maplist: move docs to doxygen; add doxygen.
This commit is contained in:
parent
3a21922e37
commit
0b2dff96d3
@ -11,9 +11,69 @@
|
||||
% Purpose: Macros to apply a predicate to all elements
|
||||
% of a list or to all sub-terms of a term.
|
||||
|
||||
/**
|
||||
* @file maplist.yap
|
||||
*
|
||||
* @defgroup maplist Map List and Term Operations
|
||||
*
|
||||
* This library provides a set of utilities for applying a predicate to
|
||||
* all elements of a list. They allow one to easily perform the most common do-loop constructs in Prolog.
|
||||
* To avoid performance degradation, each call creates an
|
||||
* equivalent Prolog program, without meta-calls, which is executed by
|
||||
* the Prolog engine instead. The library was based on code
|
||||
* by Joachim Schimpf and on code from SWI-Prolog, and it is also inspired by the GHC
|
||||
* libraries.
|
||||
*
|
||||
* The following routines are available once included with the
|
||||
* `use_module(library(apply_macros))` command.
|
||||
* @author : Lawrence Byrd
|
||||
* @author Richard A. O'Keefe
|
||||
* @author Joachim Schimpf
|
||||
* @author Jan Wielemaker
|
||||
* @author E. Alphonse
|
||||
* @author Vitor Santos Costa
|
||||
|
||||
|
||||
Examples:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.prolog}
|
||||
%given
|
||||
plus(X,Y,Z) :- Z is X + Y.
|
||||
|
||||
plus_if_pos(X,Y,Z) :- Y > 0, Z is X + Y.
|
||||
|
||||
vars(X, Y, [X|Y]) :- var(X), !.
|
||||
vars(_, Y, Y).
|
||||
|
||||
trans(TermIn, TermOut) :-
|
||||
nonvar(TermIn),
|
||||
TermIn =.. [p|Args],
|
||||
TermOut =..[q|Args], !.
|
||||
trans(X,X).
|
||||
|
||||
%success
|
||||
|
||||
?- maplist(plus(1), [1,2,3,4], [2,3,4,5]).
|
||||
|
||||
?- checklist(var, [X,Y,Z]).
|
||||
|
||||
?- selectlist(<(0), [-1,0,1], [1]).
|
||||
|
||||
?- convlist(plus_if_pos(1), [-1,0,1], [2]).
|
||||
|
||||
?- sumlist(plus, [1,2,3,4], 1, 11).
|
||||
|
||||
?- maplist(mapargs(number_atom),[c(1),s(1,2,3)],[c('1'),s('1','2','3')]).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
|
||||
:- module(maplist, [selectlist/3,
|
||||
selectlist/4,
|
||||
selectlists/5,
|
||||
checklist/2,
|
||||
maplist/2, % :Goal, +List
|
||||
maplist/3, % :Goal, ?List1, ?List2
|
||||
@ -91,9 +151,15 @@
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
/** include(+ _Pred_, + _ListIn_, ? _ListOut_)
|
||||
Same as selectlist/3.
|
||||
*/
|
||||
include(G,In,Out) :-
|
||||
selectlist(G, In, Out).
|
||||
|
||||
/** selectlist(: _Pred_, + _ListIn_, ? _ListOut_))
|
||||
Creates _ListOut_ of all list elements of _ListIn_ that pass a given test
|
||||
*/
|
||||
selectlist(_, [], []).
|
||||
selectlist(Pred, [In|ListIn], ListOut) :-
|
||||
(call(Pred, In) ->
|
||||
@ -103,6 +169,26 @@ selectlist(Pred, [In|ListIn], ListOut) :-
|
||||
),
|
||||
selectlist(Pred, ListIn, NewListOut).
|
||||
|
||||
/** selectlist(: _Pred_, + _ListIn_, + _ListInAux_, ? _ListOut_, ? _ListOutAux_)
|
||||
Creates _ListOut_ and _ListOutAux_ of all list elements of _ListIn_ and _ListInAux_ that
|
||||
pass the given test _Pred_.
|
||||
*/
|
||||
selectlists(_, [], [], [], []).
|
||||
selectlists(Pred, [In|ListIn], [In1|ListIn1], ListOut, ListOut1) :-
|
||||
(call(Pred, In, In1) ->
|
||||
ListOut = [In|NewListOut],
|
||||
ListOut1 = [In1|NewListOut1]
|
||||
;
|
||||
ListOut1 = NewListOut1,
|
||||
ListOut = NewListOut
|
||||
),
|
||||
selectlist(Pred, ListIn, ListIn1, NewListOut, NewListOut1).
|
||||
|
||||
/** selectlist(: _Pred_, + _ListIn_, + _ListInAux_, ? _ListOut_)
|
||||
Creates _ListOut_ of all list elements of _ListIn_ that
|
||||
pass the given test _Pred_ using + _ListInAux_ as an
|
||||
auxiliary element.
|
||||
*/
|
||||
selectlist(_, [], [], []).
|
||||
selectlist(Pred, [In|ListIn], [In1|ListIn1], ListOut) :-
|
||||
(call(Pred, In, In1) ->
|
||||
@ -112,6 +198,10 @@ selectlist(Pred, [In|ListIn], [In1|ListIn1], ListOut) :-
|
||||
),
|
||||
selectlist(Pred, ListIn, ListIn1, NewListOut).
|
||||
|
||||
/** exclude(+ _Goal_, + _List1_, ? _List2_)
|
||||
Filter elements for which _Goal_ fails. True if _List2_ contains
|
||||
those elements _Xi_ of _List1_ for which `call(Goal, Xi)` fails.
|
||||
*/
|
||||
exclude(_, [], []).
|
||||
exclude(Pred, [In|ListIn], ListOut) :-
|
||||
(call(Pred, In) ->
|
||||
@ -121,6 +211,11 @@ exclude(Pred, [In|ListIn], ListOut) :-
|
||||
),
|
||||
exclude(Pred, ListIn, NewListOut).
|
||||
|
||||
/** partition(+ _Pred_, + _List1_, ? _Included_, ? _Excluded_)
|
||||
Filter elements of _List_ according to _Pred_. True if
|
||||
_Included_ contains all elements for which `call(Pred, X)`
|
||||
succeeds and _Excluded_ contains the remaining elements.
|
||||
*/
|
||||
partition(_, [], [], []).
|
||||
partition(Pred, [In|ListIn], List1, List2) :-
|
||||
(call(Pred, In) ->
|
||||
@ -132,6 +227,15 @@ partition(Pred, [In|ListIn], List1, List2) :-
|
||||
),
|
||||
partition(Pred, ListIn, RList1, RList2).
|
||||
|
||||
/** partition(+ _Pred_, + _List1_, ? _Lesser_, ? _Equal_, ? _Greater_)
|
||||
|
||||
Filter list according to _Pred_ in three sets. For each element
|
||||
_Xi_ of _List_, its destination is determined by
|
||||
`call(Pred, Xi, Place)`, where _Place_ must be unified to one
|
||||
of `\<`, `=` or `\>`. `Pred` must be deterministic.
|
||||
|
||||
|
||||
*/
|
||||
partition(_, [], [], [], []).
|
||||
partition(Pred, [In|ListIn], List1, List2, List3) :-
|
||||
call(Pred, In, Diff),
|
||||
@ -154,54 +258,77 @@ partition(Pred, [In|ListIn], List1, List2, List3) :-
|
||||
),
|
||||
partition(Pred, ListIn, RList1, RList2, RList3).
|
||||
|
||||
/** checklist(: _Pred_, + _List_)
|
||||
Succeeds if the predicate _Pred_ succeeds on all elements of _List_.
|
||||
*/
|
||||
checklist(_, []).
|
||||
checklist(Pred, [In|ListIn]) :-
|
||||
call(Pred, In),
|
||||
checklist(Pred, ListIn).
|
||||
|
||||
% maplist(Pred, OldList)
|
||||
% succeeds when Pred(Old,New) succeeds for each corresponding
|
||||
% Old in OldList, New in NewList. In InterLisp, this is MAPCAR.
|
||||
% It is also MAP2C. Isn't bidirectionality wonderful?
|
||||
/** maplist(: _Pred_, ? _ListIn_)
|
||||
|
||||
Applies predicate _Pred_( _El_ ) to all
|
||||
elements _El_ of _ListIn_.
|
||||
|
||||
*/
|
||||
maplist(_, []).
|
||||
maplist(Pred, [In|ListIn]) :-
|
||||
call(Pred, In),
|
||||
maplist(Pred, ListIn).
|
||||
|
||||
% maplist(Pred, OldList, NewList)
|
||||
% succeeds when Pred(Old,New) succeeds for each corresponding
|
||||
% Old in OldList, New in NewList. In InterLisp, this is MAPCAR.
|
||||
% It is also MAP2C. Isn't bidirectionality wonderful?
|
||||
|
||||
/** maplist(: _Pred_, ? _L1_, ? _L2_ )
|
||||
_L1_ and _L2_ are such that
|
||||
`call( _Pred_, _A1_, _A2_)` holds for every
|
||||
corresponding element in lists _L1_, _L2_.
|
||||
|
||||
Comment from Richard O'Keefe: succeeds when _Pred( _Old_, _New_) succeeds for each corresponding
|
||||
_Gi_ in _Listi_, _New_ in _NewList_. In InterLisp, this is MAPCAR.
|
||||
It is also MAP2C. Isn't bidirectionality wonderful?
|
||||
*/
|
||||
maplist(_, [], []).
|
||||
maplist(Pred, [In|ListIn], [Out|ListOut]) :-
|
||||
call(Pred, In, Out),
|
||||
maplist(Pred, ListIn, ListOut).
|
||||
|
||||
% maplist(Pred, List1, List2, List3)
|
||||
% succeeds when Pred(Old,New) succeeds for each corresponding
|
||||
% Gi in Listi, New in NewList. In InterLisp, this is MAPCAR.
|
||||
% It is also MAP2C. Isn't bidirectionality wonderful?
|
||||
/** maplist(: _Pred_, ? _L1_, ? _L2_, ? _L3_)
|
||||
_L1_, _L2_, and _L3_ are such that
|
||||
`call( _Pred_, _A1_, _A2_, _A3_)` holds for every
|
||||
corresponding element in lists _L1_, _L2_, and _L3_.
|
||||
|
||||
*/
|
||||
maplist(_, [], [], []).
|
||||
maplist(Pred, [A1|L1], [A2|L2], [A3|L3]) :-
|
||||
call(Pred, A1, A2, A3),
|
||||
maplist(Pred, L1, L2, L3).
|
||||
|
||||
% maplist(Pred, List1, List2, List3, List4)
|
||||
% succeeds when Pred(Old,New) succeeds for each corresponding
|
||||
% Gi in Listi, New in NewList. In InterLisp, this is MAPCAR.
|
||||
% It is also MAP2C. Isn't bidirectionality wonderful?
|
||||
/** maplist(: _Pred_, ? _L1_, ? _L2_, ? _L3_, ? _L4_)
|
||||
_L1_, _L2_, _L3_, and _L4_ are such that
|
||||
`call( _Pred_, _A1_, _A2_, _A3_, _A4_)` holds
|
||||
for every corresponding element in lists _L1_, _L2_, _L3_, and
|
||||
_L4_.
|
||||
*/
|
||||
maplist(_, [], [], [], []).
|
||||
maplist(Pred, [A1|L1], [A2|L2], [A3|L3], [A4|L4]) :-
|
||||
call(Pred, A1, A2, A3, A4),
|
||||
maplist(Pred, L1, L2, L3, L4).
|
||||
|
||||
% convlist(Rewrite, OldList, NewList)
|
||||
% is a sort of hybrid of maplist/3 and sublist/3.
|
||||
% Each element of NewList is the image under Rewrite of some
|
||||
% element of OldList, and order is preserved, but elements of
|
||||
% OldList on which Rewrite is undefined (fails) are not represented.
|
||||
% Thus if foo(X,Y) :- integer(X), Y is X+1.
|
||||
% then convlist(foo, [1,a,0,joe(99),101], [2,1,102]).
|
||||
/**
|
||||
convlist(: _Pred_, + _ListIn_, ? _ListOut_) @anchor convlist
|
||||
|
||||
A combination of maplist/3 and selectlist/3: creates _ListOut_ by
|
||||
applying the predicate _Pred_ to all list elements on which
|
||||
_Pred_ succeeds.
|
||||
|
||||
ROK: convlist(Rewrite, OldList, NewList)
|
||||
is a sort of hybrid of maplist/3 and sublist/3.
|
||||
Each element of NewList is the image under Rewrite of some
|
||||
element of OldList, and order is preserved, but elements of
|
||||
OldList on which Rewrite is undefined (fails) are not represented.
|
||||
Thus if foo(X,Y) :- integer(X), Y is X+1.
|
||||
then convlist(foo, [1,a,0,joe(99),101], [2,1,102]).
|
||||
*/
|
||||
convlist(_, [], []).
|
||||
convlist(Pred, [Old|Olds], NewList) :-
|
||||
call(Pred, Old, New),
|
||||
@ -211,6 +338,12 @@ convlist(Pred, [Old|Olds], NewList) :-
|
||||
convlist(Pred, [_|Olds], News) :-
|
||||
convlist(Pred, Olds, News).
|
||||
|
||||
/**
|
||||
mapnodes(+ _Pred_, + _TermIn_, ? _TermOut_)
|
||||
|
||||
Creates _TermOut_ by applying the predicate _Pred_
|
||||
to all sub-terms of _TermIn_ (depth-first and left-to-right order).
|
||||
*/
|
||||
mapnodes(Pred, TermIn, TermOut) :-
|
||||
(atomic(TermIn); var(TermIn)), !,
|
||||
call(Pred, TermIn, TermOut).
|
||||
@ -225,6 +358,12 @@ mapnodes_list(Pred, [TermIn|ArgsIn], [TermOut|ArgsOut]) :-
|
||||
mapnodes(Pred, TermIn, TermOut),
|
||||
mapnodes_list(Pred, ArgsIn, ArgsOut).
|
||||
|
||||
/**
|
||||
checknodes(+ _Pred_, + _Term_) @anchor checknodes
|
||||
|
||||
Succeeds if the predicate _Pred_ succeeds on all sub-terms of
|
||||
_Term_ (depth-first and left-to-right order)
|
||||
*/
|
||||
checknodes(Pred, Term) :-
|
||||
(atomic(Term); var(Term)), !,
|
||||
call(Pred, Term).
|
||||
@ -238,11 +377,24 @@ checknodes_list(Pred, [Term|Args]) :-
|
||||
checknodes_body(Pred, Term),
|
||||
checknodes_list(Pred, Args).
|
||||
|
||||
/**
|
||||
sumlist(: _Pred_, + _List_, ? _AccIn_, ? _AccOut_)
|
||||
|
||||
Calls _Pred_ on all elements of List and collects a result in
|
||||
_Accumulator_. Same as fold/4.
|
||||
*/
|
||||
sumlist(_, [], Acc, Acc).
|
||||
sumlist(Pred, [H|T], AccIn, AccOut) :-
|
||||
call(Pred, H, AccIn, A1),
|
||||
sumlist(Pred, T, A1, AccOut).
|
||||
|
||||
/**
|
||||
sumnodes(+ _Pred_, + _Term_, ? _AccIn_, ? _AccOut_) @anchor sumnodes
|
||||
|
||||
Calls the predicate _Pred_ on all sub-terms of _Term_ and
|
||||
collect a result in _Accumulator_ (depth-first and left-to-right
|
||||
order)
|
||||
*/
|
||||
sumnodes(Pred, Term, A0, A2) :-
|
||||
call(Pred, Term, A0, A1),
|
||||
(compound(Term) ->
|
||||
@ -268,16 +420,13 @@ sumnodes_body(Pred, Term, A1, A3, N0, Ar) :-
|
||||
|
||||
%% foldl(:Goal, +List, +V0, -V, +W0, -WN).
|
||||
%
|
||||
% Fold a list, using arguments of the list as left argument. The
|
||||
% foldl family of predicates is defined by:
|
||||
%
|
||||
% ==
|
||||
% foldl(P, [X11,...,X1n],V0, Vn, W0, WN) :-
|
||||
% P(X11, V0, V1, W0, W1),
|
||||
% ...
|
||||
% P(X1n, Vn1, Vn, Wn1, Wn).
|
||||
% ==
|
||||
|
||||
/**
|
||||
foldl(: _Pred_, + _List1_, + _List2_, ? _AccIn_, ? _AccOut_)
|
||||
|
||||
Calls _Pred_ on all elements of `List1` and collects a result in _Accumulator_. Same as
|
||||
foldr/3.
|
||||
*/
|
||||
foldl(Goal, List, V0, V) :-
|
||||
foldl_(List, Goal, V0, V).
|
||||
|
||||
@ -286,6 +435,21 @@ foldl_([H|T], Goal, V0, V) :-
|
||||
call(Goal, H, V0, V1),
|
||||
foldl_(T, Goal, V1, V).
|
||||
|
||||
/**
|
||||
foldl(: _Pred_, + _List1_, + _List2_, ? _AccIn_, ? _AccOut_)
|
||||
|
||||
Calls _Pred_ on all elements of _List1_ and
|
||||
_List2_ and collects a result in _Accumulator_. Same as
|
||||
foldr/4.
|
||||
|
||||
The foldl family of predicates is defined
|
||||
==
|
||||
foldl(P, [X11,...,X1n],V0, Vn, W0, WN) :-
|
||||
P(X11, V0, V1, W0, W1),
|
||||
...
|
||||
P(X1n, Vn1, Vn, Wn1, Wn).
|
||||
==
|
||||
*/
|
||||
foldl(Goal, List1, List2, V0, V) :-
|
||||
foldl_(List1, List2, Goal, V0, V).
|
||||
|
||||
@ -294,7 +458,9 @@ foldl_([H1|T1], [H2|T2], Goal, V0, V) :-
|
||||
call(Goal, H1, H2, V0, V1),
|
||||
foldl_(T1, T2, Goal, V1, V).
|
||||
|
||||
/**
|
||||
|
||||
*/
|
||||
foldl(Goal, List1, List2, List3, V0, V) :-
|
||||
foldl_(List1, List2, List3, Goal, V0, V).
|
||||
|
||||
@ -304,6 +470,9 @@ foldl_([H1|T1], [H2|T2], [H3|T3], Goal, V0, V) :-
|
||||
foldl_(T1, T2, T3, Goal, V1, V).
|
||||
|
||||
|
||||
/**
|
||||
|
||||
*/
|
||||
foldl(Goal, List1, List2, List3, List4, V0, V) :-
|
||||
foldl_(List1, List2, List3, List4, Goal, V0, V).
|
||||
|
||||
@ -313,21 +482,13 @@ foldl_([H1|T1], [H2|T2], [H3|T3], [H4|T4], Goal, V0, V) :-
|
||||
foldl_(T1, T2, T3, T4, Goal, V1, V).
|
||||
|
||||
|
||||
%% foldl(:Goal, +List, +V0, -V).
|
||||
%% foldl(:Goal, +List1, +List2, +V0, -V).
|
||||
%% foldl(:Goal, +List1, +List2, +List3, +V0, -V).
|
||||
%% foldl(:Goal, +List1, +List2, +List3, +List4, +V0, -V).
|
||||
%
|
||||
% Fold a list, using arguments of the list as left argument. The
|
||||
% foldl family of predicates is defined by:
|
||||
%
|
||||
% ==
|
||||
% foldl(P, [X11,...,X1n], ..., [Xm1,...,Xmn], V0, Vn) :-
|
||||
% P(X11, ..., Xm1, V0, V1),
|
||||
% ...
|
||||
% P(X1n, ..., Xmn, V', Vn).
|
||||
% ==
|
||||
/**
|
||||
foldl2(: _Pred_, + _List_, ? _X0_, ? _X_, ? _Y0_, ? _Y_)
|
||||
|
||||
Calls _Pred_ on all elements of `List` and collects a result in
|
||||
_X_ and _Y_.
|
||||
|
||||
*/
|
||||
foldl2(Goal, List, V0, V, W0, W) :-
|
||||
foldl2_(List, Goal, V0, V, W0, W).
|
||||
|
||||
@ -336,7 +497,12 @@ foldl2_([H|T], Goal, V0, V, W0, W) :-
|
||||
call(Goal, H, V0, V1, W0, W1),
|
||||
foldl2_(T, Goal, V1, V, W1, W).
|
||||
|
||||
/**
|
||||
foldl2(: _Pred_, + _List_, ? _List1_, ? _X0_, ? _X_, ? _Y0_, ? _Y_)
|
||||
|
||||
Calls _Pred_ on all elements of _List_ and _List1_ and collects a result in
|
||||
_X_ and _Y_.
|
||||
*/
|
||||
foldl2(Goal, List1, List2, V0, V, W0, W) :-
|
||||
foldl2_(List1, List2, Goal, V0, V, W0, W).
|
||||
|
||||
@ -345,6 +511,13 @@ foldl2_([H1|T1], [H2|T2], Goal, V0, V, W0, W) :-
|
||||
call(Goal, H1, H2, V0, V1, W0, W1),
|
||||
foldl2_(T1, T2, Goal, V1, V, W1, W).
|
||||
|
||||
/**
|
||||
foldl2(: _Pred_, + _List_, ? _List1_, ? _List2_, ? _X0_, ? _X_, ? _Y0_, ? _Y_)
|
||||
|
||||
Calls _Pred_ on all elements of _List_, _List1_ and _List2_ and collects a result in
|
||||
_X_ and _Y_.
|
||||
|
||||
*/
|
||||
foldl2(Goal, List1, List2, List3, V0, V, W0, W) :-
|
||||
foldl2_(List1, List2, List3, Goal, V0, V, W0, W).
|
||||
|
||||
@ -354,6 +527,13 @@ foldl2_([H1|T1], [H2|T2], [H3|T3], Goal, V0, V, W0, W) :-
|
||||
foldl2_(T1, T2, T3, Goal, V1, V, W1, W).
|
||||
|
||||
|
||||
/**
|
||||
foldl3(: _Pred_, + _List1_, ? _List2_, ? _X0_, ? _X_, ? _Y0_, ? _Y_, ? _Z0_, ? _Z_)
|
||||
|
||||
|
||||
Calls _Pred_ on all elements of `List` and collects a
|
||||
result in _X_, _Y_ and _Z_.
|
||||
*/
|
||||
foldl3(Goal, List, V0, V, W0, W, X0, X) :-
|
||||
foldl3_(List, Goal, V0, V, W0, W, X0, X).
|
||||
|
||||
@ -362,6 +542,13 @@ foldl3_([H|T], Goal, V0, V, W0, W, X0, X) :-
|
||||
call(Goal, H, V0, V1, W0, W1, X0, X1),
|
||||
fold3_(T, Goal, V1, V, W1, W, X1, X).
|
||||
|
||||
/**
|
||||
foldl4(: _Pred_, + _List1_, ? _List2_, ? _X0_, ? _X_, ? _Y0_, ? _Y_, ? _Z0_, ? _Z_, ? _W0_, ? _W_)
|
||||
|
||||
|
||||
Calls _Pred_ on all elements of `List` and collects a
|
||||
result in _X_, _Y_, _Z_ and _W_.
|
||||
*/
|
||||
foldl4(Goal, List, V0, V, W0, W, X0, X, Y0, Y) :-
|
||||
foldl4_(List, Goal, V0, V, W0, W, X0, X, Y0, Y).
|
||||
|
||||
@ -391,6 +578,20 @@ foldl4_([H|T], Goal, V0, V, W0, W, X0, X, Y0, Y) :-
|
||||
% P(X1n, ..., Xmn, V', Vn).
|
||||
% ==
|
||||
|
||||
/**
|
||||
scanl(: _Pred_, + _List_, + _V0_, ? _Values_)
|
||||
|
||||
|
||||
Left scan of list. The scanl family of higher order list
|
||||
operations is defined by:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~{.prolog}
|
||||
scanl(P, [X11,...,X1n], ..., [Xm1,...,Xmn], V0, [V0,V1,...,Vn]) :-
|
||||
P(X11, ..., Xm1, V0, V1),
|
||||
...
|
||||
P(X1n, ..., Xmn, Vn-1, Vn).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
*/
|
||||
scanl(Goal, List, V0, [V0|Values]) :-
|
||||
scanl_(List, Goal, V0, Values).
|
||||
|
||||
@ -399,7 +600,11 @@ scanl_([H|T], Goal, V, [VH|VT]) :-
|
||||
call(Goal, H, V, VH),
|
||||
scanl_(T, Goal, VH, VT).
|
||||
|
||||
/**
|
||||
scanl(: _Pred_, + _List1_, + _List2_, ? _V0_, ? _Vs_)
|
||||
|
||||
Left scan of list.
|
||||
*/
|
||||
scanl(Goal, List1, List2, V0, [V0|Values]) :-
|
||||
scanl_(List1, List2, Goal, V0, Values).
|
||||
|
||||
@ -408,7 +613,11 @@ scanl_([H1|T1], [H2|T2], Goal, V, [VH|VT]) :-
|
||||
call(Goal, H1, H2, V, VH),
|
||||
scanl_(T1, T2, Goal, VH, VT).
|
||||
|
||||
/**
|
||||
scanl(: _Pred_, + _List1_, + _List2_, + _List3_, ? _V0_, ? _Vs_)
|
||||
|
||||
Left scan of list.
|
||||
*/
|
||||
scanl(Goal, List1, List2, List3, V0, [V0|Values]) :-
|
||||
scanl_(List1, List2, List3, Goal, V0, Values).
|
||||
|
||||
@ -417,7 +626,11 @@ scanl_([H1|T1], [H2|T2], [H3|T3], Goal, V, [VH|VT]) :-
|
||||
call(Goal, H1, H2, H3, V, VH),
|
||||
scanl_(T1, T2, T3, Goal, VH, VT).
|
||||
|
||||
/**
|
||||
scanl(: _Pred_, + _List1_, + _List2_, + _List3_, + _List4_, ? _V0_, ? _Vs_)
|
||||
|
||||
Left scan of list.
|
||||
*/
|
||||
scanl(Goal, List1, List2, List3, List4, V0, [V0|Values]) :-
|
||||
scanl_(List1, List2, List3, List4, Goal, V0, Values).
|
||||
|
||||
@ -578,6 +791,29 @@ goal_expansion(selectlist(Meta, ListIn, ListIn1, ListOut), Mod:Goal) :-
|
||||
RecursiveCall)
|
||||
], Mod).
|
||||
|
||||
goal_expansion(selectlists(Meta, ListIn, ListIn1, ListOut, ListOut1), Mod:Goal) :-
|
||||
goal_expansion_allowed,
|
||||
callable(Meta),
|
||||
prolog_load_context(module, Mod),
|
||||
aux_preds(Meta, MetaVars, Pred, PredVars, Proto),
|
||||
!,
|
||||
% the new goal
|
||||
pred_name(selectlist, 4, Proto, GoalName),
|
||||
append(MetaVars, [ListIn, ListIn1, ListOut, ListOut1], GoalArgs),
|
||||
Goal =.. [GoalName|GoalArgs],
|
||||
% the new predicate declaration
|
||||
HeadPrefix =.. [GoalName|PredVars],
|
||||
append_args(HeadPrefix, [[], [], [], []], Base),
|
||||
append_args(HeadPrefix, [[In|Ins], [In1|Ins1], Outs, Outs1], RecursionHead),
|
||||
append_args(Pred, [In, In1], Apply),
|
||||
append_args(HeadPrefix, [Ins, Ins1, NOuts, NOuts1], RecursiveCall),
|
||||
compile_aux([
|
||||
Base,
|
||||
(RecursionHead :-
|
||||
(Apply -> Outs = [In|NOuts], Outs1 = [In1|NOuts1]; Outs = NOuts, Outs1 = NOuts1),
|
||||
RecursiveCall)
|
||||
], Mod).
|
||||
|
||||
% same as selectlist
|
||||
goal_expansion(include(Meta, ListIn, ListOut), Mod:Goal) :-
|
||||
goal_expansion_allowed,
|
||||
@ -1022,3 +1258,7 @@ user:goal_expansion(phrase(NT,Xs0,Xs), Mod, NewGoal) :-
|
||||
:- hide('$translate_rule').
|
||||
*/
|
||||
|
||||
/**
|
||||
@}
|
||||
*/
|
||||
|
||||
|
@ -2,6 +2,15 @@
|
||||
% map utilities
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
/**
|
||||
* @file maputils.yap
|
||||
*
|
||||
* @addtogroup maplist
|
||||
*
|
||||
* Auxiliary routines
|
||||
*
|
||||
*@{
|
||||
*/
|
||||
:- module(maputils,
|
||||
[compile_aux/2,
|
||||
goal_expansion_allowed/0,
|
||||
@ -73,7 +82,7 @@ harmless_dcgexception(type_error(callable,_)). % ex: phrase(27,L)
|
||||
|
||||
%% contains_illegal_dcgnt(+ Term) is semidet.
|
||||
%
|
||||
% True if Term contains a non-terminal we cannot deal with using
|
||||
% `True` if _Term_ contains a non-terminal we cannot deal with using
|
||||
% goal-expansion. The test is too general approximation, but safe.
|
||||
|
||||
contains_illegal_dcgnt(NT) :-
|
||||
@ -83,7 +92,14 @@ contains_illegal_dcgnt(NT) :-
|
||||
% write(contains_illegal_nt(NT)), % JW: we do not want to write
|
||||
% nl.
|
||||
|
||||
%% goal_expansion_allowed is semidet.
|
||||
%
|
||||
% `True` if we can use
|
||||
% goal-expansion.
|
||||
goal_expansion_allowed :-
|
||||
once( prolog_load_context(_, _) ), % make sure we are compiling.
|
||||
\+ current_prolog_flag(xref, true).
|
||||
|
||||
/**
|
||||
@}
|
||||
*/
|
Reference in New Issue
Block a user