This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/RDF/rdf_ntriples.pl

343 lines
7.0 KiB
Perl
Raw Normal View History

2010-07-28 11:34:41 +01:00
/* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@uva.nl
WWW: http://www.swi-prolog.org
Copyright (C): 2010, University of Amsterdam
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(rdf_ntriples,
[ load_rdf_ntriples/2, % +File, -Triples
rdf_ntriple_part/4 % +Field, -Value, <DCG>
]).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This module parses n-triple files as defined by the W3C RDF working in
http://www.w3.org/TR/rdf-testcases/#ntriples. This format is a
simplified version of the RDF N3 notation used in the *.nt files that
are used to describe the normative outcome of the RDF test-cases.
The returned list terms are of the form
rdf(Subject, Predicate, Object)
where
# Subject
is an atom or node(Id) for anonymous nodes
# Predicate
is an atom
# Object
is an atom, node(Id), literal(Atom) or xml(Atom)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
% load_rdf_ntriples(+Source, -Triples)
%
% Load a file or stream to a list of rdf(S,P,O) triples.
load_rdf_ntriples(File, Triples) :-
open_nt_file(File, In, Close),
call_cleanup(stream_to_triples(In, Triples), Close).
% open_nt_file(+Input, -Stream, -Close)
%
% Open Input, returning Stream and a goal to cleanup Stream if it
% was opened.
open_nt_file(stream(Stream), Stream, true) :- !.
open_nt_file(Stream, Stream, true) :-
is_stream(Stream), !.
open_nt_file(Spec, Stream, close(Stream)) :-
absolute_file_name(Spec,
[ access(read),
extensions([nt,''])
], Path),
open(Path, read, Stream).
% rdf_ntriple_part(+Type, -Value, <DCG>)
%
% Parse one of the fields of an ntriple. This is used for the
% SWI-Prolog Sesame (www.openrdf.org) implementation to realise
% /servlets/removeStatements. I do not think public use of this
% predicate should be stimulated.
rdf_ntriple_part(subject, Subject) -->
subject(Subject).
rdf_ntriple_part(predicate, Predicate) -->
predicate(Predicate).
rdf_ntriple_part(object, Object) -->
predicate(Object).
% stream_to_triples(+Stream, -ListOfTriples)
%
% Read Stream, returning all its triples
stream_to_triples(In, Triples) :-
read_line_to_codes(In, Line),
( Line == end_of_file
-> Triples = []
; phrase(line(Triples, Tail), Line),
stream_to_triples(In, Tail)
).
line(Triples, Tail) -->
wss,
( comment
-> {Triples = Tail}
; triple(Triple)
-> {Triples = [Triple|Tail]}
).
comment -->
"#", !,
skip_rest.
comment -->
end_of_input.
triple(rdf(Subject, Predicate, Object)) -->
subject(Subject), ws, wss,
predicate(Predicate), ws, wss,
object(Object), wss, ".", wss.
subject(Subject) -->
uniref(Subject), !.
subject(Subject) -->
node_id(Subject).
predicate(Predicate) -->
uniref(Predicate).
object(Object) -->
uniref(Object), !.
object(Object) -->
node_id(Object).
object(Object) -->
literal(Object).
uniref(URI) -->
"<",
escaped_uri_codes(Codes),
">", !,
{ atom_codes(URI, Codes)
}.
node_id(node(Id)) --> % anonymous nodes
"_:",
name_start(C0),
name_codes(Codes),
{ atom_codes(Id, [C0|Codes])
}.
literal(Literal) -->
lang_string(Literal), !.
literal(Literal) -->
xml_string(Literal).
% name_start(-Code)
% name_codes(-ListfCodes)
%
% Parse identifier names
name_start(C) -->
[C],
{ code_type(C, alpha)
}.
name_codes([C|T]) -->
[C],
{ code_type(C, alnum)
}, !,
name_codes(T).
name_codes([]) -->
[].
% escaped_uri_codes(-CodeList)
%
% Decode string holding %xx escaped characters.
escaped_uri_codes([]) -->
[].
escaped_uri_codes([C|T]) -->
"%", [D0,D1], !,
{ code_type(D0, xdigit(V0)),
code_type(D1, xdigit(V1)),
C is V0<<4 + V1
},
escaped_uri_codes(T).
escaped_uri_codes([C|T]) -->
"\\u", [D0,D1,D2,D3], !,
{ code_type(D0, xdigit(V0)),
code_type(D1, xdigit(V1)),
code_type(D2, xdigit(V2)),
code_type(D3, xdigit(V3)),
C is V0<<12 + V1<<8 + V2<<4 + V3
},
escaped_uri_codes(T).
escaped_uri_codes([C|T]) -->
"\\U", [D0,D1,D2,D3,D4,D5,D6,D7], !,
{ code_type(D0, xdigit(V0)),
code_type(D1, xdigit(V1)),
code_type(D2, xdigit(V2)),
code_type(D3, xdigit(V3)),
code_type(D4, xdigit(V4)),
code_type(D5, xdigit(V5)),
code_type(D6, xdigit(V6)),
code_type(D7, xdigit(V7)),
C is V0<<28 + V1<<24 + V2<<20 + V3<<16 +
V4<<12 + V5<<8 + V6<<4 + V7
},
escaped_uri_codes(T).
escaped_uri_codes([C|T]) -->
[C],
escaped_uri_codes(T).
% lang_string()
%
% Process a language string
lang_string(String) -->
"\"",
string(Codes),
"\"", !,
{ atom_codes(Atom, Codes)
},
( langsep
-> language(Lang),
{ String = literal(lang(Lang, Atom))
}
; "^^"
-> uniref(Type),
{ String = literal(type(Type, Atom))
}
; { String = literal(Atom)
}
).
langsep -->
"-".
langsep -->
"@".
% xml_string(String)
%
% Handle xml"..."
xml_string(xml(String)) -->
"xml\"", % really no whitespace?
string(Codes),
"\"",
{ atom_codes(String, Codes)
}.
string([]) -->
[].
string([C0|T]) -->
string_char(C0),
string(T).
string_char(0'\\) -->
"\\\\".
string_char(0'") -->
"\\\"".
string_char(10) -->
"\\n".
string_char(13) -->
"\\r".
string_char(9) -->
"\\t".
string_char(C) -->
"\\u",
'4xdigits'(C).
string_char(C) -->
"\\U",
'4xdigits'(C0),
'4xdigits'(C1),
{ C is C0<<16 + C1
}.
string_char(C) -->
[C].
'4xdigits'(C) -->
[C0,C1,C2,C3],
{ code_type(C0, xdigit(V0)),
code_type(C1, xdigit(V1)),
code_type(C2, xdigit(V2)),
code_type(C3, xdigit(V3)),
C is V0<<12 + V1<<8 + V2<<4 + V3
}.
% language(-Lang)
%
% Return xml:lang language identifier.
language(Lang) -->
lang_code(C0),
lang_codes(Codes),
{ atom_codes(Lang, [C0|Codes])
}.
lang_code(C) -->
[C],
{ C \== 0'.,
\+ code_type(C, white)
}.
lang_codes([C|T]) -->
lang_code(C), !,
lang_codes(T).
lang_codes([]) -->
[].
/*******************************
* BASICS *
*******************************/
skip_rest(_,[]).
ws -->
[C],
{ code_type(C, white)
}.
end_of_input([], []).
wss -->
ws, !,
wss.
wss -->
[].