Merge ssh://ssh.dcc.fc.up.pt:31064//home/vsc/yap

This commit is contained in:
Vitor Santos Costa 2018-11-06 23:19:51 +00:00
commit 337bf7b136
5 changed files with 855 additions and 845 deletions

View File

@ -632,7 +632,7 @@ void Yap_ThrowError__(const char *file, const char *function, int lineno,
// fprintf(stderr, "warning: ");
Yap_Error__(true, file, function, lineno, type, where, tmpbuf);
} else {
Yap_Error__(true, file, function, lineno, type, where);
Yap_Error__(true, file, function, lineno, type, where, NULL);
}
if (LOCAL_RestartEnv && !LOCAL_delay) {
Yap_RestartYap(5);

File diff suppressed because it is too large Load Diff

View File

@ -2,10 +2,10 @@
* @file gensym.yap
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
* @date Tue Nov 17 18:37:13 2015
*
*
* @brief Generate a new atom.
*
*
*
*
*/
:- module(gensym, [
init_gensym/1,
@ -20,7 +20,7 @@
*
* Predicates to create new atoms based on the prefix _Atom_.
* They use a counter, stored as a
* dynamic predicate, to construct the atom's suffix.
* dynamic predicate, to construct the atom's suffix.
*
*/
@ -28,21 +28,20 @@
:- dynamic gensym_key/2.
init_gensym(Key) :-
assert(gensym_key(Atom,0) ).
retractall(gensym_key(Key,_)),
assert(gensym_key(Key,0) ).
gensym(Atom, New) :-
retract(gensym_key(Atom,Id)), !,
atomic_concat(Atom,Id,New),
gensym(Key, New) :-
retract(gensym_key(Key,Id)), !,
atomic_concat(Key,Id,New),
NId is Id+1,
assert(gensym_key(Atom,NId)).
assert(gensym_key(Key,NId)).
gensym(Atom, New) :-
atomic_concat(Atom,1,New),
assert(gensym_key(Atom,2)).
atomic_concat(Atom,0,New),
assert(gensym_key(Atom,1)).
reset_gensym(Atom) :-
retract(gensym_key(Atom,_)).
reset_gensym :-
retractall(gensym_key(_,_)).

View File

@ -317,7 +317,7 @@ check_examples :-
(user:example(ID,_,P,_), (\+ number(P); P>1 ; P<0))
->
(
format(user_error,'The training example ~q does not have a valid probability value (~q).~n',[ID,P]),
format(user_error,'The trianing example ~q does not have a valid probability value (~q).~n',[ID,P]),
throw(error(examples))
); true
),
@ -422,40 +422,26 @@ do_learning_intern(Iterations,Epsilon) :-
% ground_truth_difference,
gradient_descent,
problog_flag(log_frequency,Log_Frequency),
(
( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
->
once(save_model);
true
),
once(save_model),
update_values,
mse_trainingset,
(
last_mse(Last_MSE)
->
(
retractall(last_mse(_)),
logger_get_variable(mse_trainingset,Current_MSE),
assertz(last_mse(Current_MSE)),
!,
MSE_Diff is abs(Last_MSE-Current_MSE)
); (
;
logger_get_variable(mse_trainingset,Current_MSE),
assertz(last_mse(Current_MSE)),
MSE_Diff is Epsilon+1
)
),
init_queries,
(
retractall(values_correct),
retractall(query_is_similar(_,_)),
retractall(query_md5(_,_,_)),
empty_bdd_directory,
init_queries
),
!,
@ -466,7 +452,8 @@ do_learning_intern(Iterations,Epsilon) :-
RemainingIterations is Iterations-1,
current_iteration(ThisCurrentIteration),
RemainingIterations is Iterations-ThisCurrentIteration,
(
MSE_Diff>Epsilon
@ -492,13 +479,16 @@ init_learning :-
% empty_output_directory,
logger_write_header,
format_learning(1,'Initializing everything~n',[]),
succeeds_n_times(user:test_example(_,_,_,_),TestExampleCount),
format_learning(3,'~q test examples~n',[TestExampleCount]),
succeeds_n_times(user:example(_,_,_,_),TrainingExampleCount),
assertz(example_count(TrainingExampleCount)),
format_learning(3,'~q training examples~n',[TrainingExampleCount]),
forall(tunable_fact(FactID,GroundTruth),
set_fact_probability(FactID,0.5)
),
@ -526,7 +516,7 @@ update_values :-
% delete old values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
retractall(query_probability_intern(_,_)),
retractall(query_gradient_intern(_,_,_,_)).
retractall(query_gradient_intern(_,_,_,_)).
@ -535,7 +525,7 @@ update_values :-
% Check, if continuous facts are used.
% if yes, switch to problog_exact
% continuous facts are not supported yet.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
set_default_gradient_method :-
( problog_flag(continuous_facts, true )
->
@ -561,7 +551,7 @@ set_default_gradient_method :-
);
true
).
empty_bdd_directory :-
@ -709,8 +699,8 @@ mse_trainingset :-
format_learning(2,'MSE_Training ',[]),
update_values,
findall(t(LogCurrentProb,SquaredError),
(user:training_example(QueryID,Query,TrueQueryProb,_Type),
once(update_query(QueryID,'+',probability)),
(user:example(QueryID,Query,TrueQueryProb,_Type),
% once(update_query(QueryID,'+',probability)),
query_probability(QueryID,CurrentProb),
format(Handle,'ex(~q,training,~q,~q,~10f,~10f).~n',[Iteration,QueryID,Query,TrueQueryProb,CurrentProb]),
@ -814,7 +804,7 @@ sigmoid(T,Slope,Sig) :-
Sig <== OUT.
inv_sigmoid(T,Slope,InvSig) :-
InvSig <== -log(1/T-1)/Slope.
InvSig is -log(1/T-1)/Slope.
%========================================================================
@ -835,14 +825,29 @@ save_old_probabilities :-
gradient_descent :-
problog_flag(sigmoid_slope,Slope),
% current_iteration(Iteration),
findall(FactID,tunable_fact(FactID,GroundTruth),L), length(L,N),
findall(FactID,tunable_fact(FactID,_GroundTruth),L),
length(L,N),
% leash(0),trace,
lbfgs_initialize(N,X,0,Solver),
forall(tunable_fact(FactID,GroundTruth),
(XZ is 0.0, X[FactID] <== XZ,sigmoid(XZ,Slope,Pr),set_fact_probability(FactID,Pr))),
problog_flag(sigmoid_slope,Slope),
lbfgs_run(Solver,_BestF),
lbfgs_finalize(Solver).
lbfgs_initialize(N,X,0,Solver),
forall(tunable_fact(FactID,_GroundTruth),
set_fact( FactID, Slope, X)
),
lbfgs_run(Solver,_BestF),
lbfgs_finalize(Solver).
set_fact(FactID, Slope, X ) :-
get_fact_probability(FactID,Pr),
(Pr > 0.99
->
NPr = 0.99
;
Pr < 0.01
->
NPr = 0.01 ;
Pr = NPr ),
inv_sigmoid(NPr, Slope, XZ),
X[FactID] <== XZ.
set_tunable(I,Slope,P) :-
X <== P[I],
@ -858,17 +863,15 @@ user:evaluate(LLH_Training_Queries, X,Grad,N,_,_) :-
LLs <== array[TrainingExampleCount ] of floats,
Probs <== array[N] of floats,
problog_flag(sigmoid_slope,Slope),
N1 is N-1,
N1 is N-1,
forall(between(0,N1,I),
(Grad[I] <== 0.0, S <== X[I], sigmoid(S,Slope, P), Probs[I] <== P)
),
forall(
full_example(QueryID,QueryProb,BDD),
forall(
full_example(QueryID,QueryProb,BDD),
compute_grad(QueryID, BDD, QueryProb,Grad, Probs, Slope,LLs)
),
LLH_Training_QueriesSum <== sum(LLs),
LLH_Training_Queries is LLH_Training_QueriesSum/TrainingExampleCount .
%wrap(X, Grad, GradCount).
LLH_Training_Queries <== sum(LLs).
full_example(QueryID,QueryProb,BDD) :-
user:example(QueryID,_Query,QueryProb,_),
@ -882,7 +885,7 @@ compute_grad(QueryID,BDD,QueryProb, Grad, Probs, Slope, LLs) :-
recorded(QueryID,BDD,_),
qprobability(BDD,Slope,BDDProb),
LL is (BDDProb-QueryProb)*(BDDProb-QueryProb),
LLs[QueryID] <== LL,
LLs[QueryID] <== LL,
%writeln( qprobability(BDD,Slope,BDDProb) ),
forall(
member(I-_, MapList),
@ -985,18 +988,21 @@ bind_maplist([Node-Pr|MapList], Slope, X) :-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% stop calculate gradient
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
user:progress(FX,X,_G,X_Norm,G_Norm,Step,_N,Iteration,Ls,0) :-
user:progress(FX,_X,_G,X_Norm,_G_Norm,_Step,_N,_Iteration,_Ls,-1) :-
FX < 0, !,
format('stopped on bad FX=~4f~n',[FX]).
user:progress(FX,X,_G,X_Norm,G_Norm,Step,_N,_Iteration,Ls,0) :-
problog_flag(sigmoid_slope,Slope),
forall(tunable_fact(FactID,_GroundTruth), set_tunable(FactID,Slope,X)),
current_iteration(CurrentIteration),
retractall(current_iteration(_)),
NextIteration is CurrentIteration+1,
assertz(current_iteration(NextIteration)),
save_model,
logger_set_variable(mse_trainingset, FX),
save_model,
X0 <== X[0], sigmoid(X0,Slope,P0),
X1 <== X[1], sigmoid(X1,Slope,P1),
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[Iteration,P0 ,P1,FX,X_Norm,G_Norm,Step,Ls]).
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[CurrentIteration,P0 ,P1,FX,X_Norm,G_Norm,Step,Ls]).
%========================================================================

File diff suppressed because one or more lines are too long