Experimental code for Tiago Gomes bp solver.

This commit is contained in:
Vítor Santos Costa 2011-02-23 15:31:56 +00:00
parent 4a5ba35937
commit 29e46cbab9
39 changed files with 39941 additions and 245 deletions

467
configure vendored

File diff suppressed because it is too large Load Diff

View File

@ -1985,6 +1985,7 @@ AC_CONFIG_FILES([packages/clib/Makefile])
AC_CONFIG_FILES([packages/clib/maildrop/rfc822/Makefile]) AC_CONFIG_FILES([packages/clib/maildrop/rfc822/Makefile])
AC_CONFIG_FILES([packages/clib/maildrop/rfc2045/Makefile]) AC_CONFIG_FILES([packages/clib/maildrop/rfc2045/Makefile])
AC_CONFIG_FILES([packages/CLPBN/Makefile]) AC_CONFIG_FILES([packages/CLPBN/Makefile])
AC_CONFIG_FILES([packages/CLPBN/clpbn/bp/Makefile])
AC_CONFIG_FILES([packages/cplint/Makefile]) AC_CONFIG_FILES([packages/cplint/Makefile])
AC_CONFIG_FILES([packages/cplint/approx/simplecuddLPADs/Makefile]) AC_CONFIG_FILES([packages/cplint/approx/simplecuddLPADs/Makefile])
AC_CONFIG_FILES([packages/http/Makefile]) AC_CONFIG_FILES([packages/http/Makefile])

View File

@ -35,6 +35,7 @@ CLPBN_EXDIR = $(srcdir)/clpbn/examples
CLPBN_PROGRAMS= \ CLPBN_PROGRAMS= \
$(CLPBN_SRCDIR)/aggregates.yap \ $(CLPBN_SRCDIR)/aggregates.yap \
$(CLPBN_SRCDIR)/bnt.yap \ $(CLPBN_SRCDIR)/bnt.yap \
$(CLPBN_SRCDIR)/bp.yap \
$(CLPBN_SRCDIR)/connected.yap \ $(CLPBN_SRCDIR)/connected.yap \
$(CLPBN_SRCDIR)/discrete_utils.yap \ $(CLPBN_SRCDIR)/discrete_utils.yap \
$(CLPBN_SRCDIR)/display.yap \ $(CLPBN_SRCDIR)/display.yap \

157
packages/CLPBN/clpbn/bp.yap Normal file
View File

@ -0,0 +1,157 @@
/***********************************
Belief Propagation in CLP(BN)
This should connect to C-code.
*********************************/
:- module(clpbn_bp, [
bp/3,
check_if_bp_done/1,
init_bp_solver/4,
run_bp_solver/3]).
:- use_module(library('clpbn/aggregates'),
[check_for_agg_vars/2]).
:- use_module(library('clpbn/connected'),
[init_influences/3,
influences/5
]).
:- use_module(library('clpbn/dists'),
[dist/4,
get_dist_domain/2,
get_dist_params/2
]).
:- use_module(library('clpbn/display'),
[clpbn_bind_vals/3]).
:-use_module(library(lists),
[append/3,
memberchk/2
]).
:- load_foreign_files(['horus'], [], init_predicates).
:- attribute all_diffs/1.
check_if_bp_done(_Var).
%
% implementation of belief propagation
%
% A1 = +QueryVars -> sets of independent marginalization variables
% A2 = *AllVars -> list of all variables
% A3 = -Output -> output probabilities
%
% Other important variables:
%
% State0 initialized graph, is used to pass data from initialization
% to query solving (eg, State might be the JT and be used to run
% different queries).
%
bp([[]],_,_) :- !.
bp([QueryVars],AllVars,Output) :-
writeln(queryVars:QueryVars),
writeln(allVars:AllVars),
% init_bp_solver([QueryVars], AllVars, Output, State),
run_bp_solver([QueryVars], [AllVars], _State),
% bind probs back to variables so that they can be output.
clpbn_bind_vals([QueryVars],[LPs],Output).
% initialise necessary data for query solver
init_bp_solver(Qs, AllVars, _, graph(LVis)) :-
% replace average, max, min and friends by binary nodes.
check_for_agg_vars(AllVars, UnFoldedVars),
% replace the variables reachable from G
init_influences(UnfoldedVars, G, RG),
init_bp_solver_for_questions(Qs, G, RG, _, LVis).
init_bp_solver_for_questions([], _, _, [], []).
init_bp_solver_for_questions([Vs|MVs], G, RG, [NVs|MNVs0], [NVs|LVis]) :-
% find variables connectd to Vs
influences(Vs, _, NVs0, G, RG),
sort(NVs0, NVs),
init_bp_solver_for_questions(MVs, G, RG, MNVs0, LVis).
% use a findall to recover space without needing for GC
run_bp_solver(LVs, LPs, _) :-
findall(Ps, solve_bp(LVs, LPs, Ps), LPs).
solve_bp([LVs|_], [NVs0|_], Ps) :-
get_vars_info(NVs0, LVi),
get_dists_info(NVs0, Dists),
process(LVi, Dists, LVs, Ps).
solve_bp([_|MoreLVs], [_|MoreLVis], Ps) :-
solve_bp(MoreLVs, MoreLVis, Ps).
get_vars_info([], []).
get_vars_info([V|Vs], [var(V, Id, Parents, NParents, Ev)|LV]) :-
clpbn:get_atts(V, [dist(Id, Parents)]), !,
length(Parents, NParents),
get_evidence(V, Ev),
get_vars_info(Vs, LV).
get_vars_info([_|Vs], LV) :-
get_vars_info(Vs, LV).
get_evidence(V, Ev) :-
clpbn:get_atts(V, [evidence(Ev)]), !.
get_evidence(V, -1). % no evidence !!!
get_dists_info([],[]).
get_dists_info([V|Vs], [dist(Id, Domain, DSize, Params, NParams) | Dists]) :-
clpbn:get_atts(V, [dist(Id, _)]), !,
get_dist_domain(Id, Domain),
length(Domain, DSize),
get_dist_params(Id, Params),
length(Params, NParams),
get_dists_info(Vs, Dists).
get_dists_info([_|Vs], Dists) :-
get_dists_info(Vs, Dists).
% +Vars is a list containing info about every clpbn variables
% +Dists is a list containing info about distributions
% +QVs is a list containing the query variables
% -Out is some output term stating the probabilities
process(Vars, Dists, QVs, Out) :-
write('vars = '), writeln(Vars),
order_vars(Vars, [], OrderedVars),
write('ovars = '), writeln(OrderedVars),
write('dists = '), writeln(Dists),
write('qvs = '), writeln(QVs),
length(OrderedVars, NVars),
length(Dists, NDists),
%create_network(OrderedVars, NVars, Dists, NDists, BNet),
length(QVs, NQVs),
run_solver(BNet, QVs, NQVs, Out),
free_memory(BNet).
order_vars([V], _, [V]) :- !.
order_vars([var(V, Id, Parents, NParents, Ev)|Vs], ParsedVars, [var(V, Id, Parents, NParents, Ev)|OrderedVars]) :-
\+ memberchk(V, ParsedVars),
parents_defined(Parents, ParsedVars), !,
order_vars(Vs, [V|ParsedVars], OrderedVars).
order_vars([var(V, Id, Parents, NParents, Ev)|Vs], ParsedVars, OrderedVars) :-
append(Vs, [var(V, Id, Parents, NParents, Ev)], NVs),
order_vars(NVs, ParsedVars, OrderedVars).
parents_defined([], _) :- !.
parents_defined([Parent|Parents], ParsedVars) :-
memberchk(Parent, ParsedVars),
parents_defined(Parents, ParsedVars).
% f(F), b(B). ----> FAIL

View File

@ -0,0 +1,208 @@
#include <iostream>
#include <fstream>
#include <cassert>
#include <cstdlib>
#include "BayesianNetwork.h"
#include "BayesianNode.h"
BayesianNetwork::BayesianNetwork (void)
{
}
BayesianNetwork::~BayesianNetwork (void)
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
delete nodes_[i];
}
for (unsigned int i = 0; i < dists_.size(); i++) {
delete dists_[i];
}
}
void
BayesianNetwork::addNode (string varName,
vector<BayesianNode*> parents,
int evidence,
int distId)
{
for (unsigned int i = 0; i < dists_.size(); i++) {
if (dists_[i]->id == distId) {
BayesianNode* node = new BayesianNode (varName, parents,
dists_[i], evidence);
nodes_.push_back (node);
break;
}
}
}
void
BayesianNetwork::addNode (string varName,
vector<BayesianNode*> parents,
double* params,
int nParams,
vector<string> domain)
{
Distribution* dist = new Distribution (params, nParams, domain);
BayesianNode* node = new BayesianNode (varName, parents, dist);
dists_.push_back (dist);
nodes_.push_back (node);
}
BayesianNode*
BayesianNetwork::getNode (string varName) const
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
if (nodes_[i]->getVariableName() == varName) {
return nodes_[i];
}
}
return 0;
}
void
BayesianNetwork::addDistribution (int distId,
double* params,
int nParams,
vector<string> domain)
{
dists_.push_back (new Distribution (distId, params, nParams, domain));
}
vector<BayesianNode*>
BayesianNetwork::getNodes (void) const
{
return nodes_;
}
vector<BayesianNode*>
BayesianNetwork::getRootNodes (void) const
{
vector<BayesianNode*> roots;
for (unsigned int i = 0; i < nodes_.size(); i++) {
if (nodes_[i]->isRoot()) {
roots.push_back (nodes_[i]);
}
}
return roots;
}
vector<BayesianNode*>
BayesianNetwork::getLeafNodes (void) const
{
vector<BayesianNode*> leafs;
for (unsigned int i = 0; i < nodes_.size(); i++) {
if (nodes_[i]->isLeaf()) {
leafs.push_back (nodes_[i]);
}
}
return leafs;
}
bool
BayesianNetwork::isPolyTree (void) const
{
return !containsCycle();
}
void
BayesianNetwork::printNetwork (void) const
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
cout << *nodes_[i];
}
}
bool
BayesianNetwork::containsCycle (void) const
{
vector<bool> visited (nodes_.size());
for (unsigned int v = 0; v < nodes_.size(); v++) {
visited[v] = false;
}
for (unsigned int v = 0; v < nodes_.size(); v++) {
if (!visited[v]) {
if (containsCycle (v, -1, visited)) {
return true;
}
}
}
return false;
}
bool
BayesianNetwork::containsCycle (int v,
int predecessor,
vector<bool>& visited) const
{
visited[v] = true;
vector<int> adjs = getAdjacentVertexes (v);
for (unsigned int i = 0; i < adjs.size(); i++) {
int w = adjs[i];
if (!visited[w]) {
if (containsCycle (w, v, visited)) {
return true;
}
}
else if (visited[w] && w != predecessor) {
return true;
}
}
return false; // no cycle detected in this component
}
int
BayesianNetwork::getIndexOf (const BayesianNode* node) const
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
if (node == nodes_[i]) {
return i;
}
}
return -1;
}
vector<int>
BayesianNetwork::getAdjacentVertexes (int v) const
{
vector<int> adjs;
vector<BayesianNode*> parents = nodes_[v]->getParents();
vector<BayesianNode*> childs = nodes_[v]->getChilds();
for (unsigned int i = 0; i < parents.size(); i++) {
adjs.push_back (getIndexOf (parents[i]));
}
for (unsigned int i = 0; i < childs.size(); i++) {
adjs.push_back (getIndexOf (childs[i]));
}
return adjs;
}

View File

@ -0,0 +1,46 @@
#ifndef BAYESIAN_NETWORK_H
#define BAYESIAN_NETWORK_H
#include <vector>
#include <string>
using namespace std;
class BayesianNode;
class Distribution;
class BayesianNetwork
{
public:
// constructs
BayesianNetwork (void);
// destruct
virtual ~BayesianNetwork (void);
// methods
virtual void addNode (string, vector<BayesianNode*>, int, int);
virtual void addNode (string, vector<BayesianNode*>,
double*, int, vector<string>);
BayesianNode* getNode (string) const;
void addDistribution (int, double*, int, vector<string>);
vector<BayesianNode*> getNodes (void) const;
vector<BayesianNode*> getRootNodes (void) const;
vector<BayesianNode*> getLeafNodes (void) const;
bool isPolyTree (void) const;
void printNetwork (void) const;
protected:
// members
vector<BayesianNode*> nodes_;
vector<Distribution*> dists_;
private:
BayesianNetwork (const BayesianNetwork&); // disallow copy
void operator= (const BayesianNetwork&); // disallow assign
bool containsCycle (void) const;
bool containsCycle (int, int, vector<bool>&) const;
int getIndexOf (const BayesianNode*) const;
vector<int> getAdjacentVertexes (int) const ;
};
#endif // BAYESIAN_NETWORK_H

View File

@ -0,0 +1,382 @@
#include <iostream>
#include <iomanip>
#include <cassert>
#include "BayesianNode.h"
#include "CptEntry.h"
BayesianNode::BayesianNode (string varName,
vector<BayesianNode*> parents,
Distribution* dist,
int evidence)
{
varName_ = varName;
parents_ = parents;
dist_ = dist;
evidence_ = evidence;
for (unsigned int i = 0; i < parents.size(); i++) {
parents[i]->addChild (this);
}
}
BayesianNode::~BayesianNode (void)
{
}
string
BayesianNode::getVariableName (void) const
{
return varName_;
}
vector<BayesianNode*>
BayesianNode::getParents (void) const
{
return parents_;
}
vector<BayesianNode*>
BayesianNode::getChilds (void) const
{
return childs_;
}
void
BayesianNode::addChild (BayesianNode* node)
{
childs_.push_back (node);
}
double*
BayesianNode::getParameters (void)
{
return dist_->params;
}
double*
BayesianNode::getRow (int rowIndex) const
{
int offset = getRowSize() * rowIndex;
return &dist_->params[offset];
}
double
BayesianNode::getProbability (CptEntry& entry)
{
int index = entry.getCptIndex();
return dist_->params[index];
}
void
BayesianNode::setProbability (CptEntry& entry, double prob)
{
int index = entry.getCptIndex();
dist_->params[index] = prob;
}
bool
BayesianNode::isRoot (void)
{
return parents_.empty();
}
bool
BayesianNode::isLeaf (void)
{
return childs_.empty();
}
int
BayesianNode::getRowSize (void) const
{
return dist_->nParams / dist_->domain.size();
}
int
BayesianNode::getCptSize (void)
{
return dist_->nParams;
}
vector<string>
BayesianNode::getDomain (void) const
{
return dist_->domain;
}
int
BayesianNode::getDomainSize (void) const
{
return dist_->domain.size();
}
vector<CptEntry>
BayesianNode::getCptEntries (const vector<pair<int,int> >& constraints)
{
vector<CptEntry> matchedEntries;
if (constraints.size() > 0 && constraints[0].first == 0) {
vector<CptEntry> entries = getCptEntriesOfRow (constraints[0].second);
for (unsigned int i = 0; i < entries.size(); i++) {
if (entries[i].matchConstraints (constraints)) {
matchedEntries.push_back (entries[i]);
}
}
}
else {
for (unsigned int i = 0; i < dist_->domain.size(); i++) {
vector<CptEntry> entries = getCptEntriesOfRow (i);
for (unsigned int j = 0; j < entries.size(); j++) {
if (entries[j].matchConstraints (constraints)) {
matchedEntries.push_back (entries[j]);
}
}
}
}
return matchedEntries;
}
vector<CptEntry>
BayesianNode::getCptEntriesOfRow (int rowIndex)
{
int rowSize = getRowSize();
int nParents = parents_.size();
vector<vector<int> > insts (rowSize);
for (int i = 0; i < rowSize; i++) {
insts[i].resize (nParents + 1);
insts[i][0] = rowIndex;
}
int reps = 1;
for (int i = nParents - 1; i >= 0; i--) {
int index = 0;
while (index < rowSize) {
for (int j = 0; j < parents_[i]->getDomainSize(); j++) {
for (int k = 0; k < reps; k++) {
insts[index][i + 1] = j;
index++;
}
}
}
reps *= parents_[i]->getDomainSize();
}
vector<CptEntry> entries;
for (int i = 0; i < rowSize; i++ ) {
entries.push_back (CptEntry ((rowIndex * rowSize) + i, insts[i]));
}
return entries;
}
int
BayesianNode::getIndexOfParent (const BayesianNode* myParent) const
{
for (unsigned int i = 0; i < parents_.size(); i++) {
if (myParent == parents_[i]) {
return i;
}
}
return -1;
}
bool
BayesianNode::hasEvidence (void)
{
return evidence_ != -1;
}
int
BayesianNode::getEvidence (void)
{
return evidence_;
}
void
BayesianNode::setEvidence (int evidence)
{
evidence_ = evidence;
}
string
BayesianNode::entryToString (const CptEntry& entry) const
{
string s = "p(" ;
vector<int> insts = entry.getDomainInstantiations();
s += getDomain()[insts[0]];
if (parents_.size() > 0) {
s += "|" ;
for (unsigned int i = 1; i < insts.size() - 1; i++) {
s += parents_[i - 1]->getDomain()[insts[i]] + ",";
}
BayesianNode* lastParent = parents_[parents_.size() - 1];
int lastIndex = insts[insts.size() - 1];
s += lastParent->getDomain()[lastIndex];
}
s += ")" ;
return s;
}
vector<string>
BayesianNode::getDomainHeaders (void) const
{
int rowSize = getRowSize();
int nParents = parents_.size();
int reps = 1;
vector<string> headers (rowSize);
for (int i = nParents - 1; i >= 0; i--) {
vector<string> domain = parents_[i]->getDomain();
int index = 0;
while (index < rowSize) {
for (int j = 0; j < parents_[i]->getDomainSize(); j++) {
for (int k = 0; k < reps; k++) {
if (headers[index] != "") {
headers[index] = domain[j] + "," + headers[index];
} else {
headers[index] = domain[j];
}
index++;
}
}
}
reps *= parents_[i]->getDomainSize();
}
return headers;
}
ostream&
operator << (ostream& o, const BayesianNode& node)
{
o << "Variable: " << node.getVariableName() << endl;
o << "Domain: " ;
vector<string> domain = node.dist_->domain;
for (unsigned int i = 0; i < domain.size() - 1; i++) {
o << domain[i] << ", " ;
}
if (domain.size() != 0) {
o << domain[domain.size() - 1];
}
o << endl;
o << "Parents: " ;
vector<BayesianNode*> parents = node.getParents();
if (parents.size() != 0) {
for (unsigned int i = 0; i < parents.size() - 1; i++) {
o << parents[i]->getVariableName() << ", " ;
}
o << parents[parents.size() - 1]->getVariableName();
}
o << endl;
o << "Childs: " ;
vector<BayesianNode*> childs = node.getChilds();
if (childs.size() != 0) {
for (unsigned int i = 0; i < childs.size() - 1; i++) {
o << childs[i]->getVariableName() << ", " ;
}
o << childs[childs.size() - 1]->getVariableName();
}
o << endl;
const unsigned int MIN_DOMAIN_WIDTH = 4; // min width of first column
const unsigned int MIN_COMBO_WIDTH = 12; // min width of following columns
unsigned int domainWidth = domain[0].length();
for (unsigned int i = 1; i < domain.size(); i++) {
if (domain[i].length() > domainWidth) {
domainWidth = domain[i].length();
}
}
domainWidth = (domainWidth < MIN_DOMAIN_WIDTH)
? MIN_DOMAIN_WIDTH
: domainWidth;
o << left << setw (domainWidth) << "cpt" << right;
vector<int> widths;
int lineWidth = domainWidth;
vector<string> headers = node.getDomainHeaders();
if (!headers.empty()) {
for (unsigned int i = 0; i < headers.size(); i++) {
unsigned int len = headers[i].length();
int w = (len < MIN_COMBO_WIDTH) ? MIN_COMBO_WIDTH : len;
widths.push_back (w);
o << setw (w) << headers[i];
lineWidth += w;
}
o << endl;
} else {
cout << endl;
widths.push_back (domainWidth);
lineWidth += MIN_COMBO_WIDTH;
}
for (int i = 0; i < lineWidth; i++) {
o << "-" ;
}
o << endl;
for (unsigned int i = 0; i < domain.size(); i++) {
double* row = node.getRow (i);
o << left << setw (domainWidth) << domain[i] << right;
for (int j = 0; j < node.getRowSize(); j++) {
o << setw (widths[j]) << row[j];
}
o << endl;
}
o << endl;
return o;
}

View File

@ -0,0 +1,59 @@
#ifndef BAYESIAN_NODE_H
#define BAYESIAN_NODE_H
#include <vector>
#include <string>
#include "Distribution.h"
#include "CptEntry.h"
using namespace std;
class BayesianNode
{
public:
// constructs
BayesianNode (string, vector<BayesianNode*>, Distribution*, int = -1);
// destruct
~BayesianNode (void);
// methods
string getVariableName (void) const;
vector<BayesianNode*> getParents (void) const;
vector<BayesianNode*> getChilds (void) const;
void addChild (BayesianNode*);
double* getParameters (void);
double* getRow (int) const;
double getProbability (CptEntry&);
void setProbability (CptEntry&, double);
bool isRoot (void);
bool isLeaf (void);
int getRowSize (void) const;
int getCptSize (void);
vector<string> getDomain (void) const;
int getDomainSize (void) const;
vector<CptEntry> getCptEntries (const vector<pair<int, int> >&);
vector<CptEntry> getCptEntriesOfRow (int);
int getIndexOfParent (const BayesianNode*) const;
bool hasEvidence (void);
int getEvidence (void);
void setEvidence (int);
string entryToString (const CptEntry& entry) const;
private:
BayesianNode (const BayesianNode&); // disallow copy
void operator= (const BayesianNode&); // disallow assign
// methods
vector<string> getDomainHeaders (void) const;
friend ostream& operator << (ostream&, const BayesianNode&);
// members
string varName_; // variable name
vector<BayesianNode*> parents_; // parents of this node
vector<BayesianNode*> childs_; // children of this node
Distribution* dist_;
int evidence_;
};
ostream& operator << (ostream&, const BayesianNode&);
#endif // BAYESIAN_NODE_H

View File

@ -0,0 +1,117 @@
#include <iostream>
#include <sstream>
#include <map>
#include "xmlParser/xmlParser.h"
#include "BifInterface.h"
#include "BayesianNetwork.h"
#include "BayesianNode.h"
void
BifInterface::createNetworkFromXML (BayesianNetwork* bn, const char* fileName)
{
map<string, vector<string> > domains;
XMLNode xMainNode = XMLNode::openFileHelper (fileName, "BIF");
// only the first network is parsed, others are ignored
XMLNode xNode = xMainNode.getChildNode ("NETWORK");
int nVars = xNode.nChildNode ("VARIABLE");
for (int i = 0; i < nVars; i++) {
XMLNode var = xNode.getChildNode ("VARIABLE", i);
string type = var.getAttribute ("TYPE");
if (type != "nature") {
cerr << "error: only \"nature\" variables are supported" << endl;
abort();
}
vector<string> domain;
string varName = var.getChildNode("NAME").getText();
int domainSize = var.nChildNode ("OUTCOME");
for (int j = 0; j < domainSize; j++) {
domain.push_back (var.getChildNode("OUTCOME", j).getText());
}
domains.insert (make_pair (varName, domain));
}
int nDefs = xNode.nChildNode ("DEFINITION");
if (nVars != nDefs) {
cerr << "error: different number of variables and definitions";
cerr << endl;
}
for (int i = 0; i < nDefs; i++) {
XMLNode def = xNode.getChildNode ("DEFINITION", i);
string nodeName = def.getChildNode("FOR").getText();
map<string, vector<string> >::const_iterator iter = domains.find (nodeName);
if (iter == domains.end()) {
cerr << "error: unknow variable `" << nodeName << "'" << endl;
abort();
}
vector<BayesianNode*> parents;
int nParams = iter->second.size();
for (int j = 0; j < def.nChildNode ("GIVEN"); j++) {
string parentName = def.getChildNode("GIVEN", j).getText();
BayesianNode* parentNode = bn->getNode (parentName);
if (parentNode) {
nParams *= parentNode->getDomainSize();
parents.push_back (parentNode);
}
else {
cerr << "error: unknow variable `" << parentName << "'" << endl;
abort();
}
}
int c = 0;
double* params = new double [nParams];
stringstream s (def.getChildNode("TABLE").getText());
while (!s.eof() && c < nParams) {
s >> params[c];
c++;
}
if (c != nParams) {
cerr << "error: invalid number of parameters " ;
cerr << "for variable `" << nodeName << "'" << endl;
abort();
}
params = reorderParameters (params, nParams, iter->second.size());
bn->addNode (nodeName, parents, params, nParams, iter->second);
}
}
double*
BifInterface::reorderParameters (double* params,
int nParams,
int domainSize)
{
// the interchange format for bayesian networks saves the probabilities
// in the following order:
// p(a1|b1,c1) p(a2|b1,c1) p(a1|b1,c2) p(a2|b1,c2) p(a1|b2,c1) p(a2|b2,c1)
// p(a1|b2,c2) p(a2|b2,c2).
//
// however, in clpbn we keep the probabilities in this order:
// p(a1|b1,c1) p(a1|b1,c2) p(a1|b2,c1) p(a1|b2,c2) p(a2|b1,c1) p(a2|b1,c2)
// p(a2|b2,c1) p(a2|b2,c2).
int count = 0;
int index1 = 0;
int index2 = 0;
int rowSize = nParams / domainSize;
double* reordered = new double [nParams];
while (index1 < nParams) {
index2 = count;
for (int i = 0; i < domainSize; i++) {
reordered[index2] = params[index1];
index1 += 1;
index2 += rowSize;
}
count++;
}
delete [] params;
return reordered;
}

View File

@ -0,0 +1,20 @@
#ifndef BIF_INTERFACE_H
#define BIF_INTERFACE_H
using namespace std;
class BayesianNetwork;
class BayesianNode;
class BifInterface
{
public:
static void createNetworkFromXML (BayesianNetwork*, const char*);
private:
static double* reorderParameters (double*, int, int);
};
#endif // BIF_INTERFACE_H

View File

@ -0,0 +1,36 @@
#include <iostream>
#include "BayesianNetwork.h"
#include "BayesianNode.h"
#include "BpNetwork.h"
#include "BpNode.h"
#include "BifInterface.h"
using namespace std;
int main (int argc, char* argv[])
{
BpNetwork bn;
// BayesianNetwork bn;
BifInterface::createNetworkFromXML (&bn, argv[1]);
bn.printNetwork();
// bn.getNode("FreightTruck")->setEvidence (0);
// bn.getNode("Alarm")->setEvidence (0);
// bn.setSolverParameters (SEQUENTIAL_SCHEDULE, 500, 0.001);
// bn.setSolverParameters (PARALLEL_SCHEDULE, 500, 0.00000000000001);
// bn.setSolverParameters (PARALLEL_SCHEDULE, 500, 0.0000000000000000000001);
//bn.getNode ("F")->setEvidence (0);
vector<BayesianNode*> queryVars;
//queryVars.push_back (bn.getNode ("D"));
//queryVars.push_back (bn.getNode ("Burglar"));
queryVars.push_back (bn.getNode ("FreightTruck"));
queryVars.push_back (bn.getNode ("Alarm"));
bn.runSolver (queryVars);
// bn.printCurrentStatus();
// bn.printBeliefs();
return 0;
}

View File

@ -0,0 +1,811 @@
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <sstream>
#include "BpNetwork.h"
#include "BpNode.h"
#include "CptEntry.h"
BpNetwork::BpNetwork (void)
{
schedule_ = SEQUENTIAL_SCHEDULE;
maxIter_ = 150;
stableThreashold_ = 0.00000000000000000001;
}
BpNetwork::~BpNetwork (void)
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
delete nodes_[i];
}
nodes_.clear();
}
void
BpNetwork::setSolverParameters (Schedule schedule,
int maxIter,
double stableThreashold)
{
if (maxIter <= 0) {
cerr << "error: maxIter must be greater or equal to 1" << endl;
abort();
}
if (stableThreashold <= 0.0 || stableThreashold >= 1.0) {
cerr << "error: stableThreashold must be greater than 0.0 " ;
cerr << "and lesser than 1.0" << endl;
abort();
}
schedule_ = schedule;
maxIter_ = maxIter;
stableThreashold_ = stableThreashold;
}
void
BpNetwork::runSolver (BayesianNode* queryVar)
{
vector<BayesianNode*> queryVars;
queryVars.push_back (queryVar);
runSolver (queryVars);
}
void
BpNetwork::runSolver (vector<BayesianNode*> queryVars)
{
if (queryVars.size() > 1) {
addJunctionNode (queryVars);
}
else {
string varName = queryVars[0]->getVariableName();
queryNode_ = static_cast<BpNode*> (getNode (varName));
}
if (!isPolyTree()) {
if (DL_ >= 1) {
cout << "The graph is not single connected. " ;
cout << "Iterative belief propagation will be used." ;
cout << endl << endl;
}
schedule_ = PARALLEL_SCHEDULE;
}
if (schedule_ == SEQUENTIAL_SCHEDULE) {
initializeSolver (queryVars);
runNeapolitanSolver();
for (unsigned int i = 0; i < nodes_.size(); i++) {
if (nodes_[i]->hasEvidence()) {
BpNode* v = static_cast<BpNode*> (nodes_[i]);
addEvidence (v);
vector<BpNode*> parents = cast (v->getParents());
for (unsigned int i = 0; i < parents.size(); i++) {
if (!parents[i]->hasEvidence()) {
sendLambdaMessage (v, parents[i]);
}
}
vector<BpNode*> childs = cast (v->getChilds());
for (unsigned int i = 0; i < childs.size(); i++) {
sendPiMessage (v, childs[i]);
}
}
}
} else if (schedule_ == PARALLEL_SCHEDULE) {
BpNode::enableParallelSchedule();
initializeSolver (queryVars);
for (unsigned int i = 0; i < nodes_.size(); i++) {
if (nodes_[i]->hasEvidence()) {
addEvidence (static_cast<BpNode*> (nodes_[i]));
}
}
runIterativeBpSolver();
}
}
void
BpNetwork::printCurrentStatus (void)
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
printCurrentStatusOf (static_cast<BpNode*> (nodes_[i]));
}
}
void
BpNetwork::printCurrentStatusOf (BpNode* x)
{
vector<BpNode*> childs = cast (x->getChilds());
vector<string> domain = x->getDomain();
cout << left;
cout << setw (10) << "domain" ;
cout << setw (20) << "π(" + x->getVariableName() + ")" ;
cout << setw (20) << "λ(" + x->getVariableName() + ")" ;
cout << setw (16) << "belief" ;
cout << endl;
cout << "--------------------------------" ;
cout << "--------------------------------" ;
cout << endl;
double* piValues = x->getPiValues();
double* lambdaValues = x->getLambdaValues();
double* beliefs = x->getBeliefs();
for (int xi = 0; xi < x->getDomainSize(); xi++) {
cout << setw (10) << domain[xi];
cout << setw (19) << piValues[xi];
cout << setw (19) << lambdaValues[xi];
cout.precision (PRECISION_);
cout << setw (16) << beliefs[xi];
cout << endl;
}
cout << endl;
if (childs.size() > 0) {
string s = "(" + x->getVariableName() + ")" ;
for (unsigned int j = 0; j < childs.size(); j++) {
cout << setw (10) << "domain" ;
cout << setw (28) << "π" + childs[j]->getVariableName() + s;
cout << setw (28) << "λ" + childs[j]->getVariableName() + s;
cout << endl;
cout << "--------------------------------" ;
cout << "--------------------------------" ;
cout << endl;
for (int xi = 0; xi < x->getDomainSize(); xi++) {
cout << setw (10) << domain[xi];
cout.precision (PRECISION_);
cout << setw (27) << x->getPiMessage(childs[j], xi);
cout.precision (PRECISION_);
cout << setw (27) << x->getLambdaMessage(childs[j], xi);
cout << endl;
}
cout << endl;
}
}
}
void
BpNetwork::printBeliefs (void)
{
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*> (nodes_[i]);
vector<string> domain = x->getDomain();
cout << setw (20) << left << x->getVariableName() ;
cout << setw (26) << "belief" ;
cout << endl;
cout << "--------------------------------------" ;
cout << endl;
double* beliefs = x->getBeliefs();
for (int xi = 0; xi < x->getDomainSize(); xi++) {
cout << setw (20) << domain[xi];
cout.precision (PRECISION_);
cout << setw (26) << beliefs[xi];
cout << endl;
}
cout << endl;
}
}
vector<double>
BpNetwork::getBeliefs (void)
{
return getBeliefs (queryNode_);
}
vector<double>
BpNetwork::getBeliefs (BpNode* x)
{
double* beliefs = x->getBeliefs();
vector<double> beliefsVec;
for (int xi = 0; xi < x->getDomainSize(); xi++) {
beliefsVec.push_back (beliefs[xi]);
}
return beliefsVec;
}
void
BpNetwork::initializeSolver (vector<BayesianNode*> queryVars)
{
if (DL_ >= 1) {
cout << "Initializing solver" << endl;
if (schedule_ == SEQUENTIAL_SCHEDULE) {
cout << "-> schedule = sequential" << endl;
} else {
cout << "-> schedule = parallel" << endl;
}
cout << "-> max iters = " << maxIter_ << endl;
cout << "-> stable threashold = " << stableThreashold_ << endl;
cout << "-> query vars = " ;
for (unsigned int i = 0; i < queryVars.size(); i++) {
cout << queryVars[i]->getVariableName() << " " ;
}
cout << endl;
}
nIter_ = 0;
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* node = static_cast<BpNode*> (nodes_[i]);
node->allocateMemory();
}
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*> (nodes_[i]);
double* piValues = x->getPiValues();
double* lambdaValues = x->getLambdaValues();
for (int xi = 0; xi < x->getDomainSize(); xi++) {
piValues[xi] = 1.0;
lambdaValues[xi] = 1.0;
}
vector<BpNode*> xChilds = cast (x->getChilds());
for (unsigned int j = 0; j < xChilds.size(); j++) {
double* piMessages = x->getPiMessages (xChilds[j]);
for (int xi = 0; xi < x->getDomainSize(); xi++) {
piMessages[xi] = 1.0;
//x->setPiMessage (xChilds[j], xi, 1.0);
}
}
vector<BpNode*> xParents = cast (x->getParents());
for (unsigned int j = 0; j < xParents.size(); j++) {
double* lambdaMessages = xParents[j]->getLambdaMessages (x);
for (int xi = 0; xi < xParents[j]->getDomainSize(); xi++) {
lambdaMessages[xi] = 1.0;
//xParents[j]->setLambdaMessage (x, xi, 1.0);
}
}
}
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*> (nodes_[i]);
x->normalizeMessages();
}
printCurrentStatus();
vector<BpNode*> roots = cast (getRootNodes());
for (unsigned int i = 0; i < roots.size(); i++) {
double* params = roots[i]->getParameters();
double* piValues = roots[i]->getPiValues();
for (int ri = 0; ri < roots[i]->getDomainSize(); ri++) {
piValues[ri] = params[ri];
}
}
}
void
BpNetwork::addJunctionNode (vector<BayesianNode*> queryVars)
{
const string VAR_NAME = "_Jn";
int nStates = 1;
vector<BayesianNode*> parents;
vector<string> domain;
for (unsigned int i = 0; i < queryVars.size(); i++) {
parents.push_back (queryVars[i]);
nStates *= queryVars[i]->getDomainSize();
}
for (int i = 0; i < nStates; i++) {
stringstream ss;
ss << "_jn" << i;
domain.push_back (ss.str()); // FIXME make domain optional
}
int nParams = nStates * nStates;
double* params = new double [nParams];
for (int i = 0; i < nParams; i++) {
int row = i / nStates;
int col = i % nStates;
if (row == col) {
params[i] = 1;
} else {
params[i] = 0;
}
}
addNode (VAR_NAME, parents, params, nParams, domain);
queryNode_ = static_cast<BpNode*> (getNode (VAR_NAME));
printNetwork();
}
void
BpNetwork::addEvidence (BpNode* v)
{
if (DL_ >= 1) {
cout << "Adding evidence: node " ;
cout << "`" << v->getVariableName() << "' was instantiated as " ;
cout << "`" << v->getDomain()[v->getEvidence()] << "'" ;
cout << endl;
}
double* piValues = v->getPiValues();
double* lambdaValues = v->getLambdaValues();
for (int vi = 0; vi < v->getDomainSize(); vi++) {
if (vi == v->getEvidence()) {
piValues[vi] = 1.0;
lambdaValues[vi] = 1.0;
} else {
piValues[vi] = 0.0;
lambdaValues[vi] = 0.0;
}
}
}
void
BpNetwork::runNeapolitanSolver (void)
{
vector<BpNode*> roots = cast (getRootNodes());
for (unsigned int i = 0; i < roots.size(); i++) {
vector<BpNode*> childs = cast (roots[i]->getChilds());
for (unsigned int j = 0; j < childs.size(); j++) {
sendPiMessage (roots[i], static_cast<BpNode*> (childs[j]));
}
}
}
void
BpNetwork::sendPiMessage (BpNode* z, BpNode* x)
{
nIter_ ++;
if (!(maxIter_ == -1 || nIter_ < maxIter_)) {
cout << "the maximum number of iterations was achieved, terminating..." ;
cout << endl;
return;
}
if (DL_ >= 1) {
cout << "π message " << z->getVariableName();
cout << " --> " << x->getVariableName() << endl;
}
updatePiMessages(z, x);
if (!x->hasEvidence()) {
updatePiValues (x);
vector<BpNode*> xChilds = cast (x->getChilds());
for (unsigned int i = 0; i < xChilds.size(); i++) {
sendPiMessage (x, xChilds[i]);
}
}
bool isAllOnes = true;
double* lambdaValues = x->getLambdaValues();
for (int xi = 0; xi < x->getDomainSize(); xi++) {
if (lambdaValues[xi] != 1.0) {
isAllOnes = false;
break;
}
}
if (!isAllOnes) {
vector<BpNode*> xParents = cast (x->getParents());
for (unsigned int i = 0; i < xParents.size(); i++) {
if (xParents[i] != z && !xParents[i]->hasEvidence()) {
sendLambdaMessage (x, xParents[i]);
}
}
}
}
void
BpNetwork::sendLambdaMessage (BpNode* y, BpNode* x)
{
nIter_ ++;
if (!(maxIter_ == -1 || nIter_ < maxIter_)) {
cout << "the maximum number of iterations was achieved, terminating..." ;
cout << endl;
return;
}
if (DL_ >= 1) {
cout << "λ message " << y->getVariableName();
cout << " --> " << x->getVariableName() << endl;
}
updateLambdaMessages (x, y);
updateLambdaValues (x);
vector<BpNode*> xParents = cast (x->getParents());
for (unsigned int i = 0; i < xParents.size(); i++) {
if (!xParents[i]->hasEvidence()) {
sendLambdaMessage (x, xParents[i]);
}
}
vector<BpNode*> xChilds = cast (x->getChilds());
for (unsigned int i = 0; i < xChilds.size(); i++) {
if (xChilds[i] != y) {
sendPiMessage (x, xChilds[i]);
}
}
}
void
BpNetwork::updatePiValues (BpNode* x)
{
// π(Xi)
vector<BpNode*> parents = cast (x->getParents());
for (int xi = 0; xi < x->getDomainSize(); xi++) {
stringstream calcs1;
stringstream calcs2;
if (DL_ >= 2) {
calcs1 << "π("<< x->getDomain()[xi] << ")" << endl << "= " ;
}
double sum = 0.0;
vector<pair<int, int> > constraints;
vector<CptEntry> entries = x->getCptEntriesOfRow (xi);
for (unsigned int k = 0; k < entries.size(); k++) {
double prod = x->getProbability (entries[k]);
if (DL_ >= 2) {
if (k != 0) calcs1 << endl << "+ " ;
calcs1 << x->entryToString (entries[k]);
if (DL_ >= 3) {
(k == 0) ? calcs2 << "(" << prod : calcs2 << endl << "+ (" << prod;
}
}
vector<int> insts = entries[k].getDomainInstantiations();
for (unsigned int i = 0; i < parents.size(); i++) {
double value = parents[i]->getPiMessage (x, insts[i + 1]);
prod *= value;
if (DL_ >= 2) {
calcs1 << "" << x->getVariableName();
calcs1 << "(" << parents[i]->getDomain()[insts[i + 1]] << ")";
if (DL_ >= 3) calcs2 << "x" << value;
}
}
sum += prod;
if (DL_ >= 3) calcs2 << ")";
}
x->setPiValue (xi, sum);
if (DL_ >= 2) {
cout << calcs1.str();
if (DL_ >= 3) cout << endl << "= " << calcs2.str();
cout << " = " << sum << endl;
}
}
}
void
BpNetwork::updatePiMessages (BpNode* z, BpNode* x)
{
// πX(Zi)
vector<BpNode*> zChilds = cast (z->getChilds());
for (int zi = 0; zi < z->getDomainSize(); zi++) {
stringstream calcs1;
stringstream calcs2;
if (DL_ >= 2) {
calcs1 << "π" << x->getVariableName();
calcs1 << "(" << z->getDomain()[zi] << ") = " ;
}
double prod = z->getPiValue (zi);
if (DL_ >= 2) {
calcs1 << "π(" << z->getDomain()[zi] << ")" ;
if (DL_ >= 3) calcs2 << prod;
}
for (unsigned int i = 0; i < zChilds.size(); i++) {
if (zChilds[i] != x) {
double value = z->getLambdaMessage (zChilds[i], zi);
prod *= value;
if (DL_ >= 2) {
calcs1 << "" << zChilds[i]->getVariableName();
calcs1 << "(" << z->getDomain()[zi] + ")" ;
if (DL_ >= 3) calcs2 << " x " << value;
}
}
}
z->setPiMessage (x, zi, prod);
if (DL_ >= 2) {
cout << calcs1.str();
if (DL_ >= 3) cout << " = " << calcs2.str();
cout << " = " << prod << endl;
}
}
}
void
BpNetwork::updateLambdaValues (BpNode* x)
{
// λ(Xi)
vector<BpNode*> childs = cast (x->getChilds());
for (int xi = 0; xi < x->getDomainSize(); xi++) {
stringstream calcs1;
stringstream calcs2;
if (DL_ >= 2) {
calcs1 << "λ" << "(" << x->getDomain()[xi] << ") = " ;
}
double prod = 1.0;
for (unsigned int i = 0; i < childs.size(); i++) {
double val = x->getLambdaMessage (childs[i], xi);
prod *= val;
if (DL_ >= 2) {
if (i != 0) calcs1 << "." ;
calcs1 << "λ" << childs[i]->getVariableName();
calcs1 << "(" << x->getDomain()[xi] + ")" ;
if (DL_ >= 3) (i == 0) ? calcs2 << val : calcs2 << " x " << val;
}
}
x->setLambdaValue (xi, prod);
if (DL_ >= 2) {
cout << calcs1.str();
if (childs.size() == 0) {
cout << 1 << endl;
} else {
if (DL_ >= 3) cout << " = " << calcs2.str();
cout << " = " << prod << endl;
}
}
}
}
void
BpNetwork::updateLambdaMessages (BpNode* x, BpNode* y)
{
// λY(Xi)
int parentIndex = y->getIndexOfParent (x) + 1;
vector<BpNode*> yParents = cast (y->getParents());
for (int xi = 0; xi < x->getDomainSize(); xi++) {
stringstream calcs1;
stringstream calcs2;
if (DL_ >= 2) {
calcs1 << "λ" << y->getVariableName() ;
calcs1 << "(" << x->getDomain()[xi] << ")" << endl << "= " ;
}
double outer_sum = 0.0;
for (int yi = 0; yi < y->getDomainSize(); yi++) {
if (DL_ >= 2) {
(yi == 0) ? calcs1 << "[" : calcs1 << endl << "+ [" ;
if (DL_ >= 3) {
(yi == 0) ? calcs2 << "[" : calcs2 << endl << "+ [" ;
}
}
double inner_sum = 0.0;
vector<pair<int, int> > constraints;
constraints.push_back (make_pair (0, yi));
constraints.push_back (make_pair (parentIndex, xi));
vector<CptEntry> entries = y->getCptEntries (constraints);
for (unsigned int k = 0; k < entries.size(); k++) {
double prod = y->getProbability (entries[k]);
if (DL_ >= 2) {
if (k != 0) calcs1 << " + " ;
calcs1 << y->entryToString (entries[k]);
if (DL_ >= 3) {
(k == 0) ? calcs2 << "(" << prod : calcs2 << " + (" << prod;
}
}
vector<int> insts = entries[k].getDomainInstantiations();
for (unsigned int i = 0; i < yParents.size(); i++) {
if (yParents[i] != x) {
double val = yParents[i]->getPiMessage (y, insts[i + 1]);
prod *= val;
if (DL_ >= 2) {
calcs1 << "" << y->getVariableName();
calcs1 << "(" << yParents[i]->getDomain()[insts[i + 1]] << ")" ;
if (DL_ >= 3) calcs2 << "x" << val;
}
}
}
inner_sum += prod;
if (DL_ >= 3) {
calcs2 << ")" ;
}
}
outer_sum += inner_sum * y->getLambdaValue (yi);
if (DL_ >= 2) {
calcs1 << "].λ(" << y->getDomain()[yi] << ")";
if (DL_ >= 3) calcs2 << "]x" << y->getLambdaValue (yi);
}
}
x->setLambdaMessage (y, xi, outer_sum);
if (DL_ >= 2) {
cout << calcs1.str();
if (DL_ >= 3) cout << endl << "= " << calcs2.str();
cout << " = " << outer_sum << endl;
}
}
}
void
BpNetwork::runIterativeBpSolver()
{
int nIter = 0;
maxIter_ = 100;
bool converged = false;
while (nIter < maxIter_ && !converged) {
if (DL_ >= 1) {
cout << endl << endl;
cout << "****************************************" ;
cout << "****************************************" ;
cout << endl;
cout << " Iteration " << nIter + 1 << endl;
cout << "****************************************" ;
cout << "****************************************" ;
}
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*>(nodes_[i]);
vector<BpNode*> xParents = cast (x->getParents());
for (unsigned int j = 0; j < xParents.size(); j++) {
//if (!xParents[j]->hasEvidence()) {
if (DL_ >= 1) {
cout << endl << "λ message " << x->getVariableName();
cout << " --> " << xParents[j]->getVariableName() << endl;
}
updateLambdaMessages (xParents[j], x);
//}
}
}
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*>(nodes_[i]);
vector<BpNode*> xChilds = cast (x->getChilds());
for (unsigned int j = 0; j < xChilds.size(); j++) {
if (DL_ >= 1) {
cout << endl << "π message " << x->getVariableName();
cout << " --> " << xChilds[j]->getVariableName() << endl;
}
updatePiMessages (x, xChilds[j]);
}
}
/*
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*>(nodes_[i]);
vector<BpNode*> xChilds = cast (x->getChilds());
for (unsigned int j = 0; j < xChilds.size(); j++) {
if (DL_ >= 1) {
cout << "π message " << x->getVariableName();
cout << " --> " << xChilds[j]->getVariableName() << endl;
}
updatePiMessages (x, xChilds[j]);
}
vector<BpNode*> xParents = cast (x->getParents());
for (unsigned int j = 0; j < xParents.size(); j++) {
//if (!xParents[j]->hasEvidence()) {
if (DL_ >= 1) {
cout << "λ message " << x->getVariableName();
cout << " --> " << xParents[j]->getVariableName() << endl;
}
updateLambdaMessages (xParents[j], x);
//}
}
}
*/
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*> (nodes_[i]);
//cout << endl << "SWAPING MESSAGES FOR " << x->getVariableName() << ":" ;
//cout << endl << endl;
//printCurrentStatusOf (x);
x->swapMessages();
x->normalizeMessages();
//cout << endl << "messages swaped " << endl;
//printCurrentStatusOf (x);
}
converged = true;
for (unsigned int i = 0; i < nodes_.size(); i++) {
BpNode* x = static_cast<BpNode*>(nodes_[i]);
if (DL_ >= 1) {
cout << endl << "var " << x->getVariableName() << ":" << endl;
}
//if (!x->hasEvidence()) {
updatePiValues (x);
updateLambdaValues (x);
double change = x->getBeliefChange();
if (DL_ >= 1) {
cout << "belief change = " << change << endl;
}
if (change > stableThreashold_) {
converged = false;
}
//}
}
if (converged) {
// converged = false;
}
if (DL_ >= 2) {
cout << endl;
printCurrentStatus();
}
nIter++;
}
if (DL_ >= 1) {
cout << endl;
if (converged) {
cout << "Iterative belief propagation converged in " ;
cout << nIter << " iterations" << endl;
} else {
cout << "Iterative belief propagation converged didn't converge" ;
cout << endl;
}
if (DL_ == 1) {
cout << endl;
printBeliefs();
}
cout << endl;
}
}
void
BpNetwork::addNode (string varName,
vector<BayesianNode*> parents,
int evidence,
int distId)
{
for (unsigned int i = 0; i < dists_.size(); i++) {
if (dists_[i]->id == distId) {
BpNode* node = new BpNode (varName, parents, dists_[i], evidence);
nodes_.push_back (node);
break;
}
}
}
void
BpNetwork::addNode (string varName,
vector<BayesianNode*> parents,
double* params,
int nParams,
vector<string> domain)
{
Distribution* dist = new Distribution (params, nParams, domain);
BpNode* node = new BpNode (varName, parents, dist);
dists_.push_back (dist);
nodes_.push_back (node);
}
vector<BpNode*>
BpNetwork::cast (vector<BayesianNode*> nodes)
{
vector<BpNode*> castedNodes (nodes.size());
for (unsigned int i = 0; i < nodes.size(); i++) {
castedNodes[i] = static_cast<BpNode*> (nodes[i]);
}
return castedNodes;
}

View File

@ -0,0 +1,66 @@
#ifndef BP_BP_NETWORK_H
#define BP_BP_NETWORK_H
#include <vector>
#include <string>
#include "BayesianNetwork.h"
using namespace std;
class BpNode;
enum Schedule
{
SEQUENTIAL_SCHEDULE,
PARALLEL_SCHEDULE
};
class BpNetwork : public BayesianNetwork
{
public:
// constructs
BpNetwork (void);
// destruct
~BpNetwork (void);
// methods
void setSolverParameters (Schedule, int, double);
void runSolver (BayesianNode* queryVar);
void runSolver (vector<BayesianNode*>);
void printCurrentStatus (void);
void printCurrentStatusOf (BpNode*);
void printBeliefs (void);
vector<double> getBeliefs (void);
vector<double> getBeliefs (BpNode*);
private:
BpNetwork (const BpNetwork&); // disallow copy
void operator= (const BpNetwork&); // disallow assign
// methods
void initializeSolver (vector<BayesianNode*>);
void addJunctionNode (vector<BayesianNode*>);
void addEvidence (BpNode*);
void runNeapolitanSolver (void);
void sendLambdaMessage (BpNode*, BpNode*);
void sendPiMessage (BpNode*, BpNode*);
void updatePiValues (BpNode*);
void updatePiMessages (BpNode*, BpNode*);
void updateLambdaValues (BpNode*);
void updateLambdaMessages (BpNode*, BpNode*);
void runIterativeBpSolver (void);
void addNode (string, vector<BayesianNode*>, int, int);
void addNode (string, vector<BayesianNode*>,
double*, int, vector<string>);
vector<BpNode*> cast (vector<BayesianNode*>);
// members
Schedule schedule_;
int nIter_;
int maxIter_;
double stableThreashold_;
BpNode* queryNode_;
static const int DL_ = 3;
static const int PRECISION_ = 10;
};
#endif // BP_BP_NETWORK_H

View File

@ -0,0 +1,321 @@
#include <iostream>
#include <cassert>
#include <cmath>
#include "BpNode.h"
bool BpNode::parallelSchedule_ = false;
BpNode::BpNode (string varName,
vector<BayesianNode*> parents,
Distribution* dist,
int evidence) : BayesianNode (varName, parents, dist, evidence)
{
}
BpNode::~BpNode (void)
{
delete [] piValues_;
delete [] lambdaValues_;
delete [] oldBeliefs_;
map<BpNode*, double*>::iterator iter;
for (iter = lambdaMessages_.begin(); iter != lambdaMessages_.end(); ++iter) {
delete [] iter->second;
}
for (iter = piMessages_.begin(); iter != piMessages_.end(); ++iter) {
delete [] iter->second;
}
// FIXME delete new messages
}
void
BpNode::enableParallelSchedule (void)
{
parallelSchedule_ = true;
}
void
BpNode::allocateMemory (void)
{
// FIXME do i need this !?
int domainSize = getDomainSize();
piValues_ = new double [domainSize];
lambdaValues_ = new double [domainSize];
if (parallelSchedule_) {
newPiMessages_ = new map<BpNode*, double*>;
newLambdaMessages_ = new map<BpNode*, double*>;
}
oldBeliefs_ = 0;
vector <BayesianNode*> childs = getChilds();
for (unsigned int i = 0; i < childs.size(); i++) {
BpNode* child = static_cast<BpNode*> (childs[i]);
piMessages_.insert (make_pair (child, new double [domainSize]));
lambdaMessages_.insert (make_pair (child, new double [domainSize]));
if (parallelSchedule_) {
newPiMessages_->insert (make_pair (child, new double [domainSize]));
newLambdaMessages_->insert (make_pair (child, new double [domainSize]));
}
}
}
double*
BpNode::getPiValues (void) const
{
return piValues_;
}
double
BpNode::getPiValue (int index) const
{
const int c = getDomainSize();
assert (index >=0 && index < c);
return piValues_[index];
}
void
BpNode::setPiValue (int index, double value)
{
const int c = getDomainSize();
assert (index >=0 && index < c);
piValues_[index] = value;
}
double*
BpNode::getLambdaValues (void) const
{
return lambdaValues_;
}
double
BpNode::getLambdaValue (int index) const
{
const int c = getDomainSize();
assert (index >=0 && index < c);
return lambdaValues_[index];
}
void
BpNode::setLambdaValue (int index, double value)
{
const int c = getDomainSize();
assert (index >=0 && index < c);
lambdaValues_[index] = value;
}
double*
BpNode::getPiMessages (BpNode* node) const
{
assert (node);
map<BpNode*, double*>::const_iterator iter = piMessages_.find (node);
assert (iter != piMessages_.end());
return iter->second;
}
double
BpNode::getPiMessage (BpNode* node, int index) const
{
assert (node);
const int c = getDomainSize();
assert (index >=0 && index < c);
map<BpNode*, double*>::const_iterator iter = piMessages_.find (node);
assert (iter != piMessages_.end());
return iter->second[index];
}
void
BpNode::setPiMessage (BpNode* node, int index, double probability)
{
assert (node);
const int c = getDomainSize();
assert (index >=0 && index < c);
map<BpNode*, double*>::const_iterator iter;
if (parallelSchedule_) {
// cerr << "set_pi_message" << endl;
iter = newPiMessages_->find (node);
assert (iter != newPiMessages_->end());
} else {
iter = piMessages_.find (node);
assert (iter != piMessages_.end());
}
iter->second[index] = probability;
}
double*
BpNode::getLambdaMessages (BpNode* node) const
{
assert (node);
map<BpNode*, double*>::const_iterator iter = lambdaMessages_.find (node);
assert (iter != piMessages_.end());
return iter->second;
}
double
BpNode::getLambdaMessage (BpNode* node, int index) const
{
assert (node);
const int c = getDomainSize();
assert (index >=0 && index < c);
map<BpNode*, double*>::const_iterator iter = lambdaMessages_.find (node);
assert (iter != piMessages_.end());
return iter->second[index];
}
void
BpNode::setLambdaMessage (BpNode* node, int index, double probability)
{
assert (node);
const int c = getDomainSize();
assert (index >=0 && index < c);
map<BpNode*, double*>::const_iterator iter;
if (parallelSchedule_) {
//cerr << "set_lambda_message" << endl;
iter = newLambdaMessages_->find (node);
assert (iter != newLambdaMessages_->end());
} else {
iter = lambdaMessages_.find (node);
assert (iter != lambdaMessages_.end());
}
iter->second[index] = probability;
}
double*
BpNode::getBeliefs (void)
{
double sum = 0.0;
double* beliefs = new double [getDomainSize()];
for (int xi = 0; xi < getDomainSize(); xi++) {
double prod = piValues_[xi] * lambdaValues_[xi];
beliefs[xi] = prod;
sum += prod;
}
// normalize the beliefs
for (int xi = 0; xi < getDomainSize(); xi++) {
beliefs[xi] /= sum;
}
return beliefs;
}
double
BpNode::getBeliefChange (void)
{
double change = 0.0;
if (!oldBeliefs_) {
oldBeliefs_ = getBeliefs();
change = MAX_CHANGE_;
} else {
double* currentBeliefs = getBeliefs();
for (int xi = 0; xi < getDomainSize(); xi++) {
change += abs (currentBeliefs[xi] - oldBeliefs_[xi]);
}
oldBeliefs_ = currentBeliefs;
}
//FIXME memory leak
return change;
}
void
BpNode::normalizeMessages (void)
{
map<BpNode*, double*>::iterator iter;
iter = lambdaMessages_.begin();
while (iter != lambdaMessages_.end()) {
double* v = iter->second;
double sum = 0.0;
for (int xi = 0; xi < getDomainSize(); xi++) {
sum += v[xi];
}
for (int xi = 0; xi < getDomainSize(); xi++) {
v[xi] /= sum;
}
iter ++;
}
iter = piMessages_.begin();
while (iter != piMessages_.end()) {
double* v = iter->second;
double sum = 0.0;
for (int xi = 0; xi < getDomainSize(); xi++) {
sum += v[xi];
}
for (int xi = 0; xi < getDomainSize(); xi++) {
v[xi] /= sum;
}
iter ++;
}
}
void
BpNode::swapMessages (void)
{
//FIXME fast way to do this
map<BpNode*, double*>::iterator iter1;
map<BpNode*, double*>::iterator iter2;
iter1 = lambdaMessages_.begin();
iter2 = newLambdaMessages_->begin();
while (iter1 != lambdaMessages_.end()) {
double* v1 = iter1->second;
double* v2 = iter2->second;
for (int xi = 0; xi < getDomainSize(); xi++) {
//v1[xi] = v2[xi];
v1[xi] = (v1[xi] + v2[xi]) / 2;
}
iter1 ++;
iter2 ++;
}
iter1 = piMessages_.begin();
iter2 = newPiMessages_->begin();
while (iter1 != piMessages_.end()) {
double* v1 = iter1->second;
double* v2 = iter2->second;
for (int xi = 0; xi < getDomainSize(); xi++) {
//v1[xi] = v2[xi];
v1[xi] = (v1[xi] + v2[xi]) / 2;
}
iter1 ++;
iter2 ++;
}
}

View File

@ -0,0 +1,56 @@
#ifndef BP_BP_NODE_H
#define BP_BP_NODE_H
#include <vector>
#include <map>
#include <deque>
#include <string>
#include "BayesianNode.h"
using namespace std;
class BpNode : public BayesianNode
{
public:
// constructs
BpNode (string, vector<BayesianNode*>, Distribution* dist, int = -1);
// destruct
~BpNode (void);
// methods
static void enableParallelSchedule (void);
void allocateMemory (void);
double* getPiValues (void) const;
double getPiValue (int) const;
void setPiValue (int, double);
double* getLambdaValues (void) const;
double getLambdaValue (int) const;
void setLambdaValue (int, double);
double* getPiMessages (BpNode*) const;
double getPiMessage (BpNode*, int) const;
void setPiMessage (BpNode*, int, double);
double* getLambdaMessages (BpNode*) const;
double getLambdaMessage (BpNode*, int) const;
void setLambdaMessage (BpNode*, int, double);
double* getBeliefs (void);
double getBeliefChange (void);
void normalizeMessages (void);
void swapMessages (void);
private:
BpNode (const BpNode&); // disallow copy
void operator= (const BpNode&); // disallow assign
// members
double* lambdaValues_;
double* piValues_;
map<BpNode*, double*> piMessages_;
map<BpNode*, double*> lambdaMessages_;
map<BpNode*, double*>* newPiMessages_;
map<BpNode*, double*>* newLambdaMessages_;
double* oldBeliefs_;
static bool parallelSchedule_;
static const double MAX_CHANGE_ = 1.0;
};
#endif // BP_BP_NODE_H

View File

@ -0,0 +1,38 @@
#include "CptEntry.h"
CptEntry::CptEntry (int cptIndex, vector<int> instantiations)
{
cptIndex_ = cptIndex;
instantiations_ = instantiations;
}
int
CptEntry::getCptIndex (void) const
{
return cptIndex_;
}
vector<int>
CptEntry::getDomainInstantiations (void) const
{
return instantiations_;
}
bool
CptEntry::matchConstraints (const vector<pair<int,int> >& constraints) const
{
for (unsigned int j = 0; j < constraints.size(); j++) {
int index = constraints[j].first;
if (instantiations_[index] != constraints[j].second) {
return false;
}
}
return true;
}

View File

@ -0,0 +1,23 @@
#ifndef CPT_ENTRY_H
#define CPT_ENTRY_H
#include <vector>
using namespace std;
class CptEntry
{
public:
// constructs
CptEntry (int, vector<int>);
// methods
int getCptIndex (void) const;
vector<int> getDomainInstantiations (void) const;
bool matchConstraints (const vector<pair<int,int> >&) const;
private:
// members
int cptIndex_;
vector<int> instantiations_;
};
#endif // CPT_ENTRY_H

View File

@ -0,0 +1,40 @@
#include <vector>
#include <string>
#include <Distribution.h>
Distribution::Distribution (int id,
double* params,
int nParams,
vector<string> domain)
{
this->id = id;
this->params = params;
this->nParams = nParams;
this->domain = domain;
}
Distribution::Distribution (double* params,
int nParams,
vector<string> domain)
{
this->id = -1;
this->params = params;
this->nParams = nParams;
this->domain = domain;
}
/*
Distribution::~Distribution()
{
delete params;
for (unsigned int i = 0; i < cptEntries.size(); i++) {
delete cptEntries[i];
}
}
*/

View File

@ -0,0 +1,24 @@
#ifndef DISTRIBUTION_H
#define DISTRIBUTION_H
#include <vector>
#include <string>
using namespace std;
class CptEntry;
class Distribution
{
public:
Distribution (int, double*, int, vector<string>);
Distribution (double*, int, vector<string>);
int id;
double* params;
int nParams;
vector<string> domain;
int* offsets;
};
#endif // DISTRIBUTION

View File

@ -0,0 +1,125 @@
#include <iostream>
#include <sstream>
#include <vector>
#include <string>
#include <Yap/YapInterface.h>
#include <BayesianNetwork.h>
#include <BayesianNode.h>
#include <BpNetwork.h>
#include <BpNode.h>
using namespace std;
int addVariables (BayesianNetwork&, YAP_Term, int);
int addDistributions (BayesianNetwork&, YAP_Term, int);
int createNetwork (void)
{
BayesianNetwork* bn = new BpNetwork();
addDistributions (*bn, YAP_ARG3, (int) YAP_IntOfTerm (YAP_ARG4));
addVariables (*bn, YAP_ARG1, (int) YAP_IntOfTerm (YAP_ARG2));
YAP_Int p = (YAP_Int) (bn);
return YAP_Unify (YAP_MkIntTerm (p), YAP_ARG5);
}
int addVariables (BayesianNetwork& bn, YAP_Term varList, int nVars)
{
for (int i = 0; i < nVars; i++) {
YAP_Term var = YAP_HeadOfTerm (varList);
int varId = (int) YAP_IntOfTerm (YAP_ArgOfTerm (1, var));
int distId = (int) YAP_IntOfTerm (YAP_ArgOfTerm (2, var));
YAP_Term parentsList = YAP_ArgOfTerm (3, var);
int nParents = (int) YAP_IntOfTerm (YAP_ArgOfTerm (4, var));
vector<BayesianNode*> parents;
for (int j = 0; j < nParents; j++) {
int parentId = (int) YAP_IntOfTerm (YAP_HeadOfTerm (parentsList));
stringstream parentName;
parentName << parentId;
parents.push_back (bn.getNode (parentName.str()));
parentsList = YAP_TailOfTerm (parentsList);
}
stringstream nodeName;
nodeName << varId;
int evidence = (int) YAP_IntOfTerm (YAP_ArgOfTerm (5, var));
bn.addNode (nodeName.str(), parents, evidence, distId);
varList = YAP_TailOfTerm (varList);
}
return TRUE;
}
int addDistributions (BayesianNetwork& bn, YAP_Term distList, int nDists)
{
for (int i = 0; i < nDists; i++) {
YAP_Term dist = YAP_HeadOfTerm (distList);
int distId = (int) YAP_IntOfTerm (YAP_ArgOfTerm (1, dist));
YAP_Term domainList = YAP_ArgOfTerm (2, dist);
int domainSize = (int) YAP_IntOfTerm (YAP_ArgOfTerm (3, dist));
vector<string> domain (domainSize);
for (int j = 0; j < domainSize; j++) {
YAP_Atom atom = YAP_AtomOfTerm (YAP_HeadOfTerm (domainList));
domain[j] = (char*) YAP_AtomName (atom);;
domainList = YAP_TailOfTerm (domainList);
}
YAP_Term paramsList = YAP_ArgOfTerm (4, dist);
int nParams = (int) YAP_IntOfTerm (YAP_ArgOfTerm (5, dist));
double* params = new double [nParams];
for (int j = 0; j < nParams; j++) {
params[j] = (double) YAP_FloatOfTerm (YAP_HeadOfTerm (paramsList));
paramsList = YAP_TailOfTerm (paramsList);
}
bn.addDistribution (distId, params, nParams, domain);
distList = YAP_TailOfTerm (distList);
}
return TRUE;
}
int runSolver (void)
{
BpNetwork* bn = (BpNetwork*) YAP_IntOfTerm (YAP_ARG1);
YAP_Term queryVarsList = YAP_ARG2;
int nQueryVars = (int) YAP_IntOfTerm (YAP_ARG3);
vector<BayesianNode*> queryVars;
for (int i = 0; i < nQueryVars; i++) {
int queryVarId = (int) YAP_IntOfTerm (YAP_HeadOfTerm (queryVarsList));
stringstream queryVarName;
queryVarName << queryVarId;
queryVars.push_back (bn->getNode (queryVarName.str()));
queryVarsList = YAP_TailOfTerm (queryVarsList);
}
bn->runSolver (queryVars);
vector<double> beliefs = bn->getBeliefs();
YAP_Term beliefsList = YAP_TermNil();
for (int i = beliefs.size() - 1; i >= 0; i--) {
YAP_Term belief = YAP_MkFloatTerm (beliefs[i]);
beliefsList = YAP_MkPairTerm (belief, beliefsList);
}
return YAP_Unify (beliefsList, YAP_ARG4);
}
int freeMemory (void)
{
BpNetwork* bn = (BpNetwork*) YAP_IntOfTerm (YAP_ARG1);
delete bn;
return TRUE;
}
extern "C" void init_predicates (void)
{
YAP_UserCPredicate ("create_network", createNetwork, 5);
YAP_UserCPredicate ("run_solver", runSolver, 4);
YAP_UserCPredicate ("free_memory", freeMemory, 1);
}

View File

@ -0,0 +1,115 @@
#
# default base directory for YAP installation
# (EROOT for architecture-dependent files)
#
GCC = yes
prefix = /usr/local
exec_prefix = ${prefix}
ROOTDIR = $(prefix)
EROOTDIR = ${prefix}
abs_top_builddir = /home/tiago/yap
#
# where the binary should be
#
BINDIR = $(EROOTDIR)/bin
#
# where YAP should look for libraries
#
LIBDIR=${exec_prefix}/lib
YAPLIBDIR=${exec_prefix}/lib/Yap
#
#
CC=gcc
CXX=g++
CXXFLAGS= -shared -fPIC -DBP_FREE -O3 -fomit-frame-pointer -Wall -g -O2 $(YAP_EXTRAS) $(DEFS) -D_YAP_NOT_INSTALLED_=1 -I$(srcdir) -I../../../.. -I$(srcdir)/../../../../include
#
#
# You shouldn't need to change what follows.
#
INSTALL=/usr/bin/install -c
INSTALL_DATA=${INSTALL} -m 644
INSTALL_PROGRAM=${INSTALL}
SHELL=/bin/sh
RANLIB=ranlib
srcdir=.
SO=so
#4.1VPATH=.:./OPTYap
CWD=$(PWD)
HEADERS = \
$(srcdir)/BayesianNetwork.h \
$(srcdir)/BayesianNode.h \
$(srcdir)/BpNetwork.h \
$(srcdir)/BpNode.h \
$(srcdir)/Distribution.h \
$(srcdir)/CptEntry.h \
$(srcdir)/BifInterface.h \
$(srcdir)/xmlParser/xmlParser.h
CPP_SOURCES = \
$(srcdir)/BayesianNetwork.cpp \
$(srcdir)/BayesianNode.cpp \
$(srcdir)/BpNetwork.cpp \
$(srcdir)/BpNode.cpp \
$(srcdir)/Distribution.cpp \
$(srcdir)/CptEntry.cpp \
$(srcdir)/Horus.cpp \
$(srcdir)/BifInterface.cpp \
$(srcdir)/BifTest.cpp \
$(srcdir)/xmlParser/xmlParser.cpp
OBJS = \
BayesianNetwork.o \
BayesianNode.o \
BpNetwork.o \
BpNode.o \
Distribution.o \
CptEntry.o \
Horus.o
BIF_OBJS = \
BayesianNetwork.o \
BayesianNode.o \
BpNetwork.o \
BpNode.o \
Distribution.o \
CptEntry.o \
BifInterface.o \
BifTest.o \
xmlParser/xmlParser.o
SOBJS=horus.so
all: $(SOBJS) biftest
# default rule
%.o : $(srcdir)/%.cpp
$(CXX) -c $(CXXFLAGS) $< -o $@
horus.so: $(OBJS)
g++ -shared -export-dynamic -o horus.so $(OBJS)
biftest: $(BIF_OBJS)
$(CXX) -o biftest $(BIF_OBJS)
install: all
$(INSTALL_PROGRAM) $(SOBJS) $(DESTDIR) $(YAPLIBDIR)
clean:
rm -f *.o *~ $(OBJS) $(SOBJS) *.BAK biftest xmlParser/*.o
depend: $(HEADERS) $(CPP_SOURCES)
-@if test "$(GCC)" = yes; then\
$(CC) -MM -MG $(CFLAGS) -I$(srcdir) -I$(srcdir)/../../../../include -I$(srcdir)/../../../../H $(CPP_SOURCES) >> Makefile;\
else\
makedepend -f - -- $(CFLAGS) -I$(srcdir)/../../../../H -I$(srcdir)/../../../../include -- $(CPP_SOURCES) |\
sed 's|.*/\([^:]*\):|\1:|' >> Makefile ;\
fi
# DO NOT DELETE THIS LINE -- make depend depends on it.

View File

@ -0,0 +1,115 @@
#
# default base directory for YAP installation
# (EROOT for architecture-dependent files)
#
GCC = @GCC@
prefix = @prefix@
exec_prefix = @exec_prefix@
ROOTDIR = $(prefix)
EROOTDIR = @exec_prefix@
abs_top_builddir = @abs_top_builddir@
#
# where the binary should be
#
BINDIR = $(EROOTDIR)/bin
#
# where YAP should look for libraries
#
LIBDIR=@libdir@
YAPLIBDIR=@libdir@/Yap
#
#
CC=@CC@
CXX=@CXX@
CXXFLAGS= @SHLIB_CXXFLAGS@ $(YAP_EXTRAS) $(DEFS) -D_YAP_NOT_INSTALLED_=1 -I$(srcdir) -I../../../.. -I$(srcdir)/../../../../include @CPPFLAGS@
#
#
# You shouldn't need to change what follows.
#
INSTALL=@INSTALL@
INSTALL_DATA=@INSTALL_DATA@
INSTALL_PROGRAM=@INSTALL_PROGRAM@
SHELL=/bin/sh
RANLIB=@RANLIB@
srcdir=@srcdir@
SO=@SO@
#4.1VPATH=@srcdir@:@srcdir@/OPTYap
CWD=$(PWD)
HEADERS = \
$(srcdir)/BayesianNetwork.h \
$(srcdir)/BayesianNode.h \
$(srcdir)/BpNetwork.h \
$(srcdir)/BpNode.h \
$(srcdir)/Distribution.h \
$(srcdir)/CptEntry.h \
$(srcdir)/BifInterface.h \
$(srcdir)/xmlParser/xmlParser.h
CPP_SOURCES = \
$(srcdir)/BayesianNetwork.cpp \
$(srcdir)/BayesianNode.cpp \
$(srcdir)/BpNetwork.cpp \
$(srcdir)/BpNode.cpp \
$(srcdir)/Distribution.cpp \
$(srcdir)/CptEntry.cpp \
$(srcdir)/Horus.cpp \
$(srcdir)/BifInterface.cpp \
$(srcdir)/BifTest.cpp \
$(srcdir)/xmlParser/xmlParser.cpp
OBJS = \
BayesianNetwork.o \
BayesianNode.o \
BpNetwork.o \
BpNode.o \
Distribution.o \
CptEntry.o \
Horus.o
BIF_OBJS = \
BayesianNetwork.o \
BayesianNode.o \
BpNetwork.o \
BpNode.o \
Distribution.o \
CptEntry.o \
BifInterface.o \
BifTest.o \
xmlParser/xmlParser.o
SOBJS=horus.@SO@
all: $(SOBJS) biftest
# default rule
%.o : $(srcdir)/%.cpp
$(CXX) -c $(CXXFLAGS) $< -o $@
@DO_SECOND_LD@horus.@SO@: $(OBJS)
@DO_SECOND_LD@ @SHLIB_CXX_LD@ -o horus.@SO@ $(OBJS)
biftest: $(BIF_OBJS)
$(CXX) -o biftest $(BIF_OBJS)
install: all
$(INSTALL_PROGRAM) $(SOBJS) $(DESTDIR) $(YAPLIBDIR)
clean:
rm -f *.o *~ $(OBJS) $(SOBJS) *.BAK biftest xmlParser/*.o
depend: $(HEADERS) $(CPP_SOURCES)
-@if test "$(GCC)" = yes; then\
$(CC) -MM -MG $(CFLAGS) -I$(srcdir) -I$(srcdir)/../../../../include -I$(srcdir)/../../../../H $(CPP_SOURCES) >> Makefile;\
else\
makedepend -f - -- $(CFLAGS) -I$(srcdir)/../../../../H -I$(srcdir)/../../../../include -- $(CPP_SOURCES) |\
sed 's|.*/\([^:]*\):|\1:|' >> Makefile ;\
fi
# DO NOT DELETE THIS LINE -- make depend depends on it.

BIN
packages/CLPBN/clpbn/bp/biftest Executable file

Binary file not shown.

View File

@ -0,0 +1,102 @@
<?xml version="1.0" encoding="US-ASCII"?>
<!--
Bayesian network in XMLBIF v0.3 (BayesNet Interchange Format)
Produced by JavaBayes (http://www.cs.cmu.edu/~javabayes/
Output created Wed Aug 12 21:16:40 GMT+01:00 1998
-->
<!-- DTD for the XMLBIF 0.3 format -->
<!DOCTYPE BIF [
<!ELEMENT BIF ( NETWORK )*>
<!ATTLIST BIF VERSION CDATA #REQUIRED>
<!ELEMENT NETWORK ( NAME, ( PROPERTY | VARIABLE | DEFINITION )* )>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT VARIABLE ( NAME, ( OUTCOME | PROPERTY )* ) >
<!ATTLIST VARIABLE TYPE (nature|decision|utility) "nature">
<!ELEMENT OUTCOME (#PCDATA)>
<!ELEMENT DEFINITION ( FOR | GIVEN | TABLE | PROPERTY )* >
<!ELEMENT FOR (#PCDATA)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT TABLE (#PCDATA)>
<!ELEMENT PROPERTY (#PCDATA)>
]>
<BIF VERSION="0.3">
<NETWORK>
<NAME>Dog-Problem</NAME>
<!-- Variables -->
<VARIABLE TYPE="nature">
<NAME>light-on</NAME>
<OUTCOME>true</OUTCOME>
<OUTCOME>false</OUTCOME>
<PROPERTY>position = (73, 165)</PROPERTY>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>bowel-problem</NAME>
<OUTCOME>true</OUTCOME>
<OUTCOME>false</OUTCOME>
<PROPERTY>position = (190, 69)</PROPERTY>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>dog-out</NAME>
<OUTCOME>true</OUTCOME>
<OUTCOME>false</OUTCOME>
<PROPERTY>position = (155, 165)</PROPERTY>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>hear-bark</NAME>
<OUTCOME>true</OUTCOME>
<OUTCOME>false</OUTCOME>
<PROPERTY>position = (154, 241)</PROPERTY>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>family-out</NAME>
<OUTCOME>true</OUTCOME>
<OUTCOME>false</OUTCOME>
<PROPERTY>position = (112, 69)</PROPERTY>
</VARIABLE>
<!-- Probability distributions -->
<DEFINITION>
<FOR>light-on</FOR>
<GIVEN>family-out</GIVEN>
<TABLE>0.6 0.4 0.05 0.95 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>bowel-problem</FOR>
<TABLE>0.01 0.99 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>dog-out</FOR>
<GIVEN>bowel-problem</GIVEN>
<GIVEN>family-out</GIVEN>
<TABLE>0.99 0.01 0.97 0.03 0.9 0.1 0.3 0.7 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>hear-bark</FOR>
<GIVEN>dog-out</GIVEN>
<TABLE>0.7 0.3 0.01 0.99 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>family-out</FOR>
<TABLE>0.15 0.85 </TABLE>
</DEFINITION>
</NETWORK>
</BIF>

View File

@ -0,0 +1,106 @@
<?XML VERSION="1.0"?>
<!--
Bayesian network in BIF (BayesNet Interchange Format)
Produced by JavaBayes (http://www.cs.cmu.edu/~javabayes/
Output created Fri Nov 14 13:14:15 GMT+00:00 1997
-->
<!-- DTD for the BIF format -->
<!DOCTYPE BIF [
<!ELEMENT PROPERTY (#PCDATA)>
<!ELEMENT TYPE (#PCDATA)>
<!ELEMENT VALUE (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT NETWORK
( NAME, ( PROPERTY | VARIABLE | PROBABILITY )* )>
<!ELEMENT VARIABLE ( NAME, TYPE, ( VALUE | PROPERTY )* ) >
<!ELEMENT PROBABILITY
( FOR | GIVEN | TABLE | ENTRY | DEFAULT | PROPERTY )* >
<!ELEMENT TABLE (#PCDATA)>
<!ELEMENT DEFAULT (TABLE)>
<!ELEMENT ENTRY ( VALUE* , TABLE )>
]>
<BIF>
<NETWORK>
<NAME>John-Mary-Call</NAME>
<!-- Variables -->
<VARIABLE>
<NAME>Burglary</NAME>
<TYPE>discrete</TYPE>
<VALUE>False</VALUE>
<VALUE>True</VALUE>
<PROPERTY>position = (145, 114)</PROPERTY>
</VARIABLE>
<VARIABLE>
<NAME>Earthquake</NAME>
<TYPE>discrete</TYPE>
<VALUE>False</VALUE>
<VALUE>True</VALUE>
<PROPERTY>position = (351, 110)</PROPERTY>
</VARIABLE>
<VARIABLE>
<NAME>Alarm</NAME>
<TYPE>discrete</TYPE>
<VALUE>False</VALUE>
<VALUE>True</VALUE>
<PROPERTY>position = (253, 224)</PROPERTY>
</VARIABLE>
<VARIABLE>
<NAME>JohnCalls</NAME>
<TYPE>discrete</TYPE>
<VALUE>False</VALUE>
<VALUE>True</VALUE>
<PROPERTY>position = (156, 343)</PROPERTY>
</VARIABLE>
<VARIABLE>
<NAME>MaryCalls</NAME>
<TYPE>discrete</TYPE>
<VALUE>False</VALUE>
<VALUE>True</VALUE>
<PROPERTY>position = (344, 341)</PROPERTY>
</VARIABLE>
<!-- Probability distributions -->
<PROBABILITY>
<FOR>Burglary</FOR>
<TABLE>0.999 0.0010 </TABLE>
</PROBABILITY>
<PROBABILITY>
<FOR>Earthquake</FOR>
<TABLE>0.998 0.0020 </TABLE>
</PROBABILITY>
<PROBABILITY>
<FOR>Alarm</FOR>
<GIVEN>Burglary</GIVEN>
<GIVEN>Earthquake</GIVEN>
<TABLE>0.999 0.71 0.06 0.05 0.0010 0.29 0.94 0.95 </TABLE>
</PROBABILITY>
<PROBABILITY>
<FOR>JohnCalls</FOR>
<GIVEN>Alarm</GIVEN>
<TABLE>0.95 0.1 0.05 0.9 </TABLE>
</PROBABILITY>
<PROBABILITY>
<FOR>MaryCalls</FOR>
<GIVEN>Alarm</GIVEN>
<TABLE>0.99 0.3 0.01 0.7 </TABLE>
</PROBABILITY>
</BIF>

View File

@ -0,0 +1,116 @@
<?xml version="1.0" encoding="US-ASCII"?>
<BIF VERSION="0.3">
<NETWORK>
<NAME>Test</NAME>
<VARIABLE TYPE="nature">
<NAME>A</NAME>
<OUTCOME>a1</OUTCOME>
<OUTCOME>a2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>B</NAME>
<OUTCOME>b1</OUTCOME>
<OUTCOME>b2</OUTCOME>
<OUTCOME>b3</OUTCOME>
<OUTCOME>b4</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>C</NAME>
<OUTCOME>c1</OUTCOME>
<OUTCOME>c2</OUTCOME>
<OUTCOME>c3</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>D</NAME>
<OUTCOME>d1</OUTCOME>
<OUTCOME>d2</OUTCOME>
<OUTCOME>d3</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>E</NAME>
<OUTCOME>e1</OUTCOME>
<OUTCOME>e2</OUTCOME>
<OUTCOME>e3</OUTCOME>
<OUTCOME>e4</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>F</NAME>
<OUTCOME>f1</OUTCOME>
<OUTCOME>f2</OUTCOME>
<OUTCOME>f3</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>G</NAME>
<OUTCOME>g1</OUTCOME>
<OUTCOME>g2</OUTCOME>
</VARIABLE>
<DEFINITION>
<FOR>A</FOR>
<TABLE> .1 .2 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>B</FOR>
<TABLE> .01 .02 .03 .04 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>C</FOR>
<TABLE> .11 .22 .33 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>D</FOR>
<GIVEN>A</GIVEN>
<GIVEN>B</GIVEN>
<GIVEN>C</GIVEN>
<TABLE>
.522 .008 .99 .01 .2 .8 .003 .457 .423 .007 .92 .04 .5 .232 .033 .227 .112 .048 .91 .21 .24 .18 .005 .227
.212 .04 .59 .21 .6 .1 .023 .215 .913 .017 .96 .01 .55 .422 .013 .417 .272 .068 .61 .11 .26 .28 .205 .322
.142 .028 .19 .11 .5 .67 .013 .437 .163 .067 .12 .06 .1 .262 .063 .167 .512 .028 .11 .41 .14 .68 .015 .92
</TABLE>
</DEFINITION>
<DEFINITION>
<FOR>E</FOR>
<GIVEN>D</GIVEN>
<TABLE>
.111 .11 .1
.222 .22 .2
.333 .33 .3
.444 .44 .4
</TABLE>
</DEFINITION>
<DEFINITION>
<FOR>F</FOR>
<GIVEN>D</GIVEN>
<TABLE>
.112 .111 .110
.223 .222 .221
.334 .333 .332
</TABLE>
</DEFINITION>
<DEFINITION>
<FOR>G</FOR>
<GIVEN>D</GIVEN>
<TABLE>
.101 .102 .103
.201 .202 .203
</TABLE>
</DEFINITION>
</NETWORK>
</BIF>

View File

@ -0,0 +1,84 @@
<?xml version="1.0" encoding="US-ASCII"?>
<!--
H
/ \
/ \
B L
\ / \
\ / \
F C
-->
<BIF VERSION="0.3">
<NETWORK>
<NAME>Multiconnected</NAME>
<!-- Variables -->
<VARIABLE TYPE="nature">
<NAME>H</NAME>
<OUTCOME>h1</OUTCOME>
<OUTCOME>h2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>B</NAME>
<OUTCOME>b1</OUTCOME>
<OUTCOME>b2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>L</NAME>
<OUTCOME>l1</OUTCOME>
<OUTCOME>l2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>F</NAME>
<OUTCOME>f1</OUTCOME>
<OUTCOME>f2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>C</NAME>
<OUTCOME>c1</OUTCOME>
<OUTCOME>c2</OUTCOME>
</VARIABLE>
<DEFINITION>
<FOR>H</FOR>
<TABLE> .2 .8 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>B</FOR>
<GIVEN>H</GIVEN>
<TABLE> .25 .75 .05 .95 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>L</FOR>
<GIVEN>H</GIVEN>
<TABLE> .003 .997 .00005 .99995 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>F</FOR>
<GIVEN>B</GIVEN>
<GIVEN>L</GIVEN>
<TABLE> .75 .25 .1 .9 .5 .5 .05 .95 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>C</FOR>
<GIVEN>L</GIVEN>
<TABLE> .6 .4 .02 .98 </TABLE>
</DEFINITION>
</NETWORK>
</BIF>

View File

@ -0,0 +1,59 @@
:- use_module(library(clpbn)).
:- set_clpbn_flag(solver, bp).
% H
% / \
% / \
% B L
% \ / \
% \ / \
% F C
h(H) :-
h_table(HDist),
{ H = h with p([h1, h2], HDist) }.
b(B) :-
h(H),
b_table(BDist),
{ B = b with p([b1, b2], BDist, [H]) }.
l(L) :-
h(H),
l_table(LDist),
{ L = l with p([l1, l2], LDist, [H]) }.
f(F) :-
b(B),
l(L),
f_table(FDist),
{ F = f with p([f1, f2], FDist, [B, L]) }.
c(C) :-
l(L),
c_table(CDist),
{ C = c with p([c1, c2], CDist, [L]) }.
h_table([0.2, 0.8]).
b_table([0.25, 0.05,
0.75, 0.95]).
l_table([0.003, 0.00005,
0.997, 0.99995]).
f_table([0.75, 0.1, 0.5, 0.05,
0.25, 0.9, 0.5, 0.95]).
c_table([0.6, 0.02,
0.4, 0.98]).

View File

@ -0,0 +1,52 @@
<?xml version="1.0" encoding="US-ASCII"?>
<!--
Bayesian network in XMLBIF v0.3 (BayesNet Interchange Format)
Produced by JavaBayes (http://www.cs.cmu.edu/~javabayes/
Output created Wed Aug 12 21:16:40 GMT+01:00 1998
-->
<BIF VERSION="0.3">
<NETWORK>
<NAME>Neapolitan</NAME>
<!-- Variables -->
<VARIABLE TYPE="nature">
<NAME>Burglar</NAME>
<OUTCOME>b1</OUTCOME>
<OUTCOME>b2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>FreightTruck</NAME>
<OUTCOME>f1</OUTCOME>
<OUTCOME>f2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>Alarm</NAME>
<OUTCOME>a1</OUTCOME>
<OUTCOME>a2</OUTCOME>
</VARIABLE>
<DEFINITION>
<FOR>Burglar</FOR>
<TABLE> .005 .995 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>FreightTruck</FOR>
<TABLE> .03 .97 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>Alarm</FOR>
<GIVEN>Burglar</GIVEN>
<GIVEN>FreightTruck</GIVEN>
<TABLE> .992 .008 .99 .01 .2 .8 .003 .997 </TABLE>
</DEFINITION>
</NETWORK>
</BIF>

View File

@ -0,0 +1,35 @@
:- use_module(library(clpbn)).
:- set_clpbn_flag(solver, bp).
% B F
% \ /
% \ /
% A
a(A) :-
b(B),
f(F),
a_table(ADist),
{ A = a with p([a1, a2], ADist, [B, F]) }.
b(B) :-
b_table(BDist),
{ B = b with p([b1, b2], BDist) }.
f(F) :-
f_table(FDist),
{ F = f with p([f1, f2], FDist) }.
b_table([0.005, 0.995]).
f_table([0.03, 0.97]).
a_table([0.992, 0.99, 0.2, 0.003,
0.008, 0.01, 0.8, 0.997]).

View File

@ -0,0 +1,57 @@
<?xml version="1.0" encoding="US-ASCII"?>
<BIF VERSION="0.3">
<NETWORK>
<NAME>Simple Loop</NAME>
<VARIABLE TYPE="nature">
<NAME>A</NAME>
<OUTCOME>a1</OUTCOME>
<OUTCOME>a2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>B</NAME>
<OUTCOME>b1</OUTCOME>
<OUTCOME>b2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>C</NAME>
<OUTCOME>c1</OUTCOME>
<OUTCOME>c2</OUTCOME>
</VARIABLE>
<VARIABLE TYPE="nature">
<NAME>D</NAME>
<OUTCOME>d1</OUTCOME>
<OUTCOME>d2</OUTCOME>
</VARIABLE>
<DEFINITION>
<FOR>A</FOR>
<TABLE> .01 .09 </TABLE>
</DEFINITION>
<DEFINITION>
<FOR>B</FOR>
<GIVEN>A</GIVEN>
<TABLE> .03 .97 .6 .4</TABLE>
</DEFINITION>
<DEFINITION>
<FOR>C</FOR>
<GIVEN>A</GIVEN>
<TABLE> .24 .76 .12 .88</TABLE>
</DEFINITION>
<DEFINITION>
<FOR>D</FOR>
<GIVEN>B</GIVEN>
<GIVEN>C</GIVEN>
<TABLE> .2 .8 .7 .3 .45 .55 .22 .78 </TABLE>
</DEFINITION>
</NETWORK>
</BIF>

View File

@ -0,0 +1,36 @@
:- use_module(library(clpbn)).
:- set_clpbn_flag(solver, bp).
% B F
% \ /
% \ /
% A
a(A) :-
b(B),
f(F),
a_table(ADist),
{ A = a with p([a1, a2, a3], ADist, [B, F]) }.
b(B) :-
b_table(BDist),
{ B = b with p([b1, b2], BDist) }.
f(F) :-
f_table(FDist),
{ F = f with p([f1, f2], FDist) }.
b_table([0.005, 0.995]).
f_table([0.03, 0.97]).
a_table([0.992, 0.99, 0.2, 0.003,
0.008, 0.01, 0.8, 0.997,
0.018, 0.21, 0.2, 0.927]).

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,762 @@
Variable: Burglar
Domain: b1, b2
Parents:
Childs: Alarm
cpt
----------------
b1 0.005
b2 0.995
Variable: FreightTruck
Domain: f1, f2
Parents:
Childs: Alarm
cpt
----------------
f1 0.03
f2 0.97
Variable: Alarm
Domain: a1, a2
Parents: Burglar, FreightTruck
Childs:
cpt b1,f1 b1,f2 b2,f1 b2,f2
----------------------------------------------------
a1 0.992 0.99 0.2 0.003
a2 0.008 0.01 0.8 0.997
Variable: Burglar
Domain: b1, b2
Parents:
Childs: Alarm
cpt
----------------
b1 0.005
b2 0.995
Variable: FreightTruck
Domain: f1, f2
Parents:
Childs: Alarm, _Jn
cpt
----------------
f1 0.03
f2 0.97
Variable: Alarm
Domain: a1, a2
Parents: Burglar, FreightTruck
Childs: _Jn
cpt b1,f1 b1,f2 b2,f1 b2,f2
----------------------------------------------------
a1 0.992 0.99 0.2 0.003
a2 0.008 0.01 0.8 0.997
Variable: _Jn
Domain: _jn0, _jn1, _jn2, _jn3
Parents: FreightTruck, Alarm
Childs:
cpt f1,a1 f1,a2 f2,a1 f2,a2
----------------------------------------------------
_jn0 1 0 0 0
_jn1 0 1 0 0
_jn2 0 0 1 0
_jn3 0 0 0 1
The graph is not single connected. Iterative belief propagation will be used.
Initializing solver
-> schedule = parallel
-> max iters = 100
-> stable threashold = 1e-20
-> query vars = FreightTruck Alarm
domain π(Burglar) λ(Burglar) belief
----------------------------------------------------------------
b1 1 1 0.5
b2 1 1 0.5
domain πAlarm(Burglar) λAlarm(Burglar)
----------------------------------------------------------------
b1 0.5 0.5
b2 0.5 0.5
domain π(FreightTruck) λ(FreightTruck) belief
----------------------------------------------------------------
f1 1 1 0.5
f2 1 1 0.5
domain πAlarm(FreightTruck) λAlarm(FreightTruck)
----------------------------------------------------------------
f1 0.5 0.5
f2 0.5 0.5
domain π_Jn(FreightTruck) λ_Jn(FreightTruck)
----------------------------------------------------------------
f1 0.5 0.5
f2 0.5 0.5
domain π(Alarm) λ(Alarm) belief
----------------------------------------------------------------
a1 1 1 0.5
a2 1 1 0.5
domain π_Jn(Alarm) λ_Jn(Alarm)
----------------------------------------------------------------
a1 0.5 0.5
a2 0.5 0.5
domain π(_Jn) λ(_Jn) belief
----------------------------------------------------------------
_jn0 1 1 0.25
_jn1 1 1 0.25
_jn2 1 1 0.25
_jn3 1 1 0.25
********************************************************************************
Iteration 1
********************************************************************************
λ message Alarm --> Burglar
λAlarm(b1)
= [p(a1|b1,f1).πAlarm(f1) + p(a1|b1,f2).πAlarm(f2)].λ(a1)
+ [p(a2|b1,f1).πAlarm(f1) + p(a2|b1,f2).πAlarm(f2)].λ(a2)
= [(0.992x0.5) + (0.99x0.5)]x1
+ [(0.008x0.5) + (0.01x0.5)]x1 = 1
λAlarm(b2)
= [p(a1|b2,f1).πAlarm(f1) + p(a1|b2,f2).πAlarm(f2)].λ(a1)
+ [p(a2|b2,f1).πAlarm(f1) + p(a2|b2,f2).πAlarm(f2)].λ(a2)
= [(0.2x0.5) + (0.003x0.5)]x1
+ [(0.8x0.5) + (0.997x0.5)]x1 = 1
λ message Alarm --> FreightTruck
λAlarm(f1)
= [p(a1|b1,f1).πAlarm(b1) + p(a1|b2,f1).πAlarm(b2)].λ(a1)
+ [p(a2|b1,f1).πAlarm(b1) + p(a2|b2,f1).πAlarm(b2)].λ(a2)
= [(0.992x0.5) + (0.2x0.5)]x1
+ [(0.008x0.5) + (0.8x0.5)]x1 = 1
λAlarm(f2)
= [p(a1|b1,f2).πAlarm(b1) + p(a1|b2,f2).πAlarm(b2)].λ(a1)
+ [p(a2|b1,f2).πAlarm(b1) + p(a2|b2,f2).πAlarm(b2)].λ(a2)
= [(0.99x0.5) + (0.003x0.5)]x1
+ [(0.01x0.5) + (0.997x0.5)]x1 = 1
λ message _Jn --> FreightTruck
λ_Jn(f1)
= [p(_jn0|f1,a1).π_Jn(a1) + p(_jn0|f1,a2).π_Jn(a2)].λ(_jn0)
+ [p(_jn1|f1,a1).π_Jn(a1) + p(_jn1|f1,a2).π_Jn(a2)].λ(_jn1)
+ [p(_jn2|f1,a1).π_Jn(a1) + p(_jn2|f1,a2).π_Jn(a2)].λ(_jn2)
+ [p(_jn3|f1,a1).π_Jn(a1) + p(_jn3|f1,a2).π_Jn(a2)].λ(_jn3)
= [(1x0.5) + (0x0.5)]x1
+ [(0x0.5) + (1x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1 = 1
λ_Jn(f2)
= [p(_jn0|f2,a1).π_Jn(a1) + p(_jn0|f2,a2).π_Jn(a2)].λ(_jn0)
+ [p(_jn1|f2,a1).π_Jn(a1) + p(_jn1|f2,a2).π_Jn(a2)].λ(_jn1)
+ [p(_jn2|f2,a1).π_Jn(a1) + p(_jn2|f2,a2).π_Jn(a2)].λ(_jn2)
+ [p(_jn3|f2,a1).π_Jn(a1) + p(_jn3|f2,a2).π_Jn(a2)].λ(_jn3)
= [(0x0.5) + (0x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1
+ [(1x0.5) + (0x0.5)]x1
+ [(0x0.5) + (1x0.5)]x1 = 1
λ message _Jn --> Alarm
λ_Jn(a1)
= [p(_jn0|f1,a1).π_Jn(f1) + p(_jn0|f2,a1).π_Jn(f2)].λ(_jn0)
+ [p(_jn1|f1,a1).π_Jn(f1) + p(_jn1|f2,a1).π_Jn(f2)].λ(_jn1)
+ [p(_jn2|f1,a1).π_Jn(f1) + p(_jn2|f2,a1).π_Jn(f2)].λ(_jn2)
+ [p(_jn3|f1,a1).π_Jn(f1) + p(_jn3|f2,a1).π_Jn(f2)].λ(_jn3)
= [(1x0.5) + (0x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1
+ [(0x0.5) + (1x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1 = 1
λ_Jn(a2)
= [p(_jn0|f1,a2).π_Jn(f1) + p(_jn0|f2,a2).π_Jn(f2)].λ(_jn0)
+ [p(_jn1|f1,a2).π_Jn(f1) + p(_jn1|f2,a2).π_Jn(f2)].λ(_jn1)
+ [p(_jn2|f1,a2).π_Jn(f1) + p(_jn2|f2,a2).π_Jn(f2)].λ(_jn2)
+ [p(_jn3|f1,a2).π_Jn(f1) + p(_jn3|f2,a2).π_Jn(f2)].λ(_jn3)
= [(0x0.5) + (0x0.5)]x1
+ [(1x0.5) + (0x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1
+ [(0x0.5) + (1x0.5)]x1 = 1
π message Burglar --> Alarm
πAlarm(b1) = π(b1) = 0.005 = 0.005
πAlarm(b2) = π(b2) = 0.995 = 0.995
π message FreightTruck --> Alarm
πAlarm(f1) = π(f1).λ_Jn(f1) = 0.03 x 0.5 = 0.015
πAlarm(f2) = π(f2).λ_Jn(f2) = 0.97 x 0.5 = 0.485
π message FreightTruck --> _Jn
π_Jn(f1) = π(f1).λAlarm(f1) = 0.03 x 0.5 = 0.015
π_Jn(f2) = π(f2).λAlarm(f2) = 0.97 x 0.5 = 0.485
π message Alarm --> _Jn
π_Jn(a1) = π(a1) = 1 = 1
π_Jn(a2) = π(a2) = 1 = 1
var Burglar:
π(b1)
= p(b1)
= (0.005) = 0.005
π(b2)
= p(b2)
= (0.995) = 0.995
λ(b1) = λAlarm(b1) = 0.5 = 0.5
λ(b2) = λAlarm(b2) = 0.5 = 0.5
belief change = 1
var FreightTruck:
π(f1)
= p(f1)
= (0.03) = 0.03
π(f2)
= p(f2)
= (0.97) = 0.97
λ(f1) = λAlarm(f1).λ_Jn(f1) = 0.5 x 0.5 = 0.25
λ(f2) = λAlarm(f2).λ_Jn(f2) = 0.5 x 0.5 = 0.25
belief change = 1
var Alarm:
π(a1)
= p(a1|b1,f1).πAlarm(b1).πAlarm(f1)
+ p(a1|b1,f2).πAlarm(b1).πAlarm(f2)
+ p(a1|b2,f1).πAlarm(b2).πAlarm(f1)
+ p(a1|b2,f2).πAlarm(b2).πAlarm(f2)
= (0.992x0.005x0.03)
+ (0.99x0.005x0.97)
+ (0.2x0.995x0.03)
+ (0.003x0.995x0.97) = 0.01381575
π(a2)
= p(a2|b1,f1).πAlarm(b1).πAlarm(f1)
+ p(a2|b1,f2).πAlarm(b1).πAlarm(f2)
+ p(a2|b2,f1).πAlarm(b2).πAlarm(f1)
+ p(a2|b2,f2).πAlarm(b2).πAlarm(f2)
= (0.008x0.005x0.03)
+ (0.01x0.005x0.97)
+ (0.8x0.995x0.03)
+ (0.997x0.995x0.97) = 0.98618425
λ(a1) = λ_Jn(a1) = 0.5 = 0.5
λ(a2) = λ_Jn(a2) = 0.5 = 0.5
belief change = 1
var _Jn:
π(_jn0)
= p(_jn0|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn0|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn0|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn0|f2,a2).π_Jn(f2).π_Jn(a2)
= (1x0.03x0.5)
+ (0x0.03x0.5)
+ (0x0.97x0.5)
+ (0x0.97x0.5) = 0.015
π(_jn1)
= p(_jn1|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn1|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn1|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn1|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.5)
+ (1x0.03x0.5)
+ (0x0.97x0.5)
+ (0x0.97x0.5) = 0.015
π(_jn2)
= p(_jn2|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn2|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn2|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn2|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.5)
+ (0x0.03x0.5)
+ (1x0.97x0.5)
+ (0x0.97x0.5) = 0.485
π(_jn3)
= p(_jn3|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn3|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn3|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn3|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.5)
+ (0x0.03x0.5)
+ (0x0.97x0.5)
+ (1x0.97x0.5) = 0.485
λ(_jn0) = 1
λ(_jn1) = 1
λ(_jn2) = 1
λ(_jn3) = 1
belief change = 1
domain π(Burglar) λ(Burglar) belief
----------------------------------------------------------------
b1 0.005 0.5 0.005
b2 0.995 0.5 0.995
domain πAlarm(Burglar) λAlarm(Burglar)
----------------------------------------------------------------
b1 0.005 0.5
b2 0.995 0.5
domain π(FreightTruck) λ(FreightTruck) belief
----------------------------------------------------------------
f1 0.03 0.25 0.03
f2 0.97 0.25 0.97
domain πAlarm(FreightTruck) λAlarm(FreightTruck)
----------------------------------------------------------------
f1 0.03 0.5
f2 0.97 0.5
domain π_Jn(FreightTruck) λ_Jn(FreightTruck)
----------------------------------------------------------------
f1 0.03 0.5
f2 0.97 0.5
domain π(Alarm) λ(Alarm) belief
----------------------------------------------------------------
a1 0.01381575 0.5 0.01381575
a2 0.98618425 0.5 0.98618425
domain π_Jn(Alarm) λ_Jn(Alarm)
----------------------------------------------------------------
a1 0.5 0.5
a2 0.5 0.5
domain π(_Jn) λ(_Jn) belief
----------------------------------------------------------------
_jn0 0.015 1 0.015
_jn1 0.015 1 0.015
_jn2 0.485 1 0.485
_jn3 0.485 1 0.485
********************************************************************************
Iteration 2
********************************************************************************
λ message Alarm --> Burglar
λAlarm(b1)
= [p(a1|b1,f1).πAlarm(f1) + p(a1|b1,f2).πAlarm(f2)].λ(a1)
+ [p(a2|b1,f1).πAlarm(f1) + p(a2|b1,f2).πAlarm(f2)].λ(a2)
= [(0.992x0.03) + (0.99x0.97)]x0.5
+ [(0.008x0.03) + (0.01x0.97)]x0.5 = 0.5
λAlarm(b2)
= [p(a1|b2,f1).πAlarm(f1) + p(a1|b2,f2).πAlarm(f2)].λ(a1)
+ [p(a2|b2,f1).πAlarm(f1) + p(a2|b2,f2).πAlarm(f2)].λ(a2)
= [(0.2x0.03) + (0.003x0.97)]x0.5
+ [(0.8x0.03) + (0.997x0.97)]x0.5 = 0.5
λ message Alarm --> FreightTruck
λAlarm(f1)
= [p(a1|b1,f1).πAlarm(b1) + p(a1|b2,f1).πAlarm(b2)].λ(a1)
+ [p(a2|b1,f1).πAlarm(b1) + p(a2|b2,f1).πAlarm(b2)].λ(a2)
= [(0.992x0.005) + (0.2x0.995)]x0.5
+ [(0.008x0.005) + (0.8x0.995)]x0.5 = 0.5
λAlarm(f2)
= [p(a1|b1,f2).πAlarm(b1) + p(a1|b2,f2).πAlarm(b2)].λ(a1)
+ [p(a2|b1,f2).πAlarm(b1) + p(a2|b2,f2).πAlarm(b2)].λ(a2)
= [(0.99x0.005) + (0.003x0.995)]x0.5
+ [(0.01x0.005) + (0.997x0.995)]x0.5 = 0.5
λ message _Jn --> FreightTruck
λ_Jn(f1)
= [p(_jn0|f1,a1).π_Jn(a1) + p(_jn0|f1,a2).π_Jn(a2)].λ(_jn0)
+ [p(_jn1|f1,a1).π_Jn(a1) + p(_jn1|f1,a2).π_Jn(a2)].λ(_jn1)
+ [p(_jn2|f1,a1).π_Jn(a1) + p(_jn2|f1,a2).π_Jn(a2)].λ(_jn2)
+ [p(_jn3|f1,a1).π_Jn(a1) + p(_jn3|f1,a2).π_Jn(a2)].λ(_jn3)
= [(1x0.5) + (0x0.5)]x1
+ [(0x0.5) + (1x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1 = 1
λ_Jn(f2)
= [p(_jn0|f2,a1).π_Jn(a1) + p(_jn0|f2,a2).π_Jn(a2)].λ(_jn0)
+ [p(_jn1|f2,a1).π_Jn(a1) + p(_jn1|f2,a2).π_Jn(a2)].λ(_jn1)
+ [p(_jn2|f2,a1).π_Jn(a1) + p(_jn2|f2,a2).π_Jn(a2)].λ(_jn2)
+ [p(_jn3|f2,a1).π_Jn(a1) + p(_jn3|f2,a2).π_Jn(a2)].λ(_jn3)
= [(0x0.5) + (0x0.5)]x1
+ [(0x0.5) + (0x0.5)]x1
+ [(1x0.5) + (0x0.5)]x1
+ [(0x0.5) + (1x0.5)]x1 = 1
λ message _Jn --> Alarm
λ_Jn(a1)
= [p(_jn0|f1,a1).π_Jn(f1) + p(_jn0|f2,a1).π_Jn(f2)].λ(_jn0)
+ [p(_jn1|f1,a1).π_Jn(f1) + p(_jn1|f2,a1).π_Jn(f2)].λ(_jn1)
+ [p(_jn2|f1,a1).π_Jn(f1) + p(_jn2|f2,a1).π_Jn(f2)].λ(_jn2)
+ [p(_jn3|f1,a1).π_Jn(f1) + p(_jn3|f2,a1).π_Jn(f2)].λ(_jn3)
= [(1x0.03) + (0x0.97)]x1
+ [(0x0.03) + (0x0.97)]x1
+ [(0x0.03) + (1x0.97)]x1
+ [(0x0.03) + (0x0.97)]x1 = 1
λ_Jn(a2)
= [p(_jn0|f1,a2).π_Jn(f1) + p(_jn0|f2,a2).π_Jn(f2)].λ(_jn0)
+ [p(_jn1|f1,a2).π_Jn(f1) + p(_jn1|f2,a2).π_Jn(f2)].λ(_jn1)
+ [p(_jn2|f1,a2).π_Jn(f1) + p(_jn2|f2,a2).π_Jn(f2)].λ(_jn2)
+ [p(_jn3|f1,a2).π_Jn(f1) + p(_jn3|f2,a2).π_Jn(f2)].λ(_jn3)
= [(0x0.03) + (0x0.97)]x1
+ [(1x0.03) + (0x0.97)]x1
+ [(0x0.03) + (0x0.97)]x1
+ [(0x0.03) + (1x0.97)]x1 = 1
π message Burglar --> Alarm
πAlarm(b1) = π(b1) = 0.005 = 0.005
πAlarm(b2) = π(b2) = 0.995 = 0.995
π message FreightTruck --> Alarm
πAlarm(f1) = π(f1).λ_Jn(f1) = 0.03 x 0.5 = 0.015
πAlarm(f2) = π(f2).λ_Jn(f2) = 0.97 x 0.5 = 0.485
π message FreightTruck --> _Jn
π_Jn(f1) = π(f1).λAlarm(f1) = 0.03 x 0.5 = 0.015
π_Jn(f2) = π(f2).λAlarm(f2) = 0.97 x 0.5 = 0.485
π message Alarm --> _Jn
π_Jn(a1) = π(a1) = 0.0138158 = 0.01381575
π_Jn(a2) = π(a2) = 0.986184 = 0.98618425
var Burglar:
π(b1)
= p(b1)
= (0.005) = 0.005
π(b2)
= p(b2)
= (0.995) = 0.995
λ(b1) = λAlarm(b1) = 0.5 = 0.5
λ(b2) = λAlarm(b2) = 0.5 = 0.5
belief change = 8.67361738e-19
var FreightTruck:
π(f1)
= p(f1)
= (0.03) = 0.03
π(f2)
= p(f2)
= (0.97) = 0.97
λ(f1) = λAlarm(f1).λ_Jn(f1) = 0.5 x 0.5 = 0.25
λ(f2) = λAlarm(f2).λ_Jn(f2) = 0.5 x 0.5 = 0.25
belief change = 0
var Alarm:
π(a1)
= p(a1|b1,f1).πAlarm(b1).πAlarm(f1)
+ p(a1|b1,f2).πAlarm(b1).πAlarm(f2)
+ p(a1|b2,f1).πAlarm(b2).πAlarm(f1)
+ p(a1|b2,f2).πAlarm(b2).πAlarm(f2)
= (0.992x0.005x0.03)
+ (0.99x0.005x0.97)
+ (0.2x0.995x0.03)
+ (0.003x0.995x0.97) = 0.01381575
π(a2)
= p(a2|b1,f1).πAlarm(b1).πAlarm(f1)
+ p(a2|b1,f2).πAlarm(b1).πAlarm(f2)
+ p(a2|b2,f1).πAlarm(b2).πAlarm(f1)
+ p(a2|b2,f2).πAlarm(b2).πAlarm(f2)
= (0.008x0.005x0.03)
+ (0.01x0.005x0.97)
+ (0.8x0.995x0.03)
+ (0.997x0.995x0.97) = 0.98618425
λ(a1) = λ_Jn(a1) = 0.5 = 0.5
λ(a2) = λ_Jn(a2) = 0.5 = 0.5
belief change = 0
var _Jn:
π(_jn0)
= p(_jn0|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn0|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn0|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn0|f2,a2).π_Jn(f2).π_Jn(a2)
= (1x0.03x0.0138158)
+ (0x0.03x0.986184)
+ (0x0.97x0.0138158)
+ (0x0.97x0.986184) = 0.0004144725
π(_jn1)
= p(_jn1|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn1|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn1|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn1|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.0138158)
+ (1x0.03x0.986184)
+ (0x0.97x0.0138158)
+ (0x0.97x0.986184) = 0.0295855275
π(_jn2)
= p(_jn2|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn2|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn2|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn2|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.0138158)
+ (0x0.03x0.986184)
+ (1x0.97x0.0138158)
+ (0x0.97x0.986184) = 0.0134012775
π(_jn3)
= p(_jn3|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn3|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn3|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn3|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.0138158)
+ (0x0.03x0.986184)
+ (0x0.97x0.0138158)
+ (1x0.97x0.986184) = 0.9565987225
λ(_jn0) = 1
λ(_jn1) = 1
λ(_jn2) = 1
λ(_jn3) = 1
belief change = 0.9723685
domain π(Burglar) λ(Burglar) belief
----------------------------------------------------------------
b1 0.005 0.5 0.005
b2 0.995 0.5 0.995
domain πAlarm(Burglar) λAlarm(Burglar)
----------------------------------------------------------------
b1 0.005 0.5
b2 0.995 0.5
domain π(FreightTruck) λ(FreightTruck) belief
----------------------------------------------------------------
f1 0.03 0.25 0.03
f2 0.97 0.25 0.97
domain πAlarm(FreightTruck) λAlarm(FreightTruck)
----------------------------------------------------------------
f1 0.03 0.5
f2 0.97 0.5
domain π_Jn(FreightTruck) λ_Jn(FreightTruck)
----------------------------------------------------------------
f1 0.03 0.5
f2 0.97 0.5
domain π(Alarm) λ(Alarm) belief
----------------------------------------------------------------
a1 0.01381575 0.5 0.01381575
a2 0.98618425 0.5 0.98618425
domain π_Jn(Alarm) λ_Jn(Alarm)
----------------------------------------------------------------
a1 0.01381575 0.5
a2 0.98618425 0.5
domain π(_Jn) λ(_Jn) belief
----------------------------------------------------------------
_jn0 0.0004144725 1 0.0004144725
_jn1 0.0295855275 1 0.0295855275
_jn2 0.0134012775 1 0.0134012775
_jn3 0.9565987225 1 0.9565987225
********************************************************************************
Iteration 3
********************************************************************************
λ message Alarm --> Burglar
λAlarm(b1)
= [p(a1|b1,f1).πAlarm(f1) + p(a1|b1,f2).πAlarm(f2)].λ(a1)
+ [p(a2|b1,f1).πAlarm(f1) + p(a2|b1,f2).πAlarm(f2)].λ(a2)
= [(0.992x0.03) + (0.99x0.97)]x0.5
+ [(0.008x0.03) + (0.01x0.97)]x0.5 = 0.5
λAlarm(b2)
= [p(a1|b2,f1).πAlarm(f1) + p(a1|b2,f2).πAlarm(f2)].λ(a1)
+ [p(a2|b2,f1).πAlarm(f1) + p(a2|b2,f2).πAlarm(f2)].λ(a2)
= [(0.2x0.03) + (0.003x0.97)]x0.5
+ [(0.8x0.03) + (0.997x0.97)]x0.5 = 0.5
λ message Alarm --> FreightTruck
λAlarm(f1)
= [p(a1|b1,f1).πAlarm(b1) + p(a1|b2,f1).πAlarm(b2)].λ(a1)
+ [p(a2|b1,f1).πAlarm(b1) + p(a2|b2,f1).πAlarm(b2)].λ(a2)
= [(0.992x0.005) + (0.2x0.995)]x0.5
+ [(0.008x0.005) + (0.8x0.995)]x0.5 = 0.5
λAlarm(f2)
= [p(a1|b1,f2).πAlarm(b1) + p(a1|b2,f2).πAlarm(b2)].λ(a1)
+ [p(a2|b1,f2).πAlarm(b1) + p(a2|b2,f2).πAlarm(b2)].λ(a2)
= [(0.99x0.005) + (0.003x0.995)]x0.5
+ [(0.01x0.005) + (0.997x0.995)]x0.5 = 0.5
λ message _Jn --> FreightTruck
λ_Jn(f1)
= [p(_jn0|f1,a1).π_Jn(a1) + p(_jn0|f1,a2).π_Jn(a2)].λ(_jn0)
+ [p(_jn1|f1,a1).π_Jn(a1) + p(_jn1|f1,a2).π_Jn(a2)].λ(_jn1)
+ [p(_jn2|f1,a1).π_Jn(a1) + p(_jn2|f1,a2).π_Jn(a2)].λ(_jn2)
+ [p(_jn3|f1,a1).π_Jn(a1) + p(_jn3|f1,a2).π_Jn(a2)].λ(_jn3)
= [(1x0.0138158) + (0x0.986184)]x1
+ [(0x0.0138158) + (1x0.986184)]x1
+ [(0x0.0138158) + (0x0.986184)]x1
+ [(0x0.0138158) + (0x0.986184)]x1 = 1
λ_Jn(f2)
= [p(_jn0|f2,a1).π_Jn(a1) + p(_jn0|f2,a2).π_Jn(a2)].λ(_jn0)
+ [p(_jn1|f2,a1).π_Jn(a1) + p(_jn1|f2,a2).π_Jn(a2)].λ(_jn1)
+ [p(_jn2|f2,a1).π_Jn(a1) + p(_jn2|f2,a2).π_Jn(a2)].λ(_jn2)
+ [p(_jn3|f2,a1).π_Jn(a1) + p(_jn3|f2,a2).π_Jn(a2)].λ(_jn3)
= [(0x0.0138158) + (0x0.986184)]x1
+ [(0x0.0138158) + (0x0.986184)]x1
+ [(1x0.0138158) + (0x0.986184)]x1
+ [(0x0.0138158) + (1x0.986184)]x1 = 1
λ message _Jn --> Alarm
λ_Jn(a1)
= [p(_jn0|f1,a1).π_Jn(f1) + p(_jn0|f2,a1).π_Jn(f2)].λ(_jn0)
+ [p(_jn1|f1,a1).π_Jn(f1) + p(_jn1|f2,a1).π_Jn(f2)].λ(_jn1)
+ [p(_jn2|f1,a1).π_Jn(f1) + p(_jn2|f2,a1).π_Jn(f2)].λ(_jn2)
+ [p(_jn3|f1,a1).π_Jn(f1) + p(_jn3|f2,a1).π_Jn(f2)].λ(_jn3)
= [(1x0.03) + (0x0.97)]x1
+ [(0x0.03) + (0x0.97)]x1
+ [(0x0.03) + (1x0.97)]x1
+ [(0x0.03) + (0x0.97)]x1 = 1
λ_Jn(a2)
= [p(_jn0|f1,a2).π_Jn(f1) + p(_jn0|f2,a2).π_Jn(f2)].λ(_jn0)
+ [p(_jn1|f1,a2).π_Jn(f1) + p(_jn1|f2,a2).π_Jn(f2)].λ(_jn1)
+ [p(_jn2|f1,a2).π_Jn(f1) + p(_jn2|f2,a2).π_Jn(f2)].λ(_jn2)
+ [p(_jn3|f1,a2).π_Jn(f1) + p(_jn3|f2,a2).π_Jn(f2)].λ(_jn3)
= [(0x0.03) + (0x0.97)]x1
+ [(1x0.03) + (0x0.97)]x1
+ [(0x0.03) + (0x0.97)]x1
+ [(0x0.03) + (1x0.97)]x1 = 1
π message Burglar --> Alarm
πAlarm(b1) = π(b1) = 0.005 = 0.005
πAlarm(b2) = π(b2) = 0.995 = 0.995
π message FreightTruck --> Alarm
πAlarm(f1) = π(f1).λ_Jn(f1) = 0.03 x 0.5 = 0.015
πAlarm(f2) = π(f2).λ_Jn(f2) = 0.97 x 0.5 = 0.485
π message FreightTruck --> _Jn
π_Jn(f1) = π(f1).λAlarm(f1) = 0.03 x 0.5 = 0.015
π_Jn(f2) = π(f2).λAlarm(f2) = 0.97 x 0.5 = 0.485
π message Alarm --> _Jn
π_Jn(a1) = π(a1) = 0.0138158 = 0.01381575
π_Jn(a2) = π(a2) = 0.986184 = 0.98618425
var Burglar:
π(b1)
= p(b1)
= (0.005) = 0.005
π(b2)
= p(b2)
= (0.995) = 0.995
λ(b1) = λAlarm(b1) = 0.5 = 0.5
λ(b2) = λAlarm(b2) = 0.5 = 0.5
belief change = 0
var FreightTruck:
π(f1)
= p(f1)
= (0.03) = 0.03
π(f2)
= p(f2)
= (0.97) = 0.97
λ(f1) = λAlarm(f1).λ_Jn(f1) = 0.5 x 0.5 = 0.25
λ(f2) = λAlarm(f2).λ_Jn(f2) = 0.5 x 0.5 = 0.25
belief change = 0
var Alarm:
π(a1)
= p(a1|b1,f1).πAlarm(b1).πAlarm(f1)
+ p(a1|b1,f2).πAlarm(b1).πAlarm(f2)
+ p(a1|b2,f1).πAlarm(b2).πAlarm(f1)
+ p(a1|b2,f2).πAlarm(b2).πAlarm(f2)
= (0.992x0.005x0.03)
+ (0.99x0.005x0.97)
+ (0.2x0.995x0.03)
+ (0.003x0.995x0.97) = 0.01381575
π(a2)
= p(a2|b1,f1).πAlarm(b1).πAlarm(f1)
+ p(a2|b1,f2).πAlarm(b1).πAlarm(f2)
+ p(a2|b2,f1).πAlarm(b2).πAlarm(f1)
+ p(a2|b2,f2).πAlarm(b2).πAlarm(f2)
= (0.008x0.005x0.03)
+ (0.01x0.005x0.97)
+ (0.8x0.995x0.03)
+ (0.997x0.995x0.97) = 0.98618425
λ(a1) = λ_Jn(a1) = 0.5 = 0.5
λ(a2) = λ_Jn(a2) = 0.5 = 0.5
belief change = 0
var _Jn:
π(_jn0)
= p(_jn0|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn0|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn0|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn0|f2,a2).π_Jn(f2).π_Jn(a2)
= (1x0.03x0.0138158)
+ (0x0.03x0.986184)
+ (0x0.97x0.0138158)
+ (0x0.97x0.986184) = 0.0004144725
π(_jn1)
= p(_jn1|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn1|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn1|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn1|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.0138158)
+ (1x0.03x0.986184)
+ (0x0.97x0.0138158)
+ (0x0.97x0.986184) = 0.0295855275
π(_jn2)
= p(_jn2|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn2|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn2|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn2|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.0138158)
+ (0x0.03x0.986184)
+ (1x0.97x0.0138158)
+ (0x0.97x0.986184) = 0.0134012775
π(_jn3)
= p(_jn3|f1,a1).π_Jn(f1).π_Jn(a1)
+ p(_jn3|f1,a2).π_Jn(f1).π_Jn(a2)
+ p(_jn3|f2,a1).π_Jn(f2).π_Jn(a1)
+ p(_jn3|f2,a2).π_Jn(f2).π_Jn(a2)
= (0x0.03x0.0138158)
+ (0x0.03x0.986184)
+ (0x0.97x0.0138158)
+ (1x0.97x0.986184) = 0.9565987225
λ(_jn0) = 1
λ(_jn1) = 1
λ(_jn2) = 1
λ(_jn3) = 1
belief change = 0
domain π(Burglar) λ(Burglar) belief
----------------------------------------------------------------
b1 0.005 0.5 0.005
b2 0.995 0.5 0.995
domain πAlarm(Burglar) λAlarm(Burglar)
----------------------------------------------------------------
b1 0.005 0.5
b2 0.995 0.5
domain π(FreightTruck) λ(FreightTruck) belief
----------------------------------------------------------------
f1 0.03 0.25 0.03
f2 0.97 0.25 0.97
domain πAlarm(FreightTruck) λAlarm(FreightTruck)
----------------------------------------------------------------
f1 0.03 0.5
f2 0.97 0.5
domain π_Jn(FreightTruck) λ_Jn(FreightTruck)
----------------------------------------------------------------
f1 0.03 0.5
f2 0.97 0.5
domain π(Alarm) λ(Alarm) belief
----------------------------------------------------------------
a1 0.01381575 0.5 0.01381575
a2 0.98618425 0.5 0.98618425
domain π_Jn(Alarm) λ_Jn(Alarm)
----------------------------------------------------------------
a1 0.01381575 0.5
a2 0.98618425 0.5
domain π(_Jn) λ(_Jn) belief
----------------------------------------------------------------
_jn0 0.0004144725 1 0.0004144725
_jn1 0.0295855275 1 0.0295855275
_jn2 0.0134012775 1 0.0134012775
_jn3 0.9565987225 1 0.9565987225
Iterative belief propagation converged in 3 iterations

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,85 @@
Variable: A
Domain: a1, a2
Parents:
Childs: B, C
cpt
----------------
a1 0.01
a2 0.09
Variable: B
Domain: b1, b2
Parents: A
Childs: D
cpt a1, a2,
----------------------------
b1 0.03 0.6
b2 0.97 0.4
Variable: C
Domain: c1, c2
Parents: A
Childs: D
cpt a1, a2,
----------------------------
c1 0.24 0.12
c2 0.76 0.88
Variable: D
Domain: d1, d2
Parents: B, C
Childs:
cpt b1,c1, b1,c2, b2,c1, b2,c2,
----------------------------------------------------
d1 0.2 0.7 0.45 0.22
d2 0.8 0.3 0.55 0.78
initializing solver
schedule = sequential
maxIter = 100
accuracy = 0
sending pi message from `A' to `B'
πB(a1) = π(a1).λC(a1) = 0.01 x 1 = 0.01
πB(a2) = π(a2).λC(a2) = 0.09 x 1 = 0.09
π(b1) = p(b1|a1).πB(a1) + p(b1|a2).πB(a2) = (0.03 x 0.01) + (0.6 x 0.09) = 0.0543
π(b2) = p(b2|a1).πB(a1) + p(b2|a2).πB(a2) = (0.97 x 0.01) + (0.4 x 0.09) = 0.0457
sending pi message from `B' to `D'
πD(b1) = π(b1) = 0.0543 = 0.0543
πD(b2) = π(b2) = 0.0457 = 0.0457
π(d1) = p(d1|b1,c1).πD(b1).πD(c1) + p(d1|b1,c2).πD(b1).πD(c2) + p(d1|b2,c1).πD(b2).πD(c1) + p(d1|b2,c2).πD(b2).πD(c2) = (0.2 x 0.0543 x 1) + (0.7 x 0.0543 x 1) + (0.45 x 0.0457 x 1) + (0.22 x 0.0457 x 1) = 0.079489
π(d2) = p(d2|b1,c1).πD(b1).πD(c1) + p(d2|b1,c2).πD(b1).πD(c2) + p(d2|b2,c1).πD(b2).πD(c1) + p(d2|b2,c2).πD(b2).πD(c2) = (0.8 x 0.0543 x 1) + (0.3 x 0.0543 x 1) + (0.55 x 0.0457 x 1) + (0.78 x 0.0457 x 1) = 0.120511
sending pi message from `A' to `C'
πC(a1) = π(a1).λB(a1) = 0.01 x 1 = 0.01
πC(a2) = π(a2).λB(a2) = 0.09 x 1 = 0.09
π(c1) = p(c1|a1).πC(a1) + p(c1|a2).πC(a2) = (0.24 x 0.01) + (0.12 x 0.09) = 0.0132
π(c2) = p(c2|a1).πC(a1) + p(c2|a2).πC(a2) = (0.76 x 0.01) + (0.88 x 0.09) = 0.0868
sending pi message from `C' to `D'
πD(c1) = π(c1) = 0.0132 = 0.0132
πD(c2) = π(c2) = 0.0868 = 0.0868
π(d1) = p(d1|b1,c1).πD(b1).πD(c1) + p(d1|b1,c2).πD(b1).πD(c2) + p(d1|b2,c1).πD(b2).πD(c1) + p(d1|b2,c2).πD(b2).πD(c2) = (0.2 x 0.0543 x 0.0132) + (0.7 x 0.0543 x 0.0868) + (0.45 x 0.0457 x 0.0132) + (0.22 x 0.0457 x 0.0868) = 0.00458677
π(d2) = p(d2|b1,c1).πD(b1).πD(c1) + p(d2|b1,c2).πD(b1).πD(c2) + p(d2|b2,c1).πD(b2).πD(c1) + p(d2|b2,c2).πD(b2).πD(c2) = (0.8 x 0.0543 x 0.0132) + (0.3 x 0.0543 x 0.0868) + (0.55 x 0.0457 x 0.0132) + (0.78 x 0.0457 x 0.0868) = 0.00541323
beliefs for variable `A':
domain belief
----------------------------------
a1 0.1
a2 0.9
beliefs for variable `B':
domain belief
----------------------------------
b1 0.543
b2 0.457
beliefs for variable `C':
domain belief
----------------------------------
c1 0.132
c2 0.868
beliefs for variable `D':
domain belief
----------------------------------
d1 0.45867652
d2 0.54132348

View File

@ -0,0 +1,241 @@
Aladdin Free Public License
(Version 8, November 18, 1999)
Copyright (C) 1994, 1995, 1997, 1998, 1999 Aladdin Enterprises,
Menlo Park, California, U.S.A. All rights reserved.
*NOTE:* This License is not the same as any of the GNU Licenses
<http://www.gnu.org/copyleft/gpl.html> published by the Free
Software Foundation <http://www.gnu.org/>. Its terms are
substantially different from those of the GNU Licenses. If you are
familiar with the GNU Licenses, please read this license with extra
care.
Aladdin Enterprises hereby grants to anyone the permission to apply this
License to their own work, as long as the entire License (including the
above notices and this paragraph) is copied with no changes, additions,
or deletions except for changing the first paragraph of Section 0 to
include a suitable description of the work to which the license is being
applied and of the person or entity that holds the copyright in the
work, and, if the License is being applied to a work created in a
country other than the United States, replacing the first paragraph of
Section 6 with an appropriate reference to the laws of the appropriate
country.
0. Subject Matter
This License applies to the computer program known as "XMLParser library".
The "Program", below, refers to such program. The Program
is a copyrighted work whose copyright is held by Frank Vanden Berghen
(the "Licensor").
A "work based on the Program" means either the Program or any derivative
work of the Program, as defined in the United States Copyright Act of
1976, such as a translation or a modification.
* BY MODIFYING OR DISTRIBUTING THE PROGRAM (OR ANY WORK BASED ON THE
PROGRAM), YOU INDICATE YOUR ACCEPTANCE OF THIS LICENSE TO DO SO, AND ALL
ITS TERMS AND CONDITIONS FOR COPYING, DISTRIBUTING OR MODIFYING THE
PROGRAM OR WORKS BASED ON IT. NOTHING OTHER THAN THIS LICENSE GRANTS YOU
PERMISSION TO MODIFY OR DISTRIBUTE THE PROGRAM OR ITS DERIVATIVE WORKS.
THESE ACTIONS ARE PROHIBITED BY LAW. IF YOU DO NOT ACCEPT THESE TERMS
AND CONDITIONS, DO NOT MODIFY OR DISTRIBUTE THE PROGRAM. *
1. Licenses.
Licensor hereby grants you the following rights, provided that you
comply with all of the restrictions set forth in this License and
provided, further, that you distribute an unmodified copy of this
License with the Program:
(a)
You may copy and distribute literal (i.e., verbatim) copies of the
Program's source code as you receive it throughout the world, in any
medium.
(b)
You may modify the Program, create works based on the Program and
distribute copies of such throughout the world, in any medium.
2. Restrictions.
This license is subject to the following restrictions:
(a)
Distribution of the Program or any work based on the Program by a
commercial organization to any third party is prohibited if any
payment is made in connection with such distribution, whether
directly (as in payment for a copy of the Program) or indirectly (as
in payment for some service related to the Program, or payment for
some product or service that includes a copy of the Program "without
charge"; these are only examples, and not an exhaustive enumeration
of prohibited activities). The following methods of distribution
involving payment shall not in and of themselves be a violation of
this restriction:
(i)
Posting the Program on a public access information storage and
retrieval service for which a fee is received for retrieving
information (such as an on-line service), provided that the fee
is not content-dependent (i.e., the fee would be the same for
retrieving the same volume of information consisting of random
data) and that access to the service and to the Program is
available independent of any other product or service. An
example of a service that does not fall under this section is an
on-line service that is operated by a company and that is only
available to customers of that company. (This is not an
exhaustive enumeration.)
(ii)
Distributing the Program on removable computer-readable media,
provided that the files containing the Program are reproduced
entirely and verbatim on such media, that all information on
such media be redistributable for non-commercial purposes
without charge, and that such media are distributed by
themselves (except for accompanying documentation) independent
of any other product or service. Examples of such media include
CD-ROM, magnetic tape, and optical storage media. (This is not
intended to be an exhaustive list.) An example of a distribution
that does not fall under this section is a CD-ROM included in a
book or magazine. (This is not an exhaustive enumeration.)
(b)
Activities other than copying, distribution and modification of the
Program are not subject to this License and they are outside its
scope. Functional use (running) of the Program is not restricted,
and any output produced through the use of the Program is subject to
this license only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
(c)
You must meet all of the following conditions with respect to any
work that you distribute or publish that in whole or in part
contains or is derived from the Program or any part thereof ("the
Work"):
(i)
If you have modified the Program, you must cause the Work to
carry prominent notices stating that you have modified the
Program's files and the date of any change. In each source file
that you have modified, you must include a prominent notice that
you have modified the file, including your name, your e-mail
address (if any), and the date and purpose of the change;
(ii)
You must cause the Work to be licensed as a whole and at no
charge to all third parties under the terms of this License;
(iii)
If the Work normally reads commands interactively when run, you
must cause it, at each time the Work commences operation, to
print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty). Such notice must also
state that users may redistribute the Work only under the
conditions of this License and tell the user how to view the
copy of this License included with the Work. (Exceptions: if the
Program is interactive but normally prints or displays such an
announcement only at the request of a user, such as in an "About
box", the Work is required to print or display the notice only
under the same circumstances; if the Program itself is
interactive but does not normally print such an announcement,
the Work is not required to print an announcement.);
(iv)
You must accompany the Work with the complete corresponding
machine-readable source code, delivered on a medium customarily
used for software interchange. The source code for a work means
the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the
source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the executable code. If you
distribute with the Work any component that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system
on which the executable runs, you must also distribute the
source code of that component if you have it and are allowed to
do so;
(v)
If you distribute any written or printed material at all with
the Work, such material must include either a written copy of
this License, or a prominent written indication that the Work is
covered by this License and written instructions for printing
and/or displaying the copy of the License on the distribution
medium;
(vi)
You may not impose any further restrictions on the recipient's
exercise of the rights granted herein.
If distribution of executable or object code is made by offering the
equivalent ability to copy from a designated place, then offering
equivalent ability to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source code along with the object code.
3. Reservation of Rights.
No rights are granted to the Program except as expressly set forth
herein. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in
full compliance.
4. Other Restrictions.
If the distribution and/or use of the Program is restricted in certain
countries for any reason, Licensor may add an explicit geographical
distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case,
this License incorporates the limitation as if written in the body of
this License.
5. Limitations.
* THE PROGRAM IS PROVIDED TO YOU "AS IS," WITHOUT WARRANTY. THERE IS NO
WARRANTY FOR THE PROGRAM, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION. *
* IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL LICENSOR, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. *
6. General.
This License is governed by the laws of Belgium., excluding choice of
law rules.
If any part of this License is found to be in conflict with the law,
that part shall be interpreted in its broadest meaning consistent with
the law, and no other parts of the License shall be affected.
For United States Government users, the Program is provided with
*RESTRICTED RIGHTS*. If you are a unit or agency of the United States
Government or are acquiring the Program for any such unit or agency, the
following apply:
If the unit or agency is the Department of Defense ("DOD"), the
Program and its documentation are classified as "commercial computer
software" and "commercial computer software documentation"
respectively and, pursuant to DFAR Section 227.7202, the Government
is acquiring the Program and its documentation in accordance with
the terms of this License. If the unit or agency is other than DOD,
the Program and its documentation are classified as "commercial
computer software" and "commercial computer software documentation"
respectively and, pursuant to FAR Section 12.212, the Government is
acquiring the Program and its documentation in accordance with the
terms of this License.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,734 @@
/****************************************************************************/
/*! \mainpage XMLParser library
* \section intro_sec Introduction
*
* This is a basic XML parser written in ANSI C++ for portability.
* It works by using recursion and a node tree for breaking
* down the elements of an XML document.
*
* @version V2.42
* @author Frank Vanden Berghen
*
* Copyright (c) 2002, Business-Insight
* <a href="http://www.Business-Insight.com">Business-Insight</a>
* All rights reserved.
* See the file <a href="../../AFPL-license.txt">AFPL-license.txt</a> about the licensing terms
*
* \section tutorial First Tutorial
* You can follow a simple <a href="../../xmlParser.html">Tutorial</a> to know the basics...
*
* \section usage General usage: How to include the XMLParser library inside your project.
*
* The library is composed of two files: <a href="../../xmlParser.cpp">xmlParser.cpp</a> and
* <a href="../../xmlParser.h">xmlParser.h</a>. These are the ONLY 2 files that you need when
* using the library inside your own projects.
*
* All the functions of the library are documented inside the comments of the file
* <a href="../../xmlParser.h">xmlParser.h</a>. These comments can be transformed in
* full-fledged HTML documentation using the DOXYGEN software: simply type: "doxygen doxy.cfg"
*
* By default, the XMLParser library uses (char*) for string representation.To use the (wchar_t*)
* version of the library, you need to define the "_UNICODE" preprocessor definition variable
* (this is usually done inside your project definition file) (This is done automatically for you
* when using Visual Studio).
*
* \section example Advanced Tutorial and Many Examples of usage.
*
* Some very small introductory examples are described inside the Tutorial file
* <a href="../../xmlParser.html">xmlParser.html</a>
*
* Some additional small examples are also inside the file <a href="../../xmlTest.cpp">xmlTest.cpp</a>
* (for the "char*" version of the library) and inside the file
* <a href="../../xmlTestUnicode.cpp">xmlTestUnicode.cpp</a> (for the "wchar_t*"
* version of the library). If you have a question, please review these additionnal examples
* before sending an e-mail to the author.
*
* To build the examples:
* - linux/unix: type "make"
* - solaris: type "make -f makefile.solaris"
* - windows: Visual Studio: double-click on xmlParser.dsw
* (under Visual Studio .NET, the .dsp and .dsw files will be automatically converted to .vcproj and .sln files)
*
* In order to build the examples you need some additional files:
* - linux/unix: makefile
* - solaris: makefile.solaris
* - windows: Visual Studio: *.dsp, xmlParser.dsw and also xmlParser.lib and xmlParser.dll
*
* \section debugging Debugging with the XMLParser library
*
* \subsection debugwin Debugging under WINDOWS
*
* Inside Visual C++, the "debug versions" of the memory allocation functions are
* very slow: Do not forget to compile in "release mode" to get maximum speed.
* When I had to debug a software that was using the XMLParser Library, it was usually
* a nightmare because the library was sooOOOoooo slow in debug mode (because of the
* slow memory allocations in Debug mode). To solve this
* problem, during all the debugging session, I am now using a very fast DLL version of the
* XMLParser Library (the DLL is compiled in release mode). Using the DLL version of
* the XMLParser Library allows me to have lightening XML parsing speed even in debug!
* Other than that, the DLL version is useless: In the release version of my tool,
* I always use the normal, ".cpp"-based, XMLParser Library (I simply include the
* <a href="../../xmlParser.cpp">xmlParser.cpp</a> and
* <a href="../../xmlParser.h">xmlParser.h</a> files into the project).
*
* The file <a href="../../XMLNodeAutoexp.txt">XMLNodeAutoexp.txt</a> contains some
* "tweaks" that improve substancially the display of the content of the XMLNode objects
* inside the Visual Studio Debugger. Believe me, once you have seen inside the debugger
* the "smooth" display of the XMLNode objects, you cannot live without it anymore!
*
* \subsection debuglinux Debugging under LINUX/UNIX
*
* The speed of the debug version of the XMLParser library is tolerable so no extra
* work.has been done.
*
****************************************************************************/
#ifndef __INCLUDE_XML_NODE__
#define __INCLUDE_XML_NODE__
#include <stdlib.h>
#ifdef _UNICODE
// If you comment the next "define" line then the library will never "switch to" _UNICODE (wchar_t*) mode (16/32 bits per characters).
// This is useful when you get error messages like:
// 'XMLNode::openFileHelper' : cannot convert parameter 2 from 'const char [5]' to 'const wchar_t *'
// The _XMLWIDECHAR preprocessor variable force the XMLParser library into either utf16/32-mode (the proprocessor variable
// must be defined) or utf8-mode(the pre-processor variable must be undefined).
#define _XMLWIDECHAR
#endif
#if defined(WIN32) || defined(UNDER_CE) || defined(_WIN32) || defined(WIN64) || defined(__BORLANDC__)
// comment the next line if you are under windows and the compiler is not Microsoft Visual Studio (6.0 or .NET) or Borland
#define _XMLWINDOWS
#endif
#ifdef XMLDLLENTRY
#undef XMLDLLENTRY
#endif
#ifdef _USE_XMLPARSER_DLL
#ifdef _DLL_EXPORTS_
#define XMLDLLENTRY __declspec(dllexport)
#else
#define XMLDLLENTRY __declspec(dllimport)
#endif
#else
#define XMLDLLENTRY
#endif
// uncomment the next line if you want no support for wchar_t* (no need for the <wchar.h> or <tchar.h> libraries anymore to compile)
//#define XML_NO_WIDE_CHAR
#ifdef XML_NO_WIDE_CHAR
#undef _XMLWINDOWS
#undef _XMLWIDECHAR
#endif
#ifdef _XMLWINDOWS
#include <tchar.h>
#else
#define XMLDLLENTRY
#ifndef XML_NO_WIDE_CHAR
#include <wchar.h> // to have 'wcsrtombs' for ANSI version
// to have 'mbsrtowcs' for WIDECHAR version
#endif
#endif
// Some common types for char set portable code
#ifdef _XMLWIDECHAR
#define _CXML(c) L ## c
#define XMLCSTR const wchar_t *
#define XMLSTR wchar_t *
#define XMLCHAR wchar_t
#else
#define _CXML(c) c
#define XMLCSTR const char *
#define XMLSTR char *
#define XMLCHAR char
#endif
#ifndef FALSE
#define FALSE 0
#endif /* FALSE */
#ifndef TRUE
#define TRUE 1
#endif /* TRUE */
/// Enumeration for XML parse errors.
typedef enum XMLError
{
eXMLErrorNone = 0,
eXMLErrorMissingEndTag,
eXMLErrorNoXMLTagFound,
eXMLErrorEmpty,
eXMLErrorMissingTagName,
eXMLErrorMissingEndTagName,
eXMLErrorUnmatchedEndTag,
eXMLErrorUnmatchedEndClearTag,
eXMLErrorUnexpectedToken,
eXMLErrorNoElements,
eXMLErrorFileNotFound,
eXMLErrorFirstTagNotFound,
eXMLErrorUnknownCharacterEntity,
eXMLErrorCharacterCodeAbove255,
eXMLErrorCharConversionError,
eXMLErrorCannotOpenWriteFile,
eXMLErrorCannotWriteFile,
eXMLErrorBase64DataSizeIsNotMultipleOf4,
eXMLErrorBase64DecodeIllegalCharacter,
eXMLErrorBase64DecodeTruncatedData,
eXMLErrorBase64DecodeBufferTooSmall
} XMLError;
/// Enumeration used to manage type of data. Use in conjunction with structure XMLNodeContents
typedef enum XMLElementType
{
eNodeChild=0,
eNodeAttribute=1,
eNodeText=2,
eNodeClear=3,
eNodeNULL=4
} XMLElementType;
/// Structure used to obtain error details if the parse fails.
typedef struct XMLResults
{
enum XMLError error;
int nLine,nColumn;
} XMLResults;
/// Structure for XML clear (unformatted) node (usually comments)
typedef struct XMLClear {
XMLCSTR lpszValue; XMLCSTR lpszOpenTag; XMLCSTR lpszCloseTag;
} XMLClear;
/// Structure for XML attribute.
typedef struct XMLAttribute {
XMLCSTR lpszName; XMLCSTR lpszValue;
} XMLAttribute;
/// XMLElementPosition are not interchangeable with simple indexes
typedef int XMLElementPosition;
struct XMLNodeContents;
/** @defgroup XMLParserGeneral The XML parser */
/// Main Class representing a XML node
/**
* All operations are performed using this class.
* \note The constructors of the XMLNode class are protected, so use instead one of these four methods to get your first instance of XMLNode:
* <ul>
* <li> XMLNode::parseString </li>
* <li> XMLNode::parseFile </li>
* <li> XMLNode::openFileHelper </li>
* <li> XMLNode::createXMLTopNode (or XMLNode::createXMLTopNode_WOSD)</li>
* </ul> */
typedef struct XMLDLLENTRY XMLNode
{
private:
struct XMLNodeDataTag;
/// Constructors are protected, so use instead one of: XMLNode::parseString, XMLNode::parseFile, XMLNode::openFileHelper, XMLNode::createXMLTopNode
XMLNode(struct XMLNodeDataTag *pParent, XMLSTR lpszName, char isDeclaration);
/// Constructors are protected, so use instead one of: XMLNode::parseString, XMLNode::parseFile, XMLNode::openFileHelper, XMLNode::createXMLTopNode
XMLNode(struct XMLNodeDataTag *p);
public:
static XMLCSTR getVersion();///< Return the XMLParser library version number
/** @defgroup conversions Parsing XML files/strings to an XMLNode structure and Rendering XMLNode's to files/string.
* @ingroup XMLParserGeneral
* @{ */
/// Parse an XML string and return the root of a XMLNode tree representing the string.
static XMLNode parseString (XMLCSTR lpXMLString, XMLCSTR tag=NULL, XMLResults *pResults=NULL);
/**< The "parseString" function parse an XML string and return the root of a XMLNode tree. The "opposite" of this function is
* the function "createXMLString" that re-creates an XML string from an XMLNode tree. If the XML document is corrupted, the
* "parseString" method will initialize the "pResults" variable with some information that can be used to trace the error.
* If you still want to parse the file, you can use the APPROXIMATE_PARSING option as explained inside the note at the
* beginning of the "xmlParser.cpp" file.
*
* @param lpXMLString the XML string to parse
* @param tag the name of the first tag inside the XML file. If the tag parameter is omitted, this function returns a node that represents the head of the xml document including the declaration term (<? ... ?>).
* @param pResults a pointer to a XMLResults variable that will contain some information that can be used to trace the XML parsing error. You can have a user-friendly explanation of the parsing error with the "getError" function.
*/
/// Parse an XML file and return the root of a XMLNode tree representing the file.
static XMLNode parseFile (XMLCSTR filename, XMLCSTR tag=NULL, XMLResults *pResults=NULL);
/**< The "parseFile" function parse an XML file and return the root of a XMLNode tree. The "opposite" of this function is
* the function "writeToFile" that re-creates an XML file from an XMLNode tree. If the XML document is corrupted, the
* "parseFile" method will initialize the "pResults" variable with some information that can be used to trace the error.
* If you still want to parse the file, you can use the APPROXIMATE_PARSING option as explained inside the note at the
* beginning of the "xmlParser.cpp" file.
*
* @param filename the path to the XML file to parse
* @param tag the name of the first tag inside the XML file. If the tag parameter is omitted, this function returns a node that represents the head of the xml document including the declaration term (<? ... ?>).
* @param pResults a pointer to a XMLResults variable that will contain some information that can be used to trace the XML parsing error. You can have a user-friendly explanation of the parsing error with the "getError" function.
*/
/// Parse an XML file and return the root of a XMLNode tree representing the file. A very crude error checking is made. An attempt to guess the Char Encoding used in the file is made.
static XMLNode openFileHelper(XMLCSTR filename, XMLCSTR tag=NULL);
/**< The "openFileHelper" function reports to the screen all the warnings and errors that occurred during parsing of the XML file.
* This function also tries to guess char Encoding (UTF-8, ASCII or SHIT-JIS) based on the first 200 bytes of the file. Since each
* application has its own way to report and deal with errors, you should rather use the "parseFile" function to parse XML files
* and program yourself thereafter an "error reporting" tailored for your needs (instead of using the very crude "error reporting"
* mechanism included inside the "openFileHelper" function).
*
* If the XML document is corrupted, the "openFileHelper" method will:
* - display an error message on the console (or inside a messageBox for windows).
* - stop execution (exit).
*
* I strongly suggest that you write your own "openFileHelper" method tailored to your needs. If you still want to parse
* the file, you can use the APPROXIMATE_PARSING option as explained inside the note at the beginning of the "xmlParser.cpp" file.
*
* @param filename the path of the XML file to parse.
* @param tag the name of the first tag inside the XML file. If the tag parameter is omitted, this function returns a node that represents the head of the xml document including the declaration term (<? ... ?>).
*/
static XMLCSTR getError(XMLError error); ///< this gives you a user-friendly explanation of the parsing error
/// Create an XML string starting from the current XMLNode.
XMLSTR createXMLString(int nFormat=1, int *pnSize=NULL) const;
/**< The returned string should be free'd using the "freeXMLString" function.
*
* If nFormat==0, no formatting is required otherwise this returns an user friendly XML string from a given element
* with appropriate white spaces and carriage returns. if pnSize is given it returns the size in character of the string. */
/// Save the content of an xmlNode inside a file
XMLError writeToFile(XMLCSTR filename,
const char *encoding=NULL,
char nFormat=1) const;
/**< If nFormat==0, no formatting is required otherwise this returns an user friendly XML string from a given element with appropriate white spaces and carriage returns.
* If the global parameter "characterEncoding==encoding_UTF8", then the "encoding" parameter is ignored and always set to "utf-8".
* If the global parameter "characterEncoding==encoding_ShiftJIS", then the "encoding" parameter is ignored and always set to "SHIFT-JIS".
* If "_XMLWIDECHAR=1", then the "encoding" parameter is ignored and always set to "utf-16".
* If no "encoding" parameter is given the "ISO-8859-1" encoding is used. */
/** @} */
/** @defgroup navigate Navigate the XMLNode structure
* @ingroup XMLParserGeneral
* @{ */
XMLCSTR getName() const; ///< name of the node
XMLCSTR getText(int i=0) const; ///< return ith text field
int nText() const; ///< nbr of text field
XMLNode getParentNode() const; ///< return the parent node
XMLNode getChildNode(int i=0) const; ///< return ith child node
XMLNode getChildNode(XMLCSTR name, int i) const; ///< return ith child node with specific name (return an empty node if failing). If i==-1, this returns the last XMLNode with the given name.
XMLNode getChildNode(XMLCSTR name, int *i=NULL) const; ///< return next child node with specific name (return an empty node if failing)
XMLNode getChildNodeWithAttribute(XMLCSTR tagName,
XMLCSTR attributeName,
XMLCSTR attributeValue=NULL,
int *i=NULL) const; ///< return child node with specific name/attribute (return an empty node if failing)
XMLNode getChildNodeByPath(XMLCSTR path, char createNodeIfMissing=0, XMLCHAR sep='/');
///< return the first child node with specific path
XMLNode getChildNodeByPathNonConst(XMLSTR path, char createNodeIfMissing=0, XMLCHAR sep='/');
///< return the first child node with specific path.
int nChildNode(XMLCSTR name) const; ///< return the number of child node with specific name
int nChildNode() const; ///< nbr of child node
XMLAttribute getAttribute(int i=0) const; ///< return ith attribute
XMLCSTR getAttributeName(int i=0) const; ///< return ith attribute name
XMLCSTR getAttributeValue(int i=0) const; ///< return ith attribute value
char isAttributeSet(XMLCSTR name) const; ///< test if an attribute with a specific name is given
XMLCSTR getAttribute(XMLCSTR name, int i) const; ///< return ith attribute content with specific name (return a NULL if failing)
XMLCSTR getAttribute(XMLCSTR name, int *i=NULL) const; ///< return next attribute content with specific name (return a NULL if failing)
int nAttribute() const; ///< nbr of attribute
XMLClear getClear(int i=0) const; ///< return ith clear field (comments)
int nClear() const; ///< nbr of clear field
XMLNodeContents enumContents(XMLElementPosition i) const; ///< enumerate all the different contents (attribute,child,text, clear) of the current XMLNode. The order is reflecting the order of the original file/string. NOTE: 0 <= i < nElement();
int nElement() const; ///< nbr of different contents for current node
char isEmpty() const; ///< is this node Empty?
char isDeclaration() const; ///< is this node a declaration <? .... ?>
XMLNode deepCopy() const; ///< deep copy (duplicate/clone) a XMLNode
static XMLNode emptyNode(); ///< return XMLNode::emptyXMLNode;
/** @} */
~XMLNode();
XMLNode(const XMLNode &A); ///< to allow shallow/fast copy:
XMLNode& operator=( const XMLNode& A ); ///< to allow shallow/fast copy:
XMLNode(): d(NULL){};
static XMLNode emptyXMLNode;
static XMLClear emptyXMLClear;
static XMLAttribute emptyXMLAttribute;
/** @defgroup xmlModify Create or Update the XMLNode structure
* @ingroup XMLParserGeneral
* The functions in this group allows you to create from scratch (or update) a XMLNode structure. Start by creating your top
* node with the "createXMLTopNode" function and then add new nodes with the "addChild" function. The parameter 'pos' gives
* the position where the childNode, the text or the XMLClearTag will be inserted. The default value (pos=-1) inserts at the
* end. The value (pos=0) insert at the beginning (Insertion at the beginning is slower than at the end). <br>
*
* REMARK: 0 <= pos < nChild()+nText()+nClear() <br>
*/
/** @defgroup creation Creating from scratch a XMLNode structure
* @ingroup xmlModify
* @{ */
static XMLNode createXMLTopNode(XMLCSTR lpszName, char isDeclaration=FALSE); ///< Create the top node of an XMLNode structure
XMLNode addChild(XMLCSTR lpszName, char isDeclaration=FALSE, XMLElementPosition pos=-1); ///< Add a new child node
XMLNode addChild(XMLNode nodeToAdd, XMLElementPosition pos=-1); ///< If the "nodeToAdd" has some parents, it will be detached from it's parents before being attached to the current XMLNode
XMLAttribute *addAttribute(XMLCSTR lpszName, XMLCSTR lpszValuev); ///< Add a new attribute
XMLCSTR addText(XMLCSTR lpszValue, XMLElementPosition pos=-1); ///< Add a new text content
XMLClear *addClear(XMLCSTR lpszValue, XMLCSTR lpszOpen=NULL, XMLCSTR lpszClose=NULL, XMLElementPosition pos=-1);
/**< Add a new clear tag
* @param lpszOpen default value "<![CDATA["
* @param lpszClose default value "]]>"
*/
/** @} */
/** @defgroup xmlUpdate Updating Nodes
* @ingroup xmlModify
* Some update functions:
* @{
*/
XMLCSTR updateName(XMLCSTR lpszName); ///< change node's name
XMLAttribute *updateAttribute(XMLAttribute *newAttribute, XMLAttribute *oldAttribute); ///< if the attribute to update is missing, a new one will be added
XMLAttribute *updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName=NULL,int i=0); ///< if the attribute to update is missing, a new one will be added
XMLAttribute *updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName);///< set lpszNewName=NULL if you don't want to change the name of the attribute if the attribute to update is missing, a new one will be added
XMLCSTR updateText(XMLCSTR lpszNewValue, int i=0); ///< if the text to update is missing, a new one will be added
XMLCSTR updateText(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the text to update is missing, a new one will be added
XMLClear *updateClear(XMLCSTR lpszNewContent, int i=0); ///< if the clearTag to update is missing, a new one will be added
XMLClear *updateClear(XMLClear *newP,XMLClear *oldP); ///< if the clearTag to update is missing, a new one will be added
XMLClear *updateClear(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the clearTag to update is missing, a new one will be added
/** @} */
/** @defgroup xmlDelete Deleting Nodes or Attributes
* @ingroup xmlModify
* Some deletion functions:
* @{
*/
/// The "deleteNodeContent" function forces the deletion of the content of this XMLNode and the subtree.
void deleteNodeContent();
/**< \note The XMLNode instances that are referring to the part of the subtree that has been deleted CANNOT be used anymore!!. Unexpected results will occur if you continue using them. */
void deleteAttribute(int i=0); ///< Delete the ith attribute of the current XMLNode
void deleteAttribute(XMLCSTR lpszName); ///< Delete the attribute with the given name (the "strcmp" function is used to find the right attribute)
void deleteAttribute(XMLAttribute *anAttribute); ///< Delete the attribute with the name "anAttribute->lpszName" (the "strcmp" function is used to find the right attribute)
void deleteText(int i=0); ///< Delete the Ith text content of the current XMLNode
void deleteText(XMLCSTR lpszValue); ///< Delete the text content "lpszValue" inside the current XMLNode (direct "pointer-to-pointer" comparison is used to find the right text)
void deleteClear(int i=0); ///< Delete the Ith clear tag inside the current XMLNode
void deleteClear(XMLCSTR lpszValue); ///< Delete the clear tag "lpszValue" inside the current XMLNode (direct "pointer-to-pointer" comparison is used to find the clear tag)
void deleteClear(XMLClear *p); ///< Delete the clear tag "p" inside the current XMLNode (direct "pointer-to-pointer" comparison on the lpszName of the clear tag is used to find the clear tag)
/** @} */
/** @defgroup xmlWOSD ???_WOSD functions.
* @ingroup xmlModify
* The strings given as parameters for the "add" and "update" methods that have a name with
* the postfix "_WOSD" (that means "WithOut String Duplication")(for example "addText_WOSD")
* will be free'd by the XMLNode class. For example, it means that this is incorrect:
* \code
* xNode.addText_WOSD("foo");
* xNode.updateAttribute_WOSD("#newcolor" ,NULL,"color");
* \endcode
* In opposition, this is correct:
* \code
* xNode.addText("foo");
* xNode.addText_WOSD(stringDup("foo"));
* xNode.updateAttribute("#newcolor" ,NULL,"color");
* xNode.updateAttribute_WOSD(stringDup("#newcolor"),NULL,"color");
* \endcode
* Typically, you will never do:
* \code
* char *b=(char*)malloc(...);
* xNode.addText(b);
* free(b);
* \endcode
* ... but rather:
* \code
* char *b=(char*)malloc(...);
* xNode.addText_WOSD(b);
* \endcode
* ('free(b)' is performed by the XMLNode class)
* @{ */
static XMLNode createXMLTopNode_WOSD(XMLSTR lpszName, char isDeclaration=FALSE); ///< Create the top node of an XMLNode structure
XMLNode addChild_WOSD(XMLSTR lpszName, char isDeclaration=FALSE, XMLElementPosition pos=-1); ///< Add a new child node
XMLAttribute *addAttribute_WOSD(XMLSTR lpszName, XMLSTR lpszValue); ///< Add a new attribute
XMLCSTR addText_WOSD(XMLSTR lpszValue, XMLElementPosition pos=-1); ///< Add a new text content
XMLClear *addClear_WOSD(XMLSTR lpszValue, XMLCSTR lpszOpen=NULL, XMLCSTR lpszClose=NULL, XMLElementPosition pos=-1); ///< Add a new clear Tag
XMLCSTR updateName_WOSD(XMLSTR lpszName); ///< change node's name
XMLAttribute *updateAttribute_WOSD(XMLAttribute *newAttribute, XMLAttribute *oldAttribute); ///< if the attribute to update is missing, a new one will be added
XMLAttribute *updateAttribute_WOSD(XMLSTR lpszNewValue, XMLSTR lpszNewName=NULL,int i=0); ///< if the attribute to update is missing, a new one will be added
XMLAttribute *updateAttribute_WOSD(XMLSTR lpszNewValue, XMLSTR lpszNewName,XMLCSTR lpszOldName); ///< set lpszNewName=NULL if you don't want to change the name of the attribute if the attribute to update is missing, a new one will be added
XMLCSTR updateText_WOSD(XMLSTR lpszNewValue, int i=0); ///< if the text to update is missing, a new one will be added
XMLCSTR updateText_WOSD(XMLSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the text to update is missing, a new one will be added
XMLClear *updateClear_WOSD(XMLSTR lpszNewContent, int i=0); ///< if the clearTag to update is missing, a new one will be added
XMLClear *updateClear_WOSD(XMLClear *newP,XMLClear *oldP); ///< if the clearTag to update is missing, a new one will be added
XMLClear *updateClear_WOSD(XMLSTR lpszNewValue, XMLCSTR lpszOldValue); ///< if the clearTag to update is missing, a new one will be added
/** @} */
/** @defgroup xmlPosition Position helper functions (use in conjunction with the update&add functions
* @ingroup xmlModify
* These are some useful functions when you want to insert a childNode, a text or a XMLClearTag in the
* middle (at a specified position) of a XMLNode tree already constructed. The value returned by these
* methods is to be used as last parameter (parameter 'pos') of addChild, addText or addClear.
* @{ */
XMLElementPosition positionOfText(int i=0) const;
XMLElementPosition positionOfText(XMLCSTR lpszValue) const;
XMLElementPosition positionOfClear(int i=0) const;
XMLElementPosition positionOfClear(XMLCSTR lpszValue) const;
XMLElementPosition positionOfClear(XMLClear *a) const;
XMLElementPosition positionOfChildNode(int i=0) const;
XMLElementPosition positionOfChildNode(XMLNode x) const;
XMLElementPosition positionOfChildNode(XMLCSTR name, int i=0) const; ///< return the position of the ith childNode with the specified name if (name==NULL) return the position of the ith childNode
/** @} */
/// Enumeration for XML character encoding.
typedef enum XMLCharEncoding
{
char_encoding_error=0,
char_encoding_UTF8=1,
char_encoding_legacy=2,
char_encoding_ShiftJIS=3,
char_encoding_GB2312=4,
char_encoding_Big5=5,
char_encoding_GBK=6 // this is actually the same as Big5
} XMLCharEncoding;
/** \addtogroup conversions
* @{ */
/// Sets the global options for the conversions
static char setGlobalOptions(XMLCharEncoding characterEncoding=XMLNode::char_encoding_UTF8, char guessWideCharChars=1,
char dropWhiteSpace=1, char removeCommentsInMiddleOfText=1);
/**< The "setGlobalOptions" function allows you to change four global parameters that affect string & file
* parsing. First of all, you most-probably will never have to change these 3 global parameters.
*
* @param guessWideCharChars If "guessWideCharChars"=1 and if this library is compiled in WideChar mode, then the
* XMLNode::parseFile and XMLNode::openFileHelper functions will test if the file contains ASCII
* characters. If this is the case, then the file will be loaded and converted in memory to
* WideChar before being parsed. If 0, no conversion will be performed.
*
* @param guessWideCharChars If "guessWideCharChars"=1 and if this library is compiled in ASCII/UTF8/char* mode, then the
* XMLNode::parseFile and XMLNode::openFileHelper functions will test if the file contains WideChar
* characters. If this is the case, then the file will be loaded and converted in memory to
* ASCII/UTF8/char* before being parsed. If 0, no conversion will be performed.
*
* @param characterEncoding This parameter is only meaningful when compiling in char* mode (multibyte character mode).
* In wchar_t* (wide char mode), this parameter is ignored. This parameter should be one of the
* three currently recognized encodings: XMLNode::encoding_UTF8, XMLNode::encoding_ascii,
* XMLNode::encoding_ShiftJIS.
*
* @param dropWhiteSpace In most situations, text fields containing only white spaces (and carriage returns)
* are useless. Even more, these "empty" text fields are annoying because they increase the
* complexity of the user's code for parsing. So, 99% of the time, it's better to drop
* the "empty" text fields. However The XML specification indicates that no white spaces
* should be lost when parsing the file. So to be perfectly XML-compliant, you should set
* dropWhiteSpace=0. A note of caution: if you set "dropWhiteSpace=0", the parser will be
* slower and your code will be more complex.
*
* @param removeCommentsInMiddleOfText To explain this parameter, let's consider this code:
* \code
* XMLNode x=XMLNode::parseString("<a>foo<!-- hello -->bar<!DOCTYPE world >chu</a>","a");
* \endcode
* If removeCommentsInMiddleOfText=0, then we will have:
* \code
* x.getText(0) -> "foo"
* x.getText(1) -> "bar"
* x.getText(2) -> "chu"
* x.getClear(0) --> "<!-- hello -->"
* x.getClear(1) --> "<!DOCTYPE world >"
* \endcode
* If removeCommentsInMiddleOfText=1, then we will have:
* \code
* x.getText(0) -> "foobar"
* x.getText(1) -> "chu"
* x.getClear(0) --> "<!DOCTYPE world >"
* \endcode
*
* \return "0" when there are no errors. If you try to set an unrecognized encoding then the return value will be "1" to signal an error.
*
* \note Sometime, it's useful to set "guessWideCharChars=0" to disable any conversion
* because the test to detect the file-type (ASCII/UTF8/char* or WideChar) may fail (rarely). */
/// Guess the character encoding of the string (ascii, utf8 or shift-JIS)
static XMLCharEncoding guessCharEncoding(void *buffer, int bufLen, char useXMLEncodingAttribute=1);
/**< The "guessCharEncoding" function try to guess the character encoding. You most-probably will never
* have to use this function. It then returns the appropriate value of the global parameter
* "characterEncoding" described in the XMLNode::setGlobalOptions. The guess is based on the content of a buffer of length
* "bufLen" bytes that contains the first bytes (minimum 25 bytes; 200 bytes is a good value) of the
* file to be parsed. The XMLNode::openFileHelper function is using this function to automatically compute
* the value of the "characterEncoding" global parameter. There are several heuristics used to do the
* guess. One of the heuristic is based on the "encoding" attribute. The original XML specifications
* forbids to use this attribute to do the guess but you can still use it if you set
* "useXMLEncodingAttribute" to 1 (this is the default behavior and the behavior of most parsers).
* If an inconsistency in the encoding is detected, then the return value is "0". */
/** @} */
private:
// these are functions and structures used internally by the XMLNode class (don't bother about them):
typedef struct XMLNodeDataTag // to allow shallow copy and "intelligent/smart" pointers (automatic delete):
{
XMLCSTR lpszName; // Element name (=NULL if root)
int nChild, // Number of child nodes
nText, // Number of text fields
nClear, // Number of Clear fields (comments)
nAttribute; // Number of attributes
char isDeclaration; // Whether node is an XML declaration - '<?xml ?>'
struct XMLNodeDataTag *pParent; // Pointer to parent element (=NULL if root)
XMLNode *pChild; // Array of child nodes
XMLCSTR *pText; // Array of text fields
XMLClear *pClear; // Array of clear fields
XMLAttribute *pAttribute; // Array of attributes
int *pOrder; // order of the child_nodes,text_fields,clear_fields
int ref_count; // for garbage collection (smart pointers)
} XMLNodeData;
XMLNodeData *d;
char parseClearTag(void *px, void *pa);
char maybeAddTxT(void *pa, XMLCSTR tokenPStr);
int ParseXMLElement(void *pXML);
void *addToOrder(int memInc, int *_pos, int nc, void *p, int size, XMLElementType xtype);
int indexText(XMLCSTR lpszValue) const;
int indexClear(XMLCSTR lpszValue) const;
XMLNode addChild_priv(int,XMLSTR,char,int);
XMLAttribute *addAttribute_priv(int,XMLSTR,XMLSTR);
XMLCSTR addText_priv(int,XMLSTR,int);
XMLClear *addClear_priv(int,XMLSTR,XMLCSTR,XMLCSTR,int);
void emptyTheNode(char force);
static inline XMLElementPosition findPosition(XMLNodeData *d, int index, XMLElementType xtype);
static int CreateXMLStringR(XMLNodeData *pEntry, XMLSTR lpszMarker, int nFormat);
static int removeOrderElement(XMLNodeData *d, XMLElementType t, int index);
static void exactMemory(XMLNodeData *d);
static int detachFromParent(XMLNodeData *d);
} XMLNode;
/// This structure is given by the function XMLNode::enumContents.
typedef struct XMLNodeContents
{
/// This dictates what's the content of the XMLNodeContent
enum XMLElementType etype;
/**< should be an union to access the appropriate data. Compiler does not allow union of object with constructor... too bad. */
XMLNode child;
XMLAttribute attrib;
XMLCSTR text;
XMLClear clear;
} XMLNodeContents;
/** @defgroup StringAlloc String Allocation/Free functions
* @ingroup xmlModify
* @{ */
/// Duplicate (copy in a new allocated buffer) the source string.
XMLDLLENTRY XMLSTR stringDup(XMLCSTR source, int cbData=-1);
/**< This is
* a very handy function when used with all the "XMLNode::*_WOSD" functions (\link xmlWOSD \endlink).
* @param cbData If !=0 then cbData is the number of chars to duplicate. New strings allocated with
* this function should be free'd using the "freeXMLString" function. */
/// to free the string allocated inside the "stringDup" function or the "createXMLString" function.
XMLDLLENTRY void freeXMLString(XMLSTR t); // {free(t);}
/** @} */
/** @defgroup atoX ato? like functions
* @ingroup XMLParserGeneral
* The "xmlto?" functions are equivalents to the atoi, atol, atof functions.
* The only difference is: If the variable "xmlString" is NULL, than the return value
* is "defautValue". These 6 functions are only here as "convenience" functions for the
* user (they are not used inside the XMLparser). If you don't need them, you can
* delete them without any trouble.
*
* @{ */
XMLDLLENTRY char xmltob(XMLCSTR xmlString,char defautValue=0);
XMLDLLENTRY int xmltoi(XMLCSTR xmlString,int defautValue=0);
XMLDLLENTRY long xmltol(XMLCSTR xmlString,long defautValue=0);
XMLDLLENTRY double xmltof(XMLCSTR xmlString,double defautValue=.0);
XMLDLLENTRY XMLCSTR xmltoa(XMLCSTR xmlString,XMLCSTR defautValue=_CXML(""));
XMLDLLENTRY XMLCHAR xmltoc(XMLCSTR xmlString,const XMLCHAR defautValue=_CXML('\0'));
/** @} */
/** @defgroup ToXMLStringTool Helper class to create XML files using "printf", "fprintf", "cout",... functions.
* @ingroup XMLParserGeneral
* @{ */
/// Helper class to create XML files using "printf", "fprintf", "cout",... functions.
/** The ToXMLStringTool class helps you creating XML files using "printf", "fprintf", "cout",... functions.
* The "ToXMLStringTool" class is processing strings so that all the characters
* &,",',<,> are replaced by their XML equivalent:
* \verbatim &amp;, &quot;, &apos;, &lt;, &gt; \endverbatim
* Using the "ToXMLStringTool class" and the "fprintf function" is THE most efficient
* way to produce VERY large XML documents VERY fast.
* \note If you are creating from scratch an XML file using the provided XMLNode class
* you must not use the "ToXMLStringTool" class (because the "XMLNode" class does the
* processing job for you during rendering).*/
typedef struct XMLDLLENTRY ToXMLStringTool
{
public:
ToXMLStringTool(): buf(NULL),buflen(0){}
~ToXMLStringTool();
void freeBuffer();///<call this function when you have finished using this object to release memory used by the internal buffer.
XMLSTR toXML(XMLCSTR source);///< returns a pointer to an internal buffer that contains a XML-encoded string based on the "source" parameter.
/** The "toXMLUnSafe" function is deprecated because there is a possibility of
* "destination-buffer-overflow". It converts the string
* "source" to the string "dest". */
static XMLSTR toXMLUnSafe(XMLSTR dest,XMLCSTR source); ///< deprecated: use "toXML" instead
static int lengthXMLString(XMLCSTR source); ///< deprecated: use "toXML" instead
private:
XMLSTR buf;
int buflen;
} ToXMLStringTool;
/** @} */
/** @defgroup XMLParserBase64Tool Helper class to include binary data inside XML strings using "Base64 encoding".
* @ingroup XMLParserGeneral
* @{ */
/// Helper class to include binary data inside XML strings using "Base64 encoding".
/** The "XMLParserBase64Tool" class allows you to include any binary data (images, sounds,...)
* into an XML document using "Base64 encoding". This class is completely
* separated from the rest of the xmlParser library and can be removed without any problem.
* To include some binary data into an XML file, you must convert the binary data into
* standard text (using "encode"). To retrieve the original binary data from the
* b64-encoded text included inside the XML file, use "decode". Alternatively, these
* functions can also be used to "encrypt/decrypt" some critical data contained inside
* the XML (it's not a strong encryption at all, but sometimes it can be useful). */
typedef struct XMLDLLENTRY XMLParserBase64Tool
{
public:
XMLParserBase64Tool(): buf(NULL),buflen(0){}
~XMLParserBase64Tool();
void freeBuffer();///< Call this function when you have finished using this object to release memory used by the internal buffer.
/**
* @param formatted If "formatted"=true, some space will be reserved for a carriage-return every 72 chars. */
static int encodeLength(int inBufLen, char formatted=0); ///< return the length of the base64 string that encodes a data buffer of size inBufLen bytes.
/**
* The "base64Encode" function returns a string containing the base64 encoding of "inByteLen" bytes
* from "inByteBuf". If "formatted" parameter is true, then there will be a carriage-return every 72 chars.
* The string will be free'd when the XMLParserBase64Tool object is deleted.
* All returned strings are sharing the same memory space. */
XMLSTR encode(unsigned char *inByteBuf, unsigned int inByteLen, char formatted=0); ///< returns a pointer to an internal buffer containing the base64 string containing the binary data encoded from "inByteBuf"
/// returns the number of bytes which will be decoded from "inString".
static unsigned int decodeSize(XMLCSTR inString, XMLError *xe=NULL);
/**
* The "decode" function returns a pointer to a buffer containing the binary data decoded from "inString"
* The output buffer will be free'd when the XMLParserBase64Tool object is deleted.
* All output buffer are sharing the same memory space.
* @param inString If "instring" is malformed, NULL will be returned */
unsigned char* decode(XMLCSTR inString, int *outByteLen=NULL, XMLError *xe=NULL); ///< returns a pointer to an internal buffer containing the binary data decoded from "inString"
/**
* decodes data from "inString" to "outByteBuf". You need to provide the size (in byte) of "outByteBuf"
* in "inMaxByteOutBuflen". If "outByteBuf" is not large enough or if data is malformed, then "FALSE"
* will be returned; otherwise "TRUE". */
static unsigned char decode(XMLCSTR inString, unsigned char *outByteBuf, int inMaxByteOutBuflen, XMLError *xe=NULL); ///< deprecated.
private:
void *buf;
int buflen;
void alloc(int newsize);
}XMLParserBase64Tool;
/** @} */
#undef XMLDLLENTRY
#endif