Adding rational term support for tabling tries

This commit is contained in:
Theo 2013-12-19 10:56:52 +00:00
parent 30828eba98
commit 1f0f9968df
4 changed files with 553 additions and 207 deletions

View File

@ -148,6 +148,10 @@
**************************************************/
/* #define OUTPUT_THREADS_TABLING 1 */
/*********************************************************
** support rational terms ? (optional) **
*********************************************************/
#define TRIE_RATIONAL_TERMS 1

77
OPTYap/tab.rational.i Normal file
View File

@ -0,0 +1,77 @@
/************************************************************************
** **
** The YapTab/YapOr/OPTYap systems **
** **
** YapTab extends the Yap Prolog engine to support sequential tabling **
** YapOr extends the Yap Prolog engine to support or-parallelism **
** OPTYap extends the Yap Prolog engine to support or-parallel tabling **
** **
** **
** Yap Prolog was developed at University of Porto, Portugal **
** **
************************************************************************/
#define RationalMark 7 //0m0...111
#define IsRationalTerm(TERM) ((int) TERM == 7)
typedef struct term_array {
void* *terms;
void* *nodes;
size_t length;
size_t capacity;
} term_array;
void term_array_init(term_array *array, int capacity);
void term_array_free(term_array *array);
void term_array_push(term_array *array, void* t, void* n);
void* term_array_member(term_array array, void* t);
void term_array_init(term_array *array, int capacity) {
array->length = 0;
array->terms = malloc(capacity * sizeof(void*));
if (array->terms != NULL) {
array->capacity = capacity;
} else
Yap_Error(RESOURCE_ERROR_MEMORY, TermNil, "Out of memory."); // Handle out-of-memory
array->capacity = capacity;
array->nodes = malloc(capacity * sizeof(void*));
if (array->nodes == NULL)
Yap_Error(RESOURCE_ERROR_MEMORY, TermNil, "Out of memory."); // Handle out-of-memory
}
void term_array_free(term_array *array) {
free(array->terms);
free(array->nodes);
array->terms = NULL;
array->nodes = NULL;
array->length = 0;
array->capacity = 0;
}
void term_array_push(term_array *array, void* t, void* n) {
if (array->length == array->capacity) {
int new_capacity = array->capacity * 2;
void *new_terms = realloc(array->terms, new_capacity * sizeof(void*));
if (new_terms != NULL) {
array->terms = new_terms;
} else
Yap_Error(RESOURCE_ERROR_MEMORY, TermNil, "Out of memory."); // Handle out-of-memory
void *new_nodes = realloc(array->nodes, new_capacity * sizeof(void *));
if (new_nodes != NULL) {
array->nodes = new_nodes;
} else
Yap_Error(RESOURCE_ERROR_MEMORY, TermNil, "Out of memory."); // Handle out-of-memory
array->capacity = new_capacity;
}
array->terms[array->length] = t;
array->nodes[array->length] = n;
array->length++;
}
void* term_array_member(term_array array, void* t) {
int i;
for (i = 0; i < array.length; i++)
if (array.terms[i] == t) return array.nodes[i];
return NULL;
}

View File

@ -163,6 +163,12 @@ static struct trie_statistics{
free_global_trie_branch(NODE PASS_REGS)
#endif /* GLOBAL_TRIE_FOR_SUBTERMS */
/******************************
** Rational Terms Support **
******************************/
#ifdef TRIE_RATIONAL_TERMS
#include "tab.rational.i"
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
/******************************
@ -200,7 +206,13 @@ static struct trie_statistics{
#define MODE_TERMS_LOOP
#define INCLUDE_SUBGOAL_SEARCH_LOOP /* subgoal_search_terms_loop */
#define INCLUDE_ANSWER_SEARCH_LOOP /* answer_search_terms_loop */
#ifdef TRIE_RATIONAL_TERMS
#undef TRIE_RATIONAL_TERMS
#include "tab.tries.i"
#define TRIE_RATIONAL_TERMS
#else
#include "tab.tries.i"
#endif
#undef INCLUDE_ANSWER_SEARCH_LOOP
#undef INCLUDE_SUBGOAL_SEARCH_LOOP
#undef MODE_TERMS_LOOP
@ -209,7 +221,13 @@ static struct trie_statistics{
#define INCLUDE_SUBGOAL_SEARCH_LOOP /* subgoal_search_global_trie_(terms)_loop */
#define INCLUDE_ANSWER_SEARCH_LOOP /* answer_search_global_trie_(terms)_loop */
#define INCLUDE_LOAD_ANSWER_LOOP /* load_substitution_loop */
#ifdef TRIE_RATIONAL_TERMS
#undef TRIE_RATIONAL_TERMS
#include "tab.tries.i"
#define TRIE_RATIONAL_TERMS
#else
#include "tab.tries.i"
#endif
#undef INCLUDE_LOAD_ANSWER_LOOP
#undef INCLUDE_ANSWER_SEARCH_LOOP
#undef INCLUDE_SUBGOAL_SEARCH_LOOP
@ -899,6 +917,13 @@ static inline void traverse_trie_node(Term t, char *str, int *str_index_ptr, int
} else if (mode == TRAVERSE_MODE_LONGINT_END) {
mode = TRAVERSE_MODE_NORMAL;
} else if (IsVarTerm(t)) {
#ifdef TRIE_RATIONAL_TERMS
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS) && TrNode_child((gt_node_ptr) t) != 1) { //TODO: substitute the != 1 test to something more appropriate
/* Rational term */
str_index += sprintf(& str[str_index], "**");
traverse_update_arity(str, &str_index, arity);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS)) {
TrStat_gt_refs++;
/* (type % 2 + 2): TRAVERSE_TYPE_ANSWER --> TRAVERSE_TYPE_GT_ANSWER */

View File

@ -18,8 +18,8 @@
#ifdef MODE_GLOBAL_TRIE_ENTRY
#define INCREMENT_GLOBAL_TRIE_REFERENCE(ENTRY) \
{ register gt_node_ptr entry_node = (gt_node_ptr) (ENTRY); \
TrNode_child(entry_node) = (gt_node_ptr) ((unsigned long int) TrNode_child(entry_node) + 1); \
}
TrNode_child(entry_node) = (gt_node_ptr) ((unsigned long int) TrNode_child(entry_node) + 1); \
}
#define NEW_SUBGOAL_TRIE_NODE(NODE, ENTRY, CHILD, PARENT, NEXT) \
INCREMENT_GLOBAL_TRIE_REFERENCE(ENTRY); \
new_subgoal_trie_node(NODE, ENTRY, CHILD, PARENT, NEXT)
@ -47,7 +47,7 @@
#else
#define SUBGOAL_CHECK_INSERT_ENTRY(TAB_ENT, NODE, ENTRY) \
NODE = subgoal_trie_check_insert_entry(TAB_ENT, NODE, ENTRY PASS_REGS)
#define ANSWER_CHECK_INSERT_ENTRY(SG_FR, NODE, ENTRY, INSTR) \
#define ANSWER_CHECK_INSERT_ENTRY(SG_FR, NODE, ENTRY, INSTR) \
NODE = answer_trie_check_insert_entry(SG_FR, NODE, ENTRY, INSTR PASS_REGS)
#endif /* MODE_GLOBAL_TRIE_LOOP */
@ -56,9 +56,9 @@
#define ANSWER_SAFE_INSERT_ENTRY(NODE, ENTRY, INSTR) \
{ ans_node_ptr new_node; \
NEW_ANSWER_TRIE_NODE(new_node, INSTR, ENTRY, NULL, NODE, NULL); \
TrNode_child(NODE) = new_node; \
TrNode_child(NODE) = new_node; \
NODE = new_node; \
}
}
#ifdef THREADS
#define INVALIDATE_ANSWER_TRIE_NODE(NODE, SG_FR) \
TrNode_next(NODE) = SgFr_invalid_chain(SG_FR); \
@ -1048,19 +1048,26 @@ static inline sg_node_ptr subgoal_search_loop(tab_ent_ptr tab_ent, sg_node_ptr c
goto subgoal_search_loop_non_atomic;
#endif /* MODE_GLOBAL_TRIE_LOOP */
#ifdef TRIE_RATIONAL_TERMS
/* Needed structures, variables to support rational terms */
term_array Ts;
void* CyclicTerm;
term_array_init(&Ts, 10);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
do {
if (IsVarTerm(t)) {
if (IsTableVarTerm(t)) {
t = MakeTableVarTerm(VarIndexOfTerm(t));
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
t = MakeTableVarTerm(VarIndexOfTerm(t));
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
} else {
if (subs_arity == MAX_TABLE_VARS)
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: MAX_TABLE_VARS exceeded");
STACK_PUSH_UP(t, stack_vars);
*((CELL *)t) = GLOBAL_table_var_enumerator(subs_arity);
t = MakeTableVarTerm(subs_arity);
subs_arity = subs_arity + 1;
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
if (subs_arity == MAX_TABLE_VARS)
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: MAX_TABLE_VARS exceeded");
STACK_PUSH_UP(t, stack_vars);
*((CELL *)t) = GLOBAL_table_var_enumerator(subs_arity);
t = MakeTableVarTerm(subs_arity);
subs_arity = subs_arity + 1;
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
}
} else if (IsAtomOrIntTerm(t)) {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
@ -1075,48 +1082,103 @@ static inline sg_node_ptr subgoal_search_loop(tab_ent_ptr tab_ent, sg_node_ptr c
current_node = subgoal_trie_check_insert_gt_entry(tab_ent, current_node, (Term) entry_node PASS_REGS);
#else /* ! MODE_TERMS_LOOP */
} else
#ifdef TRIE_RATIONAL_TERMS
if (IsRationalTerm(t)) {
t = STACK_POP_DOWN(stack_terms);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
#if defined(MODE_GLOBAL_TRIE_LOOP)
/* for the global trie, it is safe to start here in the first iteration */
subgoal_search_loop_non_atomic:
#endif /* MODE_GLOBAL_TRIE_LOOP */
#ifdef TRIE_COMPACT_PAIRS
if (IsPairTerm(t)) {
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
CELL *aux_pair = RepPair(t);
if (aux_pair == PairTermMark) {
t = STACK_POP_DOWN(stack_terms);
if (IsPairTerm(t)) {
aux_pair = RepPair(t);
t = Deref(aux_pair[1]);
if (t == TermNil) {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndList);
} else {
/* AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2); */
/* AUX_STACK_CHECK_EXPAND is not necessary here because the situation of pushing **
** up 3 terms has already initially checked for the CompactPairInit term */
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
}
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
} else {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndTerm);
STACK_PUSH_UP(t, stack_terms);
}
t = STACK_POP_DOWN(stack_terms);
#ifdef TRIE_RATIONAL_TERMS
if (IsPairTerm(t) && ! IsRationalTerm(t)) {
term_array_push(&Ts, (void *) t, (void *) current_node);
#else
if (IsPairTerm(t)) {
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
aux_pair = RepPair(t);
t = Deref(aux_pair[1]);
#ifdef TRIE_RATIONAL_TERMS
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
CyclicTerm = term_array_member(Ts, (void *) t);
}
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
if (t == TermNil) {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndList);
} else {
/* AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2); */
/* AUX_STACK_CHECK_EXPAND is not necessary here because the situation of pushing **
** up 3 terms has already initially checked for the CompactPairInit term */
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
}
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
} else {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndTerm);
STACK_PUSH_UP(t, stack_terms);
}
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
} else if (current_node != GLOBAL_root_gt) {
gt_node_ptr entry_node = subgoal_search_global_trie_terms_loop(t, &subs_arity, &stack_vars, stack_terms PASS_REGS);
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
gt_node_ptr entry_node = subgoal_search_global_trie_terms_loop(t, &subs_arity, &stack_vars, stack_terms PASS_REGS);
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
} else {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairInit);
t = Deref(aux_pair[1]);
if (t == TermNil) {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndList);
} else {
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2);
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
}
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
#ifdef TRIE_RATIONAL_TERMS
term_array_push(&Ts, (void *) t, (void *) current_node);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairInit);
t = Deref(aux_pair[1]);
#ifdef TRIE_RATIONAL_TERMS
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
CyclicTerm = term_array_member(Ts, (void *) t);
}
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
if (t == TermNil) {
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndList);
} else {
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2);
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
}
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
}
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
} else if (current_node != GLOBAL_root_gt) {
@ -1140,37 +1202,50 @@ static inline sg_node_ptr subgoal_search_loop(tab_ent_ptr tab_ent, sg_node_ptr c
} else if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (f == FunctorDouble) {
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.dbl = FloatOfTerm(t);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.dbl = FloatOfTerm(t);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, u.t_dbl[1]);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, u.t_dbl[1]);
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, u.t_dbl[0]);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, u.t_dbl[0]);
#ifdef MODE_GLOBAL_TRIE_LOOP
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
#endif /* MODE_GLOBAL_TRIE_LOOP */
} else if (f == FunctorLongInt) {
Int li = LongIntOfTerm(t);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, li);
Int li = LongIntOfTerm(t);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, li);
#ifdef MODE_GLOBAL_TRIE_LOOP
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
#endif /* MODE_GLOBAL_TRIE_LOOP */
} else if (f == FunctorDBRef) {
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unsupported type tag FunctorDBRef");
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unsupported type tag FunctorDBRef");
} else if (f == FunctorBigInt) {
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unsupported type tag FunctorBigInt");
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unsupported type tag FunctorBigInt");
} else {
int i;
CELL *aux_appl = RepAppl(t);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + ArityOfFunctor(f) - 1);
for (i = ArityOfFunctor(f); i >= 1; i--)
STACK_PUSH_UP(Deref(aux_appl[i]), stack_terms);
#ifdef TRIE_RATIONAL_TERMS
term_array_push(&Ts, (void *) t, (void *) current_node);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
int i;
CELL *aux_appl = RepAppl(t);
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + ArityOfFunctor(f) - 1);
for (i = ArityOfFunctor(f); i >= 1; i--) {
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
if (IsVarTerm(aux_appl[i]) || IsApplTerm(aux_appl[i]))
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_appl[i]));
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(Deref(aux_appl[i]), stack_terms);
}
}
} else {
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unknown type tag");
@ -1178,7 +1253,9 @@ static inline sg_node_ptr subgoal_search_loop(tab_ent_ptr tab_ent, sg_node_ptr c
}
t = STACK_POP_DOWN(stack_terms);
} while (t);
#ifdef TRIE_RATIONAL_TERMS
term_array_free(&Ts);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
*subs_arity_ptr = subs_arity;
*stack_vars_ptr = stack_vars;
return current_node;
@ -1256,20 +1333,26 @@ static inline ans_node_ptr answer_search_loop(sg_fr_ptr sg_fr, ans_node_ptr curr
goto answer_search_loop_non_atomic;
#endif /* MODE_GLOBAL_TRIE_LOOP */
#ifdef TRIE_RATIONAL_TERMS
term_array Ts;
void* CyclicTerm;
term_array_init(&Ts, 10);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
do {
if (IsVarTerm(t)) {
t = Deref(t);
if (IsTableVarTerm(t)) {
t = MakeTableVarTerm(VarIndexOfTerm(t));
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_val + in_pair);
t = MakeTableVarTerm(VarIndexOfTerm(t));
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_val + in_pair);
} else {
if (vars_arity == MAX_TABLE_VARS)
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: MAX_TABLE_VARS exceeded");
stack_vars_base[vars_arity] = t;
*((CELL *)t) = GLOBAL_table_var_enumerator(vars_arity);
t = MakeTableVarTerm(vars_arity);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_var + in_pair);
vars_arity = vars_arity + 1;
if (vars_arity == MAX_TABLE_VARS)
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: MAX_TABLE_VARS exceeded");
stack_vars_base[vars_arity] = t;
*((CELL *)t) = GLOBAL_table_var_enumerator(vars_arity);
t = MakeTableVarTerm(vars_arity);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_var + in_pair);
vars_arity = vars_arity + 1;
}
#ifdef TRIE_COMPACT_PAIRS
in_pair = 0;
@ -1290,51 +1373,108 @@ static inline ans_node_ptr answer_search_loop(sg_fr_ptr sg_fr, ans_node_ptr curr
current_node = answer_trie_check_insert_gt_entry(sg_fr, current_node, (Term) entry_node, _trie_retry_gterm + in_pair PASS_REGS);
#else /* ! MODE_TERMS_LOOP */
} else
#ifdef TRIE_RATIONAL_TERMS
if (IsRationalTerm(t)) {
t = STACK_POP_DOWN(stack_terms);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_var + in_pair); //TODO create _trie_.._rational
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
#if defined(MODE_GLOBAL_TRIE_LOOP)
/* for the global trie, it is safe to start here in the first iteration */
answer_search_loop_non_atomic:
#endif /* MODE_GLOBAL_TRIE_LOOP */
#ifdef TRIE_COMPACT_PAIRS
if (IsPairTerm(t)) {
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
CELL *aux_pair = RepPair(t);
if (aux_pair == PairTermMark) {
t = STACK_POP_DOWN(stack_terms);
if (IsPairTerm(t)) {
aux_pair = RepPair(t);
t = Deref(aux_pair[1]);
if (t == TermNil) {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndList, _trie_retry_pair);
} else {
/* AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2); */
/* AUX_STACK_CHECK_EXPAND is not necessary here because the situation of pushing **
** up 3 terms has already initially checked for the CompactPairInit term */
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
in_pair = 4;
}
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
} else {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndTerm, _trie_retry_null);
STACK_PUSH_UP(t, stack_terms);
}
t = STACK_POP_DOWN(stack_terms);
#ifdef TRIE_RATIONAL_TERMS
if (IsPairTerm(t) && ! IsRationalTerm(t)) {
term_array_push(&Ts, (void *) t, (void *) current_node);
#else
if (IsPairTerm(t)) {
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
aux_pair = RepPair(t);
t = Deref(aux_pair[1]);
#ifdef TRIE_RATIONAL_TERMS
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
CyclicTerm = term_array_member(Ts, (void *) t);
}
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms); // CyclicTerm
STACK_PUSH_UP((Term) RationalMark, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
in_pair = 4;
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
if (t == TermNil) {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndList, _trie_retry_pair);
} else {
/* AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2); */
/* AUX_STACK_CHECK_EXPAND is not necessary here because the situation of pushing **
** up 3 terms has already initially checked for the CompactPairInit term */
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
in_pair = 4;
}
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
} else {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndTerm, _trie_retry_null);
STACK_PUSH_UP(t, stack_terms);
}
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
} else if (current_node != GLOBAL_root_gt) {
gt_node_ptr entry_node = answer_search_global_trie_terms_loop(t, &vars_arity, stack_terms PASS_REGS);
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
gt_node_ptr entry_node = answer_search_global_trie_terms_loop(t, &vars_arity, stack_terms PASS_REGS);
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
} else {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairInit, _trie_retry_null + in_pair);
t = Deref(aux_pair[1]);
if (t == TermNil) {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndList, _trie_retry_pair);
in_pair = 0;
} else {
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2);
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
in_pair = 4;
}
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
#ifdef TRIE_RATIONAL_TERMS
term_array_push(&Ts, (void *) t, (void *) current_node);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairInit, _trie_retry_null + in_pair);
t = Deref(aux_pair[1]);
#ifdef TRIE_RATIONAL_TERMS
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
CyclicTerm = term_array_member(Ts, (void *) t);
}
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
in_pair = 4;
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
if (t == TermNil) {
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndList, _trie_retry_pair);
in_pair = 0;
} else {
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2);
STACK_PUSH_UP(t, stack_terms);
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
in_pair = 4;
}
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
}
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
} else if (current_node != GLOBAL_root_gt) {
@ -1358,33 +1498,46 @@ static inline ans_node_ptr answer_search_loop(sg_fr_ptr sg_fr, ans_node_ptr curr
} else if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (f == FunctorDouble) {
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.dbl = FloatOfTerm(t);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.dbl = FloatOfTerm(t);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, u.t_dbl[1], _trie_retry_extension);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, u.t_dbl[1], _trie_retry_extension);
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, u.t_dbl[0], _trie_retry_extension);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_double);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, u.t_dbl[0], _trie_retry_extension);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_double);
} else if (f == FunctorLongInt) {
Int li = LongIntOfTerm (t);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, li, _trie_retry_extension);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_longint);
Int li = LongIntOfTerm (t);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, li, _trie_retry_extension);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_longint);
} else if (f == FunctorDBRef) {
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: unsupported type tag FunctorDBRef");
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: unsupported type tag FunctorDBRef");
} else if (f == FunctorBigInt) {
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: unsupported type tag FunctorBigInt");
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: unsupported type tag FunctorBigInt");
} else {
int i;
CELL *aux_appl = RepAppl(t);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_appl + in_pair);
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + ArityOfFunctor(f) - 1);
for (i = ArityOfFunctor(f); i >= 1; i--)
STACK_PUSH_UP(Deref(aux_appl[i]), stack_terms);
#ifdef TRIE_RATIONAL_TERMS
term_array_push(&Ts, (void *) t, (void *) current_node);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
int i;
CELL *aux_appl = RepAppl(t);
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_appl + in_pair);
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + ArityOfFunctor(f) - 1);
for (i = ArityOfFunctor(f); i >= 1; i--) {
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = NULL;
if (IsVarTerm(aux_appl[i]) || IsApplTerm(aux_appl[i]))
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_appl[i]));
if (CyclicTerm != NULL) {
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(Deref(aux_appl[i]), stack_terms);
}
}
#ifdef TRIE_COMPACT_PAIRS
in_pair = 0;
@ -1395,7 +1548,9 @@ static inline ans_node_ptr answer_search_loop(sg_fr_ptr sg_fr, ans_node_ptr curr
}
t = STACK_POP_DOWN(stack_terms);
} while (t);
#ifdef TRIE_RATIONAL_TERMS
term_array_free(&Ts);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
*vars_arity_ptr = vars_arity;
return current_node;
@ -1430,8 +1585,8 @@ static inline ans_node_ptr answer_search_min_max(sg_fr_ptr sg_fr, ans_node_ptr c
trie_value = (Float) TrNode_entry(child_node);
} else if (f == FunctorDouble) {
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.t_dbl[0] = TrNode_entry(child_node);
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
@ -1470,8 +1625,8 @@ static inline ans_node_ptr answer_search_min_max(sg_fr_ptr sg_fr, ans_node_ptr c
Functor f = FunctorOfTerm(t);
if (f == FunctorDouble) {
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.dbl = FloatOfTerm(t);
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
@ -1516,8 +1671,8 @@ static inline ans_node_ptr answer_search_sum(sg_fr_ptr sg_fr, ans_node_ptr curre
trie_value = (Float) TrNode_entry(child_node);
} else if (f == FunctorDouble) {
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
u.t_dbl[0] = TrNode_entry(child_node);
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
@ -1580,18 +1735,18 @@ static void invalidate_answer_trie(ans_node_ptr current_node, sg_fr_ptr sg_fr, i
do {
current_node = *bucket;
if (current_node) {
ans_node_ptr next_node = TrNode_next(current_node);
if (IS_ANSWER_LEAF_NODE(current_node)) {
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
} else {
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
}
while (next_node) {
current_node = next_node;
next_node = TrNode_next(current_node);
invalidate_answer_trie(current_node, sg_fr, TRAVERSE_POSITION_NEXT PASS_REGS);
}
ans_node_ptr next_node = TrNode_next(current_node);
if (IS_ANSWER_LEAF_NODE(current_node)) {
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
} else {
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
}
while (next_node) {
current_node = next_node;
next_node = TrNode_next(current_node);
invalidate_answer_trie(current_node, sg_fr, TRAVERSE_POSITION_NEXT PASS_REGS);
}
}
} while (++bucket != last_bucket);
if (Hash_next(hash))
@ -1606,22 +1761,22 @@ static void invalidate_answer_trie(ans_node_ptr current_node, sg_fr_ptr sg_fr, i
if (position == TRAVERSE_POSITION_FIRST) {
ans_node_ptr next_node = TrNode_next(current_node);
if (IS_ANSWER_LEAF_NODE(current_node)) {
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
} else {
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
}
while (next_node) {
current_node = next_node;
next_node = TrNode_next(current_node);
invalidate_answer_trie(current_node, sg_fr, TRAVERSE_POSITION_NEXT PASS_REGS);
current_node = next_node;
next_node = TrNode_next(current_node);
invalidate_answer_trie(current_node, sg_fr, TRAVERSE_POSITION_NEXT PASS_REGS);
}
} else {
if (IS_ANSWER_LEAF_NODE(current_node)) {
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
} else {
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
}
}
}
@ -1687,47 +1842,115 @@ static inline CELL *load_answer_loop(ans_node_ptr current_node USES_REGS) {
current_node = (ans_node_ptr) UNTAG_ANSWER_NODE(TrNode_parent(current_node));
#endif /* MODE_GLOBAL_TRIE_LOOP */
#ifdef TRIE_RATIONAL_TERMS
term_array Ts;
void* CyclicTerm;
term_array_init(&Ts, 10);
Term RationalTermTMP; // a temporary temp to be used from the rational code
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
do {
#ifdef TRIE_RATIONAL_TERMS
CyclicTerm = term_array_member(Ts, (void *) current_node);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
if (IsVarTerm(t)) {
#if ! defined(MODE_GLOBAL_TRIE_LOOP) || defined(GLOBAL_TRIE_FOR_SUBTERMS)
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS)) {
stack_terms = load_substitution_loop((gt_node_ptr) t, &vars_arity, stack_terms PASS_REGS);
#ifdef TRIE_RATIONAL_TERMS
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS) && TrNode_child((gt_node_ptr) t) != 1) { //TODO: substitute the != 1 test to something more appropriate
/* Rational term */
RationalTermTMP = (Term) term_array_member(Ts, (void *) t);
if (RationalTermTMP) {
/* rational term is assigned a variable already */
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit);
STACK_PUSH_UP(RationalTermTMP, stack_terms);
} else {
RationalTermTMP = MkVarTerm();
STACK_PUSH_UP(RationalTermTMP, stack_terms);
/* memorize the rational term and assign it a variable */
term_array_push(&Ts, (void *) t, (void *) RationalTermTMP);
}
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
{
#if ! defined(MODE_GLOBAL_TRIE_LOOP) || defined(GLOBAL_TRIE_FOR_SUBTERMS)
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS)) {
stack_terms = load_substitution_loop((gt_node_ptr) t, &vars_arity, stack_terms PASS_REGS);
} else
#endif /* ! MODE_GLOBAL_TRIE_LOOP || GLOBAL_TRIE_FOR_SUBTERMS */
{ int var_index = VarIndexOfTableTerm(t);
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit - vars_arity + var_index + 1);
if (var_index >= vars_arity) {
while (vars_arity < var_index)
stack_vars_base[vars_arity++] = 0;
stack_vars_base[vars_arity++] = MkVarTerm();
} else if (stack_vars_base[var_index] == 0)
stack_vars_base[var_index] = MkVarTerm();
STACK_PUSH_UP(stack_vars_base[var_index], stack_terms);
{ int var_index = VarIndexOfTableTerm(t);
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit - vars_arity + var_index + 1);
if (var_index >= vars_arity) {
while (vars_arity < var_index)
stack_vars_base[vars_arity++] = 0;
stack_vars_base[vars_arity++] = MkVarTerm();
} else if (stack_vars_base[var_index] == 0)
stack_vars_base[var_index] = MkVarTerm();
STACK_PUSH_UP(stack_vars_base[var_index], stack_terms);
}
}
} else if (IsAtomOrIntTerm(t)) {
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit);
#ifdef TRIE_RATIONAL_TERMS
if (CyclicTerm) {
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 4);
STACK_PUSH_UP((Term) RationalMark, stack_terms); // Add a rational term marker necessary as we read both ways the stack //
STACK_PUSH_UP(t, stack_terms); // Add the term //
STACK_PUSH_UP(CyclicTerm, stack_terms); // Add the variable that the term will unify with //
STACK_PUSH_UP((Term) RationalMark, stack_terms); // Add a rational term marker necessary as we read both ways the stack //
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(t, stack_terms);
} else if (IsPairTerm(t)) {
#ifdef TRIE_COMPACT_PAIRS
if (t == CompactPairInit) {
Term *stack_aux = stack_terms_base - stack_terms_pair_offset;
Term head, tail = STACK_POP_UP(stack_aux);
while (STACK_NOT_EMPTY(stack_aux, stack_terms)) {
head = STACK_POP_UP(stack_aux);
tail = MkPairTerm(head, tail);
}
stack_terms = stack_terms_base - stack_terms_pair_offset;
stack_terms_pair_offset = (int) STACK_POP_DOWN(stack_terms);
STACK_PUSH_UP(tail, stack_terms);
Term *stack_aux = stack_terms_base - stack_terms_pair_offset;
Term head, tail = STACK_POP_UP(stack_aux);
#ifdef TRIE_RATIONAL_TERMS
if (IsRationalTerm(tail)) {
Yap_Error(INTERNAL_ERROR, tail, "Rational element of a Rational Term appears as the first Tail of a list");
}
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
while (STACK_NOT_EMPTY(stack_aux, stack_terms)) {
head = STACK_POP_UP(stack_aux);
#ifdef TRIE_RATIONAL_TERMS
if (IsRationalTerm(head)) {
head = STACK_POP_UP(stack_aux); // thats the rational term
RationalTermTMP = STACK_POP_UP(stack_aux); // that is the variable to unify with
(void) STACK_POP_UP(stack_aux); // eat the second rational mark
tail = MkPairTerm(head, tail);
Yap_unify(RationalTermTMP, tail);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
tail = MkPairTerm(head, tail);
}
stack_terms = stack_terms_base - stack_terms_pair_offset;
stack_terms_pair_offset = (int) STACK_POP_DOWN(stack_terms);
STACK_PUSH_UP(tail, stack_terms);
} else { /* CompactPairEndList / CompactPairEndTerm */
Term last;
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1);
last = STACK_POP_DOWN(stack_terms);
STACK_PUSH_UP(stack_terms_pair_offset, stack_terms);
stack_terms_pair_offset = (int) (stack_terms_base - stack_terms);
if (t == CompactPairEndList)
STACK_PUSH_UP(TermNil, stack_terms);
STACK_PUSH_UP(last, stack_terms);
Term last;
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1);
last = STACK_POP_DOWN(stack_terms);
#ifdef TRIE_RATIONAL_TERMS
RationalTermTMP = TermNil;
if (IsRationalTerm(last)) { // rather unlikely case the rational term is the last of a list
RationalTermTMP = STACK_POP_DOWN(stack_terms); // in this case we need to invert the term with the end of list
last = STACK_POP_DOWN(stack_terms); // variable to unify with
(void) STACK_POP_DOWN(stack_terms); // eat the second rational mark
}
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(stack_terms_pair_offset, stack_terms);
stack_terms_pair_offset = (int) (stack_terms_base - stack_terms);
if (t == CompactPairEndList)
STACK_PUSH_UP(TermNil, stack_terms);
#ifdef TRIE_RATIONAL_TERMS
if (RationalTermTMP && RationalTermTMP != TermNil) {
/* most probably this never occurs */
STACK_PUSH_UP((Term) RationalMark, stack_terms);
STACK_PUSH_UP(last, stack_terms);
STACK_PUSH_UP(RationalTermTMP, stack_terms);
STACK_PUSH_UP((Term) RationalMark, stack_terms);
} else
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
STACK_PUSH_UP(last, stack_terms);
}
#else /* ! TRIE_COMPACT_PAIRS */
Term head = STACK_POP_DOWN(stack_terms);
@ -1738,37 +1961,54 @@ static inline CELL *load_answer_loop(ans_node_ptr current_node USES_REGS) {
} else if (IsApplTerm(t)) {
Functor f = (Functor) RepAppl(t);
if (f == FunctorDouble) {
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
t = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
u.t_dbl[0] = t;
union {
Term t_dbl[sizeof(Float)/sizeof(Term)];
Float dbl;
} u;
t = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
u.t_dbl[0] = t;
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
t = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
u.t_dbl[1] = t;
t = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
u.t_dbl[1] = t;
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
current_node = TrNode_parent(current_node);
t = MkFloatTerm(u.dbl);
current_node = TrNode_parent(current_node);
t = MkFloatTerm(u.dbl);
} else if (f == FunctorLongInt) {
Int li = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
current_node = TrNode_parent(current_node);
t = MkLongIntTerm(li);
Int li = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
current_node = TrNode_parent(current_node);
t = MkLongIntTerm(li);
} else {
int f_arity = ArityOfFunctor(f);
t = Yap_MkApplTerm(f, f_arity, stack_terms);
stack_terms += f_arity;
int f_arity = ArityOfFunctor(f);
t = Yap_MkApplTerm(f, f_arity, stack_terms);
stack_terms += f_arity;
}
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit);
STACK_PUSH_UP(t, stack_terms);
}
#ifdef TRIE_RATIONAL_TERMS
if (CyclicTerm) {
RationalTermTMP = STACK_POP_DOWN(stack_terms);
if IsRationalTerm(RationalTermTMP) {
//printf("Special Case\n");
} else if (IsPairTerm(RationalTermTMP)) {
Yap_unify((Term) CyclicTerm, RationalTermTMP);
} else if (IsApplTerm(RationalTermTMP)) {
Yap_unify((Term) CyclicTerm, RationalTermTMP);
}
STACK_PUSH_UP(RationalTermTMP, stack_terms);
}
RationalTermTMP = TermNil;
CyclicTerm = NULL;
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
t = TrNode_entry(current_node);
current_node = TrNode_parent(current_node);
} while (current_node);
#ifdef TRIE_RATIONAL_TERMS
term_array_free(&Ts);
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
#ifdef MODE_GLOBAL_TRIE_LOOP
*vars_arity_ptr = vars_arity;
#endif /* MODE_GLOBAL_TRIE_LOOP */