support factors

This commit is contained in:
Vítor Santos Costa 2012-09-23 13:23:37 +01:00
parent d73b2ac673
commit 2603f18a10

View File

@ -1,4 +1,4 @@
%
%
% generate explicit CPTs
%
:- module(clpbn_aggregates, [
@ -6,7 +6,8 @@
cpt_average/6,
cpt_average/7,
cpt_max/6,
cpt_min/6
cpt_min/6,
avg_factors/5
]).
:- use_module(library(clpbn), [{}/1]).
@ -25,14 +26,22 @@
matrix_to_list/2,
matrix_set/3]).
:- use_module(library('clpbn/dists'),
:- use_module(library(clpbn/dists),
[
add_dist/6,
get_dist_domain_size/2]).
:- use_module(library('clpbn/matrix_cpt_utils'),
:- use_module(library(clpbn/matrix_cpt_utils),
[normalise_CPT_on_lines/3]).
:- use_module(library(pfl),
[skolem/2,
add_ground_factor/5]).
:- use_module(library(bhash)).
:- use_module(library(maplist)).
check_for_agg_vars([], []).
check_for_agg_vars([V|Vs0], [V|Vs1]) :-
clpbn:get_atts(V, [key(K), dist(Id,Parents)]), !,
@ -49,6 +58,87 @@ simplify_dist(avg(Domain), V, Key, Parents, Vs0, VsF) :- !,
clpbn:put_atts(V, [dist(Id,Ps)]).
simplify_dist(_, _, _, _, Vs0, Vs0).
%
avg_factors(Key, Parents, _Smoothing, NewParents, Id) :-
% we keep ev as a list
skolem(Key, Domain),
avg_table(Parents, Parents, Domain, Key, 0, 1.0, NewParents, [], _ExtraSkolems, Id).
% there are 4 cases:
% no evidence on top node
% evidence on top node compatible with values of parents
% evidence on top node *entailed* by values of parents (so there is no real connection)
% evidence incompatible with parents
query_evidence(Key, EvHash, MAT0, MAT, NewParents0, NewParents, Vs, IVs, NewVs) :-
b_hash_lookup(Key, Ev, EvHash), !,
normalise_CPT_on_lines(MAT0, MAT1, L1),
check_consistency(L1, Ev, MAT0, MAT1, L1, MAT, NewParents0, NewParents, Vs, IVs, NewVs).
query_evidence(_, _, MAT, MAT, NewParents, NewParents, _, Vs, Vs).
hash_ev(K=V, Es0, Es) :-
b_hash_insert(Es0, K, V, Es).
find_ev(Ev, Key, RemKeys, RemKeys, Ev0, EvF) :-
b_hash_lookup(Key, V, Ev), !,
EvF is Ev0+V.
find_ev(_Evs, Key, RemKeys, [Key|RemKeys], Ev, Ev).
% +Vars -> Keys without ev
% +all keys
% +domain to project to
% +ouput key
% +sum of evidence
% +softness
% +final CPT
% - New Parents
% + - list of new keys
%
avg_table(Vars, OVars, Domain, Key, TotEvidence, Softness, Vars, Vs, Vs, Id) :-
length(Domain, SDomain),
int_power(Vars, SDomain, 1, TabSize),
TabSize =< 256,
/* case gmp is not there !! */
TabSize > 0, !,
average_cpt(Vars, OVars, Domain, TotEvidence, Softness, CPT),
matrix_to_list(CPT, Mat),
add_ground_factor(bayes, Domain, [Key|OVars], Mat, Id).
avg_table(Vars, OVars, Domain, Key, TotEvidence, Softness, [V1,V2], Vs, [V1,V2|NewVs], Id) :-
length(Vars,L),
LL1 is L//2,
LL2 is L-LL1,
list_split(LL1, Vars, L1, L2),
Min = 0,
length(Domain,Max1), Max is Max1-1,
intermediate_table(LL1, sum(Min,Max), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
intermediate_table(LL2, sum(Min,Max), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
average_cpt([V1,V2], OVars, Domain, TotEvidence, Softness, CPT),
matrix_to_list(CPT, Mat),
add_ground_factor(bayes, Domain, [Key,V1,V2], Mat, Id).
intermediate_table(1,_,[V],V, _, _, I, I, Vs, Vs) :- !.
intermediate_table(2, Op, [V1,V2], V, Key, Softness, I0, If, Vs, Vs) :- !,
If is I0+1,
extra_key_factor(Op, 2, [V1,V2], V, Key, Softness, I0).
intermediate_table(N, Op, L, V, Key, Softness, I0, If, Vs, [V1,V2|NewVs]) :-
LL1 is N//2,
LL2 is N-LL1,
list_split(LL1, L, L1, L2),
I1 is I0+1,
intermediate_table(LL1, Op, L1, V1, Key, Softness, I1, I2, Vs, Vs1),
intermediate_table(LL2, Op, L2, V2, Key, Softness, I2, If, Vs1, NewVs),
extra_key_factor(Op, N, [V1,V2], V, Key, Softness, I0).
extra_key_factor(sum(Min,Max), N, [V1,V2], V, Key, Softness, I) :-
Lower is Min*N,
Upper is Max*N,
generate_list(Lower, Upper, Nbs),
sum_cpt([V1,V2], Nbs, Softness, CPT),
V = 'AVG'(I,Key),
add_ground_factor(bayes, Nbs, [V,V1,V2], CPT, Id),
assert(pfl:currently_defined(V)),
assert(pfl:f(bayes, Id, [V,V1,V2])).
cpt_average(AllVars, Key, Els0, Tab, Vs, NewVs) :-
cpt_average(AllVars, Key, Els0, 1.0, Tab, Vs, NewVs).
@ -155,9 +245,6 @@ generate_tmp_random(max(Domain,CPT), _, [V1,V2], V, Key, I) :-
generate_tmp_random(min(Domain,CPT), _, [V1,V2], V, Key, I) :-
generate_var('MIN'(I,Key), Domain, CPT, [V1,V2], V).
generate_var(VKey, Domain, CPT, Parents, VKey) :-
clpbn:use_parfactors(on), !,
pfl:add_ground_factor(bayes, Domain, [VKey|Parents], CPT).
generate_var(VKey, Domain, CPT, Parents, V) :-
{ V = VKey with tab(Domain, CPT, Parents) }.
@ -282,6 +369,10 @@ fill_in_min(_,_).
get_vdist_size(V, Sz) :-
var(V), !,
clpbn:get_atts(V, [dist(Dist,_)]),
get_dist_domain_size(Dist, Sz).
get_vdist_size(V, Sz) :-
skolem(V, Dom),
length(Dom, Sz).