doc support

This commit is contained in:
Vítor Santos Costa
2015-01-04 23:58:23 +00:00
parent a87f1040ac
commit 3164ed2d61
124 changed files with 625 additions and 645 deletions

View File

@@ -50,10 +50,13 @@
rb_in/3
]).
/** @defgroup RedhYBlack_Trees Red-Black Trees
@ingroup YAPLibrary
@{
%%! @{
/**
@file rbtrees.yap
@defgroup rbtrees Red-Black Trees
@ingroup library
Red-Black trees are balanced search binary trees. They are named because
nodes can be classified as either red or black. The code we include is
based on "Introduction to Algorithms", second edition, by Cormen,
@@ -109,7 +112,6 @@ rb_new(K,V,t(Nil,black(Nil,K,V,Nil))) :- Nil = black('',_,_,'').
%% rb_empty(?T) is semidet.
%
% Succeeds if T is an empty Red-Black tree.
rb_empty(t(Nil,Nil)) :- Nil = black('',_,_,'').
%% rb_lookup(+Key, -Value, +T) is semidet.
@@ -1036,7 +1038,6 @@ list_to_rbtree(List, T) :-
%
% T is the red-black tree corresponding to the mapping in ordered
% list L.
ord_list_to_rbtree([], t(Nil,Nil)) :- !,
Nil = black('', _, _, '').
ord_list_to_rbtree([K-V], t(Nil,black(Nil,K,V,Nil))) :- !,
@@ -1085,10 +1086,9 @@ size(black(L,_,_,R),Sz0,Szf) :-
%% is_rbtree(?Term) is semidet.
%
% True if Term is a valide Red-Black tree.
% True if Term is a valid Red-Black tree.
%
% @tbd Catch variables.
is_rbtree(X) :-
var(X), !, fail.
is_rbtree(t(Nil,Nil)) :- !.
@@ -1231,26 +1231,11 @@ build_ntree(X1,X,T0,TF) :-
/** @pred is_rbtree(+ _T_)
Check whether _T_ is a valid red-black tree.
*/
/** @pred ord_list_to_rbtree(+ _L_, - _T_)
_T_ is the red-black tree corresponding to the mapping in ordered
list _L_.
*/
/** @pred rb_apply(+ _T_,+ _Key_,+ _G_,- _TN_)
If the value associated with key _Key_ is _Val0_ in _T_, and
If the value associated with key _Key_ is _Val0_ in _T_, and
if `call(G,Val0,ValF)` holds, then _TN_ differs from
_T_ only in that _Key_ is associated with value _ValF_ in
tree _TN_. Fails if it cannot find _Key_ in _T_, or if
@@ -1448,7 +1433,8 @@ with _NewVal_. Fails if it cannot find _Key_ in _T_.
_Pairs_ is an infix visit of tree _T_, where each element of
_Pairs_ is of the form _K_- _Val_.
@}
*/
%%! @}