
||
|
%
|
||
|
%
|
||
|
delete_factor_hom( Vid, [Car|Cdr], RCdr, RKoeff) :-
|
||
|
Car = Var*Koeff,
|
||
|
nf_ordering( Vid, Var, Rel),
|
||
|
( Rel= =,
|
||
|
RCdr = Cdr, RKoeff=Koeff
|
||
|
; Rel= >,
|
||
|
RCdr = [Car|RCdr1],
|
||
|
delete_factor_hom( Vid, Cdr, RCdr1, RKoeff)
|
||
|
).
|
||
|
**/
|
||
|
|
||
|
|
||
|
% nf_coeff_of( Nf, X, Coeff)
|
||
|
% determine the coeff of variable X in Nf
|
||
|
% fails if X is not a member of the Nf
|
||
|
%
|
||
|
nf_coeff_of( Lin, Vid, Coeff) :-
|
||
|
decompose( Lin, Hom, _, _),
|
||
|
get_atts( Vid, order(OVid)), % pulled out of loop
|
||
|
nf_coeff_hom( Hom, OVid, Coeff), !.
|
||
|
|
||
|
nf_coeff_hom( [Var*K|Vs], Vid, Coeff) :-
|
||
|
% nf_ordering( Vid, Var, Rel),
|
||
|
get_atts( Var, order(OVar)),
|
||
|
compare( Rel, Vid, OVar),
|
||
|
( Rel= =, Coeff = K
|
||
|
; Rel= >, nf_coeff_hom( Vs, Vid, Coeff)
|
||
|
).
|
||
|
|
||
|
nf_rhs_x( Lin, X, Rhs,K) :-
|
||
|
decompose( Lin, Tail, R, I),
|
||
|
get_atts( X, order(Ox)), % pulled out of loop
|
||
|
nf_coeff_hom( Tail, Ox, K),
|
||
|
arith_eval( R+I, Rhs). % late because X may not occur in H
|
||
|
|
||
|
%
|
||
|
% solve for New = Lin1
|
||
|
%
|
||
|
isolate( New, Lin, Lin1) :-
|
||
|
delete_factor( New, Lin, Lin0, Coeff),
|
||
|
arith_eval( -1/Coeff, K),
|
||
|
mult_linear_factor( Lin0, K, Lin1).
|
||
|
|
||
|
|
||
|
indep( Lin, X) :-
|
||
|
decompose( Lin, [Y*K], _, I),
|
||
|
X == Y,
|
||
|
arith_eval( K=:=1),
|
||
|
arith_eval( I=:=0).
|
||
|
|
||
|
nf2sum( [], I, I).
|
||
|
nf2sum( [X|Xs], I, Sum) :-
|
||
|
( arith_eval(I=:=0) ->
|
||
|
X = Var*K,
|
||
|
( arith_eval( K=:=1) ->
|
||
|
hom2sum( Xs, Var, Sum)
|
||
|
; arith_eval( K=:= -1) ->
|
||
|
hom2sum( Xs, -Var, Sum)
|
||
|
;
|
||
|
hom2sum( Xs, K*Var, Sum)
|
||
|
)
|
||
|
;
|
||
|
hom2sum( [X|Xs], I, Sum)
|
||
|
).
|
||
|
|
||
|
hom2sum( [], Term, Term).
|
||
|
hom2sum( [Var*K|Cs], Sofar, Term) :-
|
||
|
( arith_eval( K=:=1) ->
|
||
|
Next = Sofar + Var
|
||
|
; arith_eval( K=:= -1) ->
|
||
|
Next = Sofar - Var
|
||
|
; arith_eval( K < 0) ->
|
||
|
arith_eval( -K, Ka),
|
||
|
Next = Sofar - Ka*Var
|
||
|
;
|
||
|
Next = Sofar + K*Var
|
||
|
),
|
||
|
hom2sum( Cs, Next, Term).
|
||
|
|
||
|
|