refactor the way we calculate the product of two factors

This commit is contained in:
Tiago Gomes 2012-05-26 20:58:56 +01:00
parent bc2da47804
commit 1239832c21

View File

@ -73,63 +73,42 @@ class TFactor
void multiply (TFactor<T>& g)
{
if (args_ == g.arguments()) {
// optimization
Globals::logDomain
? params_ += g.params()
: params_ *= g.params();
return;
}
unsigned range_prod = 1;
bool share_arguments = false;
const vector<T>& g_args = g.arguments();
const Ranges& g_ranges = g.ranges();
const Params& g_params = g.params();
if (args_ == g_args) {
// optimization: if the factors contain the same set of args,
// we can do a 1 to 1 operation on the parameters
Globals::logDomain ? params_ += g_params
: params_ *= g_params;
} else {
bool sharedArgs = false;
vector<size_t> gvarpos;
for (size_t i = 0; i < g_args.size(); i++) {
size_t idx = indexOf (g_args[i]);
if (idx == g_args.size()) {
ullong newSize = params_.size() * g_ranges[i];
if (newSize > params_.max_size()) {
cerr << "error: an overflow occurred on factor multiplication" ;
cerr << endl;
abort();
}
insertArgument (g_args[i], g_ranges[i]);
gvarpos.push_back (args_.size() - 1);
} else {
sharedArgs = true;
gvarpos.push_back (idx);
}
for (size_t i = 0; i < g_args.size(); i++) {
size_t idx = indexOf (g_args[i]);
if (idx == args_.size()) {
range_prod *= g_ranges[i];
args_.push_back (g_args[i]);
ranges_.push_back (g_ranges[i]);
} else {
share_arguments = true;
}
if (sharedArgs == false) {
// optimization: if the original factors doesn't have common args,
// we don't need to marry the states of the common args
size_t count = 0;
for (size_t i = 0; i < params_.size(); i++) {
if (Globals::logDomain) {
params_[i] += g_params[count];
} else {
params_[i] *= g_params[count];
}
count ++;
if (count >= g_params.size()) {
count = 0;
}
}
if (share_arguments == false) {
// optimization
cartesianProduct (g_params.begin(), g_params.end());
} else {
extend (range_prod);
Params::iterator it = params_.begin();
CutIndexer indexer (args_, ranges_, g_args, g_ranges);
if (Globals::logDomain) {
for (; indexer.valid(); ++indexer) {
*it++ += g_params[indexer];
}
} else {
Indexer indexer (ranges_, false);
while (indexer.valid()) {
size_t g_li = 0;
size_t prod = 1;
for (size_t j = gvarpos.size(); j-- > 0; ) {
g_li += indexer[gvarpos[j]] * prod;
prod *= g_ranges[j];
}
if (Globals::logDomain) {
params_[indexer] += g_params[g_li];
} else {
params_[indexer] *= g_params[g_li];
}
++ indexer;
for (; indexer.valid(); ++indexer) {
*it++ *= g_params[indexer];
}
}
}
@ -145,14 +124,12 @@ class TFactor
Params::const_iterator last = params_.end();
CutIndexer indexer (ranges_, idx);
if (Globals::logDomain) {
while (first != last) {
for (; first != last; ++indexer) {
newps[indexer] = Util::logSum (newps[indexer], *first++);
++ indexer;
}
} else {
while (first != last) {
for (; first != last; ++indexer) {
newps[indexer] += *first++;
++ indexer;
}
}
params_ = newps;
@ -160,15 +137,15 @@ class TFactor
ranges_.erase (ranges_.begin() + idx);
}
void absorveEvidence (const T& arg, unsigned evidence)
void absorveEvidence (const T& arg, unsigned obsIdx)
{
size_t idx = indexOf (arg);
assert (idx != args_.size());
assert (evidence < ranges_[idx]);
assert (obsIdx < ranges_[idx]);
Params newps;
newps.reserve (params_.size() / ranges_[idx]);
Indexer indexer (ranges_);
for (unsigned i = 0; i < evidence; i++) {
for (unsigned i = 0; i < obsIdx; ++i) {
indexer.incrementDimension (idx);
}
while (indexer.valid()) {
@ -199,7 +176,7 @@ class TFactor
size_t li = i;
// calculate vector index corresponding to linear index
vector<unsigned> vi (N);
for (int k = N-1; k >= 0; k--) {
for (unsigned k = N; k-- > 0; ) {
vi[k] = li % ranges_[k];
li /= ranges_[k];
}
@ -246,39 +223,45 @@ class TFactor
unsigned distId_;
private:
void insertArgument (const T& arg, unsigned range)
void extend (unsigned range_prod)
{
assert (indexOf (arg) == args_.size());
Params copy = params_;
Params backup = params_;
params_.clear();
params_.reserve (copy.size() * range);
for (size_t i = 0; i < copy.size(); i++) {
for (unsigned reps = 0; reps < range; reps++) {
params_.push_back (copy[i]);
params_.reserve (backup.size() * range_prod);
Params::const_iterator first = backup.begin();
Params::const_iterator last = backup.end();
for (; first != last; ++first) {
for (unsigned reps = 0; reps < range_prod; ++reps) {
params_.push_back (*first);
}
}
args_.push_back (arg);
ranges_.push_back (range);
}
void insertArguments (const vector<T>& args, const Ranges& ranges)
void cartesianProduct (
Params::const_iterator first2,
Params::const_iterator last2)
{
Params copy = params_;
unsigned nrStates = 1;
for (size_t i = 0; i < args.size(); i++) {
assert (indexOf (args[i]) == args_.size());
args_.push_back (args[i]);
ranges_.push_back (ranges[i]);
nrStates *= ranges[i];
}
Params backup = params_;
params_.clear();
params_.reserve (copy.size() * nrStates);
for (size_t i = 0; i < copy.size(); i++) {
for (unsigned reps = 0; reps < nrStates; reps++) {
params_.push_back (copy[i]);
params_.reserve (params_.size() * (last2 - first2));
Params::const_iterator first1 = backup.begin();
Params::const_iterator last1 = backup.end();
Params::const_iterator tmp;
if (Globals::logDomain) {
for (; first1 != last1; ++first1) {
for (tmp = first2; tmp != last2; ++tmp) {
params_.push_back ((*first1) + (*tmp));
}
}
} else {
for (; first1 != last1; ++first1) {
for (tmp = first2; tmp != last2; ++tmp) {
params_.push_back ((*first1) * (*tmp));
}
}
}
}
};