Merge ssh://ssh.dcc.fc.up.pt:31064//home/vsc/yap
This commit is contained in:
commit
337bf7b136
@ -632,7 +632,7 @@ void Yap_ThrowError__(const char *file, const char *function, int lineno,
|
||||
// fprintf(stderr, "warning: ");
|
||||
Yap_Error__(true, file, function, lineno, type, where, tmpbuf);
|
||||
} else {
|
||||
Yap_Error__(true, file, function, lineno, type, where);
|
||||
Yap_Error__(true, file, function, lineno, type, where, NULL);
|
||||
}
|
||||
if (LOCAL_RestartEnv && !LOCAL_delay) {
|
||||
Yap_RestartYap(5);
|
||||
|
1415
C/utilpreds.c
1415
C/utilpreds.c
File diff suppressed because it is too large
Load Diff
@ -2,10 +2,10 @@
|
||||
* @file gensym.yap
|
||||
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
|
||||
* @date Tue Nov 17 18:37:13 2015
|
||||
*
|
||||
*
|
||||
* @brief Generate a new atom.
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*/
|
||||
:- module(gensym, [
|
||||
init_gensym/1,
|
||||
@ -20,7 +20,7 @@
|
||||
*
|
||||
* Predicates to create new atoms based on the prefix _Atom_.
|
||||
* They use a counter, stored as a
|
||||
* dynamic predicate, to construct the atom's suffix.
|
||||
* dynamic predicate, to construct the atom's suffix.
|
||||
*
|
||||
*/
|
||||
|
||||
@ -28,21 +28,20 @@
|
||||
:- dynamic gensym_key/2.
|
||||
|
||||
init_gensym(Key) :-
|
||||
assert(gensym_key(Atom,0) ).
|
||||
retractall(gensym_key(Key,_)),
|
||||
assert(gensym_key(Key,0) ).
|
||||
|
||||
gensym(Atom, New) :-
|
||||
retract(gensym_key(Atom,Id)), !,
|
||||
atomic_concat(Atom,Id,New),
|
||||
gensym(Key, New) :-
|
||||
retract(gensym_key(Key,Id)), !,
|
||||
atomic_concat(Key,Id,New),
|
||||
NId is Id+1,
|
||||
assert(gensym_key(Atom,NId)).
|
||||
assert(gensym_key(Key,NId)).
|
||||
gensym(Atom, New) :-
|
||||
atomic_concat(Atom,1,New),
|
||||
assert(gensym_key(Atom,2)).
|
||||
atomic_concat(Atom,0,New),
|
||||
assert(gensym_key(Atom,1)).
|
||||
|
||||
reset_gensym(Atom) :-
|
||||
retract(gensym_key(Atom,_)).
|
||||
|
||||
reset_gensym :-
|
||||
retractall(gensym_key(_,_)).
|
||||
|
||||
|
||||
|
@ -317,7 +317,7 @@ check_examples :-
|
||||
(user:example(ID,_,P,_), (\+ number(P); P>1 ; P<0))
|
||||
->
|
||||
(
|
||||
format(user_error,'The training example ~q does not have a valid probability value (~q).~n',[ID,P]),
|
||||
format(user_error,'The trianing example ~q does not have a valid probability value (~q).~n',[ID,P]),
|
||||
throw(error(examples))
|
||||
); true
|
||||
),
|
||||
@ -422,40 +422,26 @@ do_learning_intern(Iterations,Epsilon) :-
|
||||
% ground_truth_difference,
|
||||
gradient_descent,
|
||||
|
||||
problog_flag(log_frequency,Log_Frequency),
|
||||
|
||||
(
|
||||
( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
|
||||
->
|
||||
once(save_model);
|
||||
true
|
||||
),
|
||||
|
||||
once(save_model),
|
||||
update_values,
|
||||
|
||||
mse_trainingset,
|
||||
(
|
||||
last_mse(Last_MSE)
|
||||
->
|
||||
(
|
||||
|
||||
retractall(last_mse(_)),
|
||||
logger_get_variable(mse_trainingset,Current_MSE),
|
||||
assertz(last_mse(Current_MSE)),
|
||||
!,
|
||||
MSE_Diff is abs(Last_MSE-Current_MSE)
|
||||
); (
|
||||
;
|
||||
logger_get_variable(mse_trainingset,Current_MSE),
|
||||
assertz(last_mse(Current_MSE)),
|
||||
MSE_Diff is Epsilon+1
|
||||
)
|
||||
|
||||
),
|
||||
init_queries,
|
||||
|
||||
(
|
||||
retractall(values_correct),
|
||||
retractall(query_is_similar(_,_)),
|
||||
retractall(query_md5(_,_,_)),
|
||||
empty_bdd_directory,
|
||||
init_queries
|
||||
),
|
||||
|
||||
|
||||
!,
|
||||
@ -466,7 +452,8 @@ do_learning_intern(Iterations,Epsilon) :-
|
||||
|
||||
|
||||
|
||||
RemainingIterations is Iterations-1,
|
||||
current_iteration(ThisCurrentIteration),
|
||||
RemainingIterations is Iterations-ThisCurrentIteration,
|
||||
|
||||
(
|
||||
MSE_Diff>Epsilon
|
||||
@ -492,13 +479,16 @@ init_learning :-
|
||||
% empty_output_directory,
|
||||
logger_write_header,
|
||||
format_learning(1,'Initializing everything~n',[]),
|
||||
|
||||
|
||||
succeeds_n_times(user:test_example(_,_,_,_),TestExampleCount),
|
||||
format_learning(3,'~q test examples~n',[TestExampleCount]),
|
||||
|
||||
succeeds_n_times(user:example(_,_,_,_),TrainingExampleCount),
|
||||
assertz(example_count(TrainingExampleCount)),
|
||||
format_learning(3,'~q training examples~n',[TrainingExampleCount]),
|
||||
forall(tunable_fact(FactID,GroundTruth),
|
||||
set_fact_probability(FactID,0.5)
|
||||
),
|
||||
|
||||
|
||||
|
||||
@ -526,7 +516,7 @@ update_values :-
|
||||
% delete old values
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
retractall(query_probability_intern(_,_)),
|
||||
retractall(query_gradient_intern(_,_,_,_)).
|
||||
retractall(query_gradient_intern(_,_,_,_)).
|
||||
|
||||
|
||||
|
||||
@ -535,7 +525,7 @@ update_values :-
|
||||
% Check, if continuous facts are used.
|
||||
% if yes, switch to problog_exact
|
||||
% continuous facts are not supported yet.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
set_default_gradient_method :-
|
||||
( problog_flag(continuous_facts, true )
|
||||
->
|
||||
@ -561,7 +551,7 @@ set_default_gradient_method :-
|
||||
);
|
||||
true
|
||||
).
|
||||
|
||||
|
||||
|
||||
|
||||
empty_bdd_directory :-
|
||||
@ -709,8 +699,8 @@ mse_trainingset :-
|
||||
format_learning(2,'MSE_Training ',[]),
|
||||
update_values,
|
||||
findall(t(LogCurrentProb,SquaredError),
|
||||
(user:training_example(QueryID,Query,TrueQueryProb,_Type),
|
||||
once(update_query(QueryID,'+',probability)),
|
||||
(user:example(QueryID,Query,TrueQueryProb,_Type),
|
||||
% once(update_query(QueryID,'+',probability)),
|
||||
query_probability(QueryID,CurrentProb),
|
||||
format(Handle,'ex(~q,training,~q,~q,~10f,~10f).~n',[Iteration,QueryID,Query,TrueQueryProb,CurrentProb]),
|
||||
|
||||
@ -814,7 +804,7 @@ sigmoid(T,Slope,Sig) :-
|
||||
Sig <== OUT.
|
||||
|
||||
inv_sigmoid(T,Slope,InvSig) :-
|
||||
InvSig <== -log(1/T-1)/Slope.
|
||||
InvSig is -log(1/T-1)/Slope.
|
||||
|
||||
|
||||
%========================================================================
|
||||
@ -835,14 +825,29 @@ save_old_probabilities :-
|
||||
gradient_descent :-
|
||||
problog_flag(sigmoid_slope,Slope),
|
||||
% current_iteration(Iteration),
|
||||
findall(FactID,tunable_fact(FactID,GroundTruth),L), length(L,N),
|
||||
findall(FactID,tunable_fact(FactID,_GroundTruth),L),
|
||||
length(L,N),
|
||||
% leash(0),trace,
|
||||
lbfgs_initialize(N,X,0,Solver),
|
||||
forall(tunable_fact(FactID,GroundTruth),
|
||||
(XZ is 0.0, X[FactID] <== XZ,sigmoid(XZ,Slope,Pr),set_fact_probability(FactID,Pr))),
|
||||
problog_flag(sigmoid_slope,Slope),
|
||||
lbfgs_run(Solver,_BestF),
|
||||
lbfgs_finalize(Solver).
|
||||
lbfgs_initialize(N,X,0,Solver),
|
||||
forall(tunable_fact(FactID,_GroundTruth),
|
||||
set_fact( FactID, Slope, X)
|
||||
),
|
||||
lbfgs_run(Solver,_BestF),
|
||||
lbfgs_finalize(Solver).
|
||||
|
||||
set_fact(FactID, Slope, X ) :-
|
||||
get_fact_probability(FactID,Pr),
|
||||
(Pr > 0.99
|
||||
->
|
||||
NPr = 0.99
|
||||
;
|
||||
Pr < 0.01
|
||||
->
|
||||
NPr = 0.01 ;
|
||||
Pr = NPr ),
|
||||
inv_sigmoid(NPr, Slope, XZ),
|
||||
X[FactID] <== XZ.
|
||||
|
||||
|
||||
set_tunable(I,Slope,P) :-
|
||||
X <== P[I],
|
||||
@ -858,17 +863,15 @@ user:evaluate(LLH_Training_Queries, X,Grad,N,_,_) :-
|
||||
LLs <== array[TrainingExampleCount ] of floats,
|
||||
Probs <== array[N] of floats,
|
||||
problog_flag(sigmoid_slope,Slope),
|
||||
N1 is N-1,
|
||||
N1 is N-1,
|
||||
forall(between(0,N1,I),
|
||||
(Grad[I] <== 0.0, S <== X[I], sigmoid(S,Slope, P), Probs[I] <== P)
|
||||
),
|
||||
forall(
|
||||
full_example(QueryID,QueryProb,BDD),
|
||||
forall(
|
||||
full_example(QueryID,QueryProb,BDD),
|
||||
compute_grad(QueryID, BDD, QueryProb,Grad, Probs, Slope,LLs)
|
||||
),
|
||||
LLH_Training_QueriesSum <== sum(LLs),
|
||||
LLH_Training_Queries is LLH_Training_QueriesSum/TrainingExampleCount .
|
||||
%wrap(X, Grad, GradCount).
|
||||
LLH_Training_Queries <== sum(LLs).
|
||||
|
||||
full_example(QueryID,QueryProb,BDD) :-
|
||||
user:example(QueryID,_Query,QueryProb,_),
|
||||
@ -882,7 +885,7 @@ compute_grad(QueryID,BDD,QueryProb, Grad, Probs, Slope, LLs) :-
|
||||
recorded(QueryID,BDD,_),
|
||||
qprobability(BDD,Slope,BDDProb),
|
||||
LL is (BDDProb-QueryProb)*(BDDProb-QueryProb),
|
||||
LLs[QueryID] <== LL,
|
||||
LLs[QueryID] <== LL,
|
||||
%writeln( qprobability(BDD,Slope,BDDProb) ),
|
||||
forall(
|
||||
member(I-_, MapList),
|
||||
@ -985,18 +988,21 @@ bind_maplist([Node-Pr|MapList], Slope, X) :-
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% stop calculate gradient
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
user:progress(FX,X,_G,X_Norm,G_Norm,Step,_N,Iteration,Ls,0) :-
|
||||
user:progress(FX,_X,_G,X_Norm,_G_Norm,_Step,_N,_Iteration,_Ls,-1) :-
|
||||
FX < 0, !,
|
||||
format('stopped on bad FX=~4f~n',[FX]).
|
||||
user:progress(FX,X,_G,X_Norm,G_Norm,Step,_N,_Iteration,Ls,0) :-
|
||||
problog_flag(sigmoid_slope,Slope),
|
||||
forall(tunable_fact(FactID,_GroundTruth), set_tunable(FactID,Slope,X)),
|
||||
current_iteration(CurrentIteration),
|
||||
retractall(current_iteration(_)),
|
||||
NextIteration is CurrentIteration+1,
|
||||
assertz(current_iteration(NextIteration)),
|
||||
save_model,
|
||||
logger_set_variable(mse_trainingset, FX),
|
||||
save_model,
|
||||
X0 <== X[0], sigmoid(X0,Slope,P0),
|
||||
X1 <== X[1], sigmoid(X1,Slope,P1),
|
||||
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[Iteration,P0 ,P1,FX,X_Norm,G_Norm,Step,Ls]).
|
||||
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[CurrentIteration,P0 ,P1,FX,X_Norm,G_Norm,Step,Ls]).
|
||||
|
||||
|
||||
%========================================================================
|
||||
|
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user