diff --git a/packages/CLPBN/pfl.tex b/packages/CLPBN/pfl.tex index 27f051424..9793b0e9f 100644 --- a/packages/CLPBN/pfl.tex +++ b/packages/CLPBN/pfl.tex @@ -38,7 +38,7 @@ CRACS \& INESC TEC, Faculty of Sciences, University of Porto \thispagestyle{empty} \vspace{5cm} \begin{center} - \large Last revision: January 18, 2013 + \large Last revision: April 12, 2013 \end{center} \newpage @@ -87,7 +87,7 @@ A first-order probabilistic graphical model is described using parametric factor $$Type~~F~~;~~Phi~~;~~C.$$ -, where +Where, \begin{itemize} \item $Type$ refers the type of network over which the parfactor is defined. It can be \texttt{bayes} for directed networks, or \texttt{markov} for undirected ones. @@ -489,9 +489,9 @@ The options that are available with the \texttt{set\_pfl\_flag/2} predicate can %------------------------------------------------------------------------------ %------------------------------------------------------------------------------ %------------------------------------------------------------------------------ -\section{Further Information} -Please check the paper \textit{Evaluating Inference Algorithms for the Prolog Factor Language} for further information. - -Any question? Don't hesitate to contact us! +\section{Papers} +\begin{itemize} + \item \textit{Evaluating Inference Algorithms for the Prolog Factor Language}. +\end{itemize} \end{document}