bbdd
This commit is contained in:
146
packages/ProbLog/problog/lbdd.yap
Normal file
146
packages/ProbLog/problog/lbdd.yap
Normal file
@@ -0,0 +1,146 @@
|
||||
|
||||
%========================================================================
|
||||
%=
|
||||
%=
|
||||
%=
|
||||
%========================================================================
|
||||
|
||||
/**
|
||||
* @file problog/lbdd.yap
|
||||
* support routines for BDD evaluation.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
%========================================================================
|
||||
%= Updates all values of query_probability/2 and query_gradient/4
|
||||
%= should be called always before these predicates are accessed
|
||||
%= if the old values are still valid, nothing happens
|
||||
%========================================================================
|
||||
|
||||
update_values :-
|
||||
values_correct,
|
||||
!.
|
||||
update_values :-
|
||||
\+ values_correct,
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% delete old values
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
retractall(query_probability_intern(_,_)),
|
||||
retractall(query_gradient_intern(_,_,_,_)),
|
||||
|
||||
|
||||
assertz(values_correct).
|
||||
|
||||
update_query_cleanup(QueryID) :-
|
||||
(
|
||||
(query_is_similar(QueryID,_) ; query_is_similar(_,QueryID))
|
||||
->
|
||||
% either this query is similar to another or vice versa,
|
||||
% therefore we don't delete anything
|
||||
true;
|
||||
retractall(query_gradient_intern(QueryID,_,_,_))
|
||||
).
|
||||
|
||||
|
||||
update_query(QueryID,Symbol,What_To_Update) :-
|
||||
(
|
||||
query_is_similar(QueryID,_)
|
||||
->
|
||||
% we don't have to evaluate the BDD
|
||||
format_learning(4,'#',[]);
|
||||
(
|
||||
problog_flag(sigmoid_slope,Slope),
|
||||
((What_To_Update=all;query_is_similar(_,QueryID)) -> Method='g' ; Method='l'),
|
||||
gradient(QueryID, Method, Slope),
|
||||
format_learning(4,'~w',[Symbol])
|
||||
)
|
||||
).
|
||||
|
||||
maplist_to_hash([], H0, H0).
|
||||
maplist_to_hash([I-V|MapList], H0, Hash) :-
|
||||
rb_insert(H0, V, I, H1),
|
||||
maplist_to_hash(MapList, H1, Hash).
|
||||
|
||||
bind_maplist([]).
|
||||
bind_maplist([Node-Theta|MapList]) :-
|
||||
get_prob(Node, ProbFact),
|
||||
inv_sigmoid(ProbFact, Theta),
|
||||
bind_maplist(MapList).
|
||||
|
||||
tree_to_grad([], _, Grad, Grad).
|
||||
tree_to_grad([Node|Tree], H, Grad0, Grad) :-
|
||||
node_to_gradient_node(Node, H, GNode),
|
||||
tree_to_grad(Tree, H, [GNode|Grad0], Grad).
|
||||
|
||||
%get_prob(Node, Prob) :-
|
||||
% query_probability(Node,Prob), !.
|
||||
get_prob(Node, Prob) :-
|
||||
get_fact_probability(Node,Prob).
|
||||
|
||||
gradient(QueryID, l, Slope) :-
|
||||
probability( QueryID, Slope, Prob),
|
||||
assert(query_probability_intern(QueryID,Prob)),
|
||||
fail.
|
||||
gradient(_QueryID, l, _).
|
||||
|
||||
/* query_probability(21,6.775948e-01). */
|
||||
gradient(QueryID, g, Slope) :-
|
||||
recorded(QueryID, BDD, _),
|
||||
query_gradients(BDD,Slope,I,Grad),
|
||||
% writeln(grad(QueryID:I:Grad)),
|
||||
assert(query_gradient_intern(QueryID,I,p,Grad)),
|
||||
fail.
|
||||
gradient(QueryID, g, Slope) :-
|
||||
gradient(QueryID, l, Slope).
|
||||
|
||||
query_probability( DBDD, Slope, Prob) :-
|
||||
DBDD = bdd(Dir, Tree, MapList),
|
||||
bind_maplist(MapList),
|
||||
run_sp(Tree, Slope, 1.0, Prob0),
|
||||
(Dir == 1 -> Prob0 = Prob ; Prob is 1.0-Prob0).
|
||||
|
||||
|
||||
query_gradients(bdd(Dir, Tree, MapList),Slope,I,Grad) :-
|
||||
bind_maplist(MapList),
|
||||
member(I-_, MapList),
|
||||
run_grad(Tree, I, Slope, 0.0, Grad0),
|
||||
( Dir = 1 -> Grad = Grad0 ; Grad is -Grad0).
|
||||
|
||||
|
||||
node_to_gradient_node(pp(P-G,X,L,R), H, gnodep(P,G,X,Id,PL,GL,PR,GR)) :-
|
||||
rb_lookup(X,Id,H),
|
||||
(L == 1 -> GL=0, PL=1 ; L == 0 -> GL = 0, PL=0 ; L = PL-GL),
|
||||
(R == 1 -> GR=0, PR=1 ; R == 0 -> GR = 0, PR=0 ; R = PR-GR).
|
||||
node_to_gradient_node(pn(P-G,X,L,R), H, gnoden(P,G,X,Id,PL,GL,PR,GR)) :-
|
||||
rb_lookup(X,Id,H),
|
||||
(L == 1 -> GL=0, PL=1 ; L == 0 -> GL = 0, PL=0 ; L = PL-GL),
|
||||
(R == 1 -> GR=0, PR=1 ; R == 0 -> GR = 0, PR=0 ; R = PR-GR).
|
||||
|
||||
run_sp([], _, P0, P0).
|
||||
run_sp(gnodep(P,_G, X, _Id, PL, _GL, PR, _GR).Tree, Slope, _, PF) :-
|
||||
EP = 1.0 / (1.0 + exp(-X * Slope) ),
|
||||
P is EP*PL+ (1.0-EP)*PR,
|
||||
run_sp(Tree, Slope, P, PF).
|
||||
run_sp(gnoden(P,_G, X, _Id, PL, _GL, PR, _GR).Tree, Slope, _, PF) :-
|
||||
EP is 1.0 / (1.0 + exp(-X * Slope) ),
|
||||
P is EP*PL + (1.0-EP)*(1.0 - PR),
|
||||
run_sp(Tree, Slope, P, PF).
|
||||
|
||||
run_grad([], _I, _, G0, G0).
|
||||
run_grad([gnodep(P,G, X, Id, PL, GL, PR, GR)|Tree], I, Slope, _, GF) :-
|
||||
EP is 1.0/(1.0 + exp(-X * Slope)),
|
||||
P is EP*PL+ (1.0-EP)*PR,
|
||||
G0 is EP*GL + (1.0-EP)*GR,
|
||||
% don' t forget the -X
|
||||
( I == Id -> G is G0+(PL-PR)* EP*(1-EP)*Slope ; G = G0 ),
|
||||
run_grad(Tree, I, Slope, G, GF).
|
||||
run_grad([gnoden(P,G, X, Id, PL, GL, PR, GR)|Tree], I, Slope, _, GF) :-
|
||||
EP is 1.0 / (1.0 + exp(-X * Slope) ),
|
||||
P is EP*PL + (1.0-EP)*(1.0 - PR),
|
||||
G0 is EP*GL - (1.0 - EP) * GR,
|
||||
( I == Id -> G is G0+(PL+PR-1)*EP*(1-EP)*Slope ; G = G0 ),
|
||||
run_grad(Tree, I, Slope, G, GF).
|
||||
|
||||
|
Reference in New Issue
Block a user