new version of bp

This commit is contained in:
Vitor Santos Costa
2012-03-22 11:33:24 +00:00
parent 6e36498cac
commit 21d317b223
91 changed files with 1255511 additions and 3840 deletions

View File

@@ -1,14 +1,19 @@
#include <sstream>
#include "BayesNet.h"
#include "VarNode.h"
#include "Shared.h"
#include "StatesIndexer.h"
#include "Util.h"
#include "Indexer.h"
#include "GraphicalModel.h"
namespace Globals {
bool logDomain = false;
};
namespace InfAlgorithms {
InfAlgs infAlgorithm = InfAlgorithms::VE;
//InfAlgs infAlgorithm = InfAlgorithms::VE;
//InfAlgs infAlgorithm = InfAlgorithms::BN_BP;
//InfAlgs infAlgorithm = InfAlgorithms::FG_BP;
InfAlgs infAlgorithm = InfAlgorithms::FG_BP;
//InfAlgs infAlgorithm = InfAlgorithms::CBP;
}
@@ -20,12 +25,11 @@ Schedule schedule = BpOptions::Schedule::SEQ_FIXED;
//Schedule schedule = BpOptions::Schedule::MAX_RESIDUAL;
double accuracy = 0.0001;
unsigned maxIter = 1000;
bool useAlwaysLoopySolver = true;
}
NumberSpace::ns NSPACE = NumberSpace::NORMAL;
unordered_map<VarId,VariableInfo> GraphicalModel::varsInfo_;
unordered_map<unsigned,Distribution*> GraphicalModel::distsInfo_;
vector<NetInfo> Statistics::netInfo_;
vector<CompressInfo> Statistics::compressInfo_;
@@ -35,7 +39,7 @@ unsigned Statistics::primaryNetCount_;
namespace Util {
void
toLog (ParamSet& v)
toLog (Params& v)
{
for (unsigned i = 0; i < v.size(); i++) {
v[i] = log (v[i]);
@@ -45,7 +49,7 @@ toLog (ParamSet& v)
void
fromLog (ParamSet& v)
fromLog (Params& v)
{
for (unsigned i = 0; i < v.size(); i++) {
v[i] = exp (v[i]);
@@ -55,92 +59,113 @@ fromLog (ParamSet& v)
void
normalize (ParamSet& v)
normalize (Params& v)
{
double sum;
switch (NSPACE) {
case NumberSpace::NORMAL:
sum = 0.0;
for (unsigned i = 0; i < v.size(); i++) {
sum += v[i];
}
assert (sum != 0.0);
for (unsigned i = 0; i < v.size(); i++) {
v[i] /= sum;
}
break;
case NumberSpace::LOGARITHM:
sum = addIdenty();
for (unsigned i = 0; i < v.size(); i++) {
logSum (sum, v[i]);
}
assert (sum != -numeric_limits<Param>::infinity());
for (unsigned i = 0; i < v.size(); i++) {
v[i] -= sum;
}
if (Globals::logDomain) {
sum = addIdenty();
for (unsigned i = 0; i < v.size(); i++) {
logSum (sum, v[i]);
}
assert (sum != -numeric_limits<double>::infinity());
for (unsigned i = 0; i < v.size(); i++) {
v[i] -= sum;
}
} else {
sum = 0.0;
for (unsigned i = 0; i < v.size(); i++) {
sum += v[i];
}
assert (sum != 0.0);
for (unsigned i = 0; i < v.size(); i++) {
v[i] /= sum;
}
}
}
void
pow (ParamSet& v, unsigned expoent)
pow (Params& v, double expoent)
{
if (expoent == 1) {
return; // optimization
}
switch (NSPACE) {
case NumberSpace::NORMAL:
for (unsigned i = 0; i < v.size(); i++) {
double value = 1.0;
for (unsigned j = 0; j < expoent; j++) {
value *= v[i];
}
v[i] = value;
}
break;
case NumberSpace::LOGARITHM:
for (unsigned i = 0; i < v.size(); i++) {
v[i] *= expoent;
}
if (Globals::logDomain) {
for (unsigned i = 0; i < v.size(); i++) {
v[i] *= expoent;
}
} else {
for (unsigned i = 0; i < v.size(); i++) {
v[i] = std::pow (v[i], expoent);
}
}
}
Param
pow (Param p, unsigned expoent)
void
pow (Params& v, unsigned expoent)
{
double value = 1.0;
switch (NSPACE) {
case NumberSpace::NORMAL:
for (unsigned i = 0; i < expoent; i++) {
value *= p;
}
break;
case NumberSpace::LOGARITHM:
value = p * expoent;
if (expoent == 1) {
return;
}
if (Globals::logDomain) {
for (unsigned i = 0; i < v.size(); i++) {
v[i] *= expoent;
}
} else {
for (unsigned i = 0; i < v.size(); i++) {
v[i] = std::pow (v[i], expoent);
}
}
return value;
}
double
getL1Distance (const ParamSet& v1, const ParamSet& v2)
pow (double p, unsigned expoent)
{
return Globals::logDomain ? p * expoent : std::pow (p, expoent);
}
double
factorial (double num)
{
double result = 1.0;
for (int i = 1; i <= num; i++) {
result *= i;
}
return result;
}
unsigned
nrCombinations (unsigned n, unsigned r)
{
assert (n >= r);
unsigned prod = 1;
for (int i = (int)n; i > (int)(n - r); i--) {
prod *= i;
}
return (prod / factorial (r));
}
double
getL1Distance (const Params& v1, const Params& v2)
{
assert (v1.size() == v2.size());
double dist = 0.0;
switch (NSPACE) {
case NumberSpace::NORMAL:
for (unsigned i = 0; i < v1.size(); i++) {
dist += abs (v1[i] - v2[i]);
}
break;
case NumberSpace::LOGARITHM:
for (unsigned i = 0; i < v1.size(); i++) {
dist += abs (exp(v1[i]) - exp(v2[i]));
}
if (Globals::logDomain) {
for (unsigned i = 0; i < v1.size(); i++) {
dist += abs (exp(v1[i]) - exp(v2[i]));
}
} else {
for (unsigned i = 0; i < v1.size(); i++) {
dist += abs (v1[i] - v2[i]);
}
}
return dist;
}
@@ -148,26 +173,24 @@ getL1Distance (const ParamSet& v1, const ParamSet& v2)
double
getMaxNorm (const ParamSet& v1, const ParamSet& v2)
getMaxNorm (const Params& v1, const Params& v2)
{
assert (v1.size() == v2.size());
double max = 0.0;
switch (NSPACE) {
case NumberSpace::NORMAL:
for (unsigned i = 0; i < v1.size(); i++) {
double diff = abs (v1[i] - v2[i]);
if (diff > max) {
max = diff;
}
if (Globals::logDomain) {
for (unsigned i = 0; i < v1.size(); i++) {
double diff = abs (exp(v1[i]) - exp(v2[i]));
if (diff > max) {
max = diff;
}
break;
case NumberSpace::LOGARITHM:
for (unsigned i = 0; i < v1.size(); i++) {
double diff = abs (exp(v1[i]) - exp(v2[i]));
if (diff > max) {
max = diff;
}
}
} else {
for (unsigned i = 0; i < v1.size(); i++) {
double diff = abs (v1[i] - v2[i]);
if (diff > max) {
max = diff;
}
}
}
return max;
}
@@ -200,16 +223,14 @@ isInteger (const string& s)
string
parametersToString (const ParamSet& v, unsigned precision)
parametersToString (const Params& v, unsigned precision)
{
stringstream ss;
ss.precision (precision);
ss << "[" ;
for (unsigned i = 0; i < v.size() - 1; i++) {
ss << v[i] << ", " ;
}
if (v.size() != 0) {
ss << v[v.size() - 1];
for (unsigned i = 0; i < v.size(); i++) {
if (i != 0) ss << ", " ;
ss << v[i];
}
ss << "]" ;
return ss.str();
@@ -217,69 +238,6 @@ parametersToString (const ParamSet& v, unsigned precision)
BayesNet*
generateBayesianNetworkTreeWithLevel (unsigned level)
{
BayesNet* bn = new BayesNet();
Distribution* dist = new Distribution (ParamSet() = {0.1, 0.5, 0.2, 0.7});
BayesNode* root = bn->addNode (0, 2, -1, BnNodeSet() = {},
new Distribution (ParamSet() = {0.1, 0.5}));
BnNodeSet prevLevel = { root };
BnNodeSet currLevel;
VarId vidCount = 1;
for (unsigned l = 1; l < level; l++) {
currLevel.clear();
for (unsigned i = 0; i < prevLevel.size(); i++) {
currLevel.push_back (
bn->addNode (vidCount, 2, -1, BnNodeSet() = {prevLevel[i]}, dist));
vidCount ++;
currLevel.push_back (
bn->addNode (vidCount, 2, -1, BnNodeSet() = {prevLevel[i]}, dist));
vidCount ++;
}
prevLevel = currLevel;
}
for (unsigned i = 0; i < prevLevel.size(); i++) {
prevLevel[i]->setEvidence (0);
}
bn->setIndexes();
return bn;
}
vector<DConf>
getDomainConfigurations (const VarNodes& vars)
{
// TODO this method must die
unsigned nConfs = 1;
for (unsigned i = 0; i < vars.size(); i++) {
nConfs *= vars[i]->nrStates();
}
vector<DConf> confs (nConfs);
for (unsigned i = 0; i < nConfs; i++) {
confs[i].resize (vars.size());
}
unsigned nReps = 1;
for (int i = vars.size() - 1; i >= 0; i--) {
unsigned index = 0;
while (index < nConfs) {
for (unsigned j = 0; j < vars[i]->nrStates(); j++) {
for (unsigned r = 0; r < nReps; r++) {
confs[index][i] = j;
index++;
}
}
}
nReps *= vars[i]->nrStates();
}
return confs;
}
vector<string>
getJointStateStrings (const VarNodes& vars)
{
@@ -298,6 +256,7 @@ getJointStateStrings (const VarNodes& vars)
}
}
@@ -390,11 +349,6 @@ Statistics::getStatisticString (void)
}
ss1 << "max iterations: " << BpOptions::maxIter << endl;
ss1 << "accuracy " << BpOptions::accuracy << endl;
if (BpOptions::useAlwaysLoopySolver) {
ss1 << "always loopy solver: yes" << endl;
} else {
ss1 << "always loopy solver: no" << endl;
}
ss1 << endl << endl;
ss2 << "---------------------------------------------------" << endl;