improve and document matrix package

This commit is contained in:
Vítor Santos Costa 2013-09-28 11:09:32 +01:00
parent dd17f5a3aa
commit 3d863b1058
4 changed files with 826 additions and 164 deletions

View File

@ -204,6 +204,7 @@ Subnodes of Library
* DBUsage:: Information bout data base usage.
* LineUtilities:: Line Manipulation Utilities
* Lists:: List Manipulation
* MapArgs:: Apply on Arguments of Compound Terms.
* MapList:: SWI-Compatible Apply library.
* matrix:: Matrix Objects
* MATLAB:: Matlab Interface
@ -8730,6 +8731,7 @@ Library, Extensions, Built-ins, Top
* DBUsage:: Information bout data base usage.
* Lists:: List Manipulation
* LineUtilities:: Line Manipulation Utilities
* MapArgs:: Apply on Arguments of Compound Terms.
* MapList:: SWI-Compatible Apply library.
* matrix:: Matrix Objects
* MATLAB:: Matlab Interface
@ -9460,7 +9462,7 @@ unification using @code{memberchk/2}. The complexity is
See @code{ord_subtract/3}.
@end table
@node LineUtilities, MapList, Lists, Library
@node LineUtilities, MapArgs, Lists, Library
@section Line Manipulation Utilities
@cindex Line Utilities Library
@ -9619,7 +9621,95 @@ Same as @code{file_filter/3}, but before starting the filter execute
@node MapList, matrix, LineUtilities, Library
@node MapArgs, MapList, LineUtilities, Library
@section Maplist
@cindex macros
This library provides a set of utilities for applying a predicate to
all sub-terms of a term. They allow to
easily perform the most common do-loop constructs in Prolog. To avoid
performance degradation due to @code{apply/2}, each call creates an
equivalent Prolog program, without meta-calls, which is executed by
the Prolog engine instead.
@table @code
@item mapargs(+@var{Pred}, +@var{TermIn})
@findex mapargs/2
@snindex mapargs/2
@cnindex mapargs/2
Applies the predicate @var{Pred} to all
arguments of @var{TermIn}
@item mapargs(+@var{Pred}, +@var{TermIn}, ?@var{TermOut})
@findex mapargs/3
@snindex mapargs/3
@cnindex mapargs/3
Creates @var{TermOut} by applying the predicate @var{Pred} to all
arguments of @var{TermIn}
@item mapargs(+@var{Pred}, +@var{TermIn}, ?@var{TermOut1}, ?@var{TermOut2})
@findex mapargs/4
@snindex mapargs/4
@cnindex mapargs/4
Creates @var{TermOut1} and @var{TermOut2} by applying the predicate @var{Pred} to all
arguments of @var{TermIn}
@item mapargs(+@var{Pred}, +@var{TermIn}, ?@var{TermOut1},
?@var{TermOut2}, ?@var{TermOut3})
@findex mapargs/5
@snindex mapargs/5
@cnindex mapargs/5
Creates @var{TermOut1}, @var{TermOut2} and @var{TermOut3} by applying the predicate @var{Pred} to all
arguments of @var{TermIn}
@item mapargs(+@var{Pred}, +@var{TermIn}, ?@var{TermOut1},
?@var{TermOut2}, ?@var{TermOut3}, ?@var{TermOut4})
@findex mapargs/6
@snindex mapargs/6
@cnindex mapargs/6
Creates @var{TermOut1}, @var{TermOut2}, @var{TermOut3} and @var{TermOut4} by applying the predicate @var{Pred} to all
arguments of @var{TermIn}
@item foldargs(+@var{Pred}, +@var{Term}, ?@var{AccIn}, ?@var{AccOut})
@findex foldargs/4
@snindex foldargs/4
@cnindex foldargs/4
Calls the predicate @var{Pred} on all arguments of @var{Term} and
collects a result in @var{Accumulator}
@item foldargs(+@var{Pred}, +@var{Term}, +@var{Term1}, ?@var{AccIn}, ?@var{AccOut})
@findex foldargs/5
@snindex foldargs/5
@cnindex foldargs/5
Calls the predicate @var{Pred} on all arguments of @var{Term} and @var{Term1} and
collects a result in @var{Accumulator}
@item foldargs(+@var{Pred}, +@var{Term}, +@var{Term1}, +@var{Term2}, ?@var{AccIn}, ?@var{AccOut})
@findex foldargs/6
@snindex foldargs/6
@cnindex foldargs/6
Calls the predicate @var{Pred} on all arguments of @var{Term}, +@var{Term1} and @var{Term2} and
collects a result in @var{Accumulator}
@item foldargs(+@var{Pred}, +@var{Term}, +@var{Term1}, +@var{Term2}, +@var{Term3}, ?@var{AccIn}, ?@var{AccOut})
@findex foldargs/7
@snindex foldargs/7
@cnindex foldargs/7
Calls the predicate @var{Pred} on all arguments of @var{Term}, +@var{Term1}, +@var{Term2} and @var{Term3} and
collects a result in @var{Accumulator}
@item sumargs(+@var{Pred}, +@var{Term}, ?@var{AccIn}, ?@var{AccOut})
@findex sumargs/4
@snindex sumargs/4
@cnindex sumargs/4
Calls the predicate @var{Pred} on all arguments of @var{Term} and
collects a result in @var{Accumulator} (uses reverse order than foldargs).
@end table
@node MapList, matrix, MapArgs, Library
@section Maplist
@cindex macros
@ -9742,7 +9832,14 @@ applying the predicate @var{Pred} to all list elements on which
@findex foldl2/7
@snindex foldl2/7
@cnindex foldl2/7
Calls @var{Pred} on all elements of @code{List} and collects a result in
Calls @var{Pred} on all elements of @var{List} and @var{List1} and collects a result in
@var{X} and @var{Y}.
@item foldl2(:@var{Pred}, +@var{List}, ?@var{List1}, ?@var{List2}, ?@var{X0}, ?@var{X}, ?@var{Y0}, ?@var{Y})
@findex foldl2/8
@snindex foldl2/8
@cnindex foldl2/8
Calls @var{Pred} on all elements of @var{List}, @var{List1} and @var{List2} and collects a result in
@var{X} and @var{Y}.
@item foldl3(:@var{Pred}, +@var{List1}, ?@var{List2}, ?@var{X0},
@ -9796,20 +9893,6 @@ result in @var{X}, @var{Y}, @var{Z} and @var{W}.
@cnindex scanl/7
Left scan of list.
@item mapargs(+@var{Pred}, ?@var{TermIn}, ?@var{TermOut})
@findex mapargs/3
@snindex mapargs/3
@cnindex mapargs/3
Creates @var{TermOut} by applying the predicate @var{Pred} to all
arguments of @var{TermIn}
@item sumargs(+@var{Pred}, +@var{Term}, ?@var{AccIn}, ?@var{AccOut})
@findex sumargs/4
@snindex sumargs/4
@cnindex sumargs/4
Calls the predicate @var{Pred} on all arguments of @var{Term} and
collects a result in @var{Accumulator}
@item mapnodes(+@var{Pred}, +@var{TermIn}, ?@var{TermOut})
@findex mapnodes/3
@snindex mapnodes/3
@ -9902,13 +9985,149 @@ This package provides a fast implementation of multi-dimensional
matrices of integers and floats. In contrast to dynamic arrays, these
matrices are multi-dimensional and compact. In contrast to static
arrays. these arrays are allocated in the stack. Matrices are available
by loading the library @code{library(matrix)}.
by loading the library @code{library(matrix)}. They are multimensional
objects of type:@itemize
@item @t{terms}: Prolog terms
@item @t{ints}: bounded integers, represented as an opaque term. The
maximum integer depends on hardware, but should be obtained from the
natural size of the machine.
@item @t{floats}: floating-poiny numbers, represented as an opaque term.
@end itemize
Notice that the functionality in this library is only partial. Please
Matrix elements can be accessed through the @code{matrix_get/2}
predicate or through an @t{R}-inspired access notation (that uses the ciao
style extension to @code{[]}. Examples include:
@table @code
@item @var{E} <== @var{X}[2,3]
Access the second row, third column of matrix @t{X}. Indices start from
@code{0},
@item @var{L} <== @var{X}[2,_]
Access all the second row, the output is a list ofe elements.
@item @var{L} <== @var{X}[2..4,_]
Access all the second, thrd and fourth rows, the output is a list of elements.
@item @var{L} <== @var{X}[2..4+3,_]
Access all the fifth, sixth and eight rows, the output is a list of elements.
@end table
The matrix library also supports a B-Prolog/ECliPSe inspired @code{for} operator to iterate over
elements of a matrix:
@table @code
@item for(I in 0..N1, X[I] <== Y[I])
Copies a vector, element by element.
@item for([I in 0..N1, J in I..N1], Z[I,J] <== X[I,J] - X[I,J])
The lower-triangular matrix @var{Z} is the difference between the
lower-triangular and upper-triangular parts of @var{X}.
@item for([I in 0..N1, J in 0..N1], plus(X[I,J]), 0, Sum)
Add all elements of a matrix by using @var{Sum} as an accumulator.
@end table
Notice that the library does not support all known matrix operations. Please
contact the YAP maintainers if you require extra functionality.
@table @code
@item @var{X} = array[@var{Dim1},...,@var{Dimn}] of @var{Objects}
@findex of/2
@snindex of/2
@cnindex of/2
The @code{of/2} operator can be used to create a new array of
@var{Objects}. The objects supported are:
@table @code
@item Unbound Variable
create an array of free variables
@item ints
create an array of integers
@item floats
create an array of floating-point numbers
@item @var{I}:@var{J}
create an array with integers from @var{I} to @var{J}
@item [..]
create an array from the values in a list
@end table
The dimensions can be given as an integer, and the matrix will be
indexed @code{C}-style from @code{0..(@var{Max}-1)}, or can be given
as an interval @code{@var{Base}..@var{Limit}}. In the latter case,
matrices of integers and of floating-point numbers should have the same
@var{Base} on every dimension.
@item ?@var{LHS} <== @var{RHS}
@findex <==/2
@snindex <==/2
@cnindex <==/2
General matrix assignment operation. It evaluates the right-hand side
and then acts different according to the
left-hand side and to the matrix:
@itemize
@item if @var{LHS} is part of an integer or floating-point matrix,
perform non-backtrackable assignment.
@item other unify left-hand side and right-hand size.
@end itemize
The right-hand side supports the following operators:
@table @code
@item []/2
written as @var{M}[@var{Offset}]: obtain an element or list of elements
of matrix @var{M} at offset @var{Offset}.
@item matrix/1
create a vector from a list
@item matrix/2
create a matrix from a list. Oprions are:
@table @code
@item dim=
a list of dimensiona
@item type=
integers, floating-point or terms
@item base=
a list of base offsets per dimension (all must be the same for arrays of
integers and floating-points
@end table
@item matrix/3
create matrix giving two options
@item dim/1
list with matrix dimensions
@item nrow/1
number of rows in bi-dimensional matrix
@item ncol/1
number of columns in bi-dimensional matrix
@item length/1
size of a matrix
@item size/1
size of a matrix
@item max/1
maximum element of a numeric matrix
@item maxarg/1
argument of maximum element of a numeric matrix
@item min/1
minimum element of a numeric matrix
@item minarg/1
argument of minimum element of a numeric matrix
@item list/1
represent matrix as a list
@item lists/2
represent matrix as list of embedded lists
@item ../2
@var{I}..@var{J} generates a list with all integers from @var{I} to
@var{J}, included.
@item +/2
add two numbers, add two matrices element-by-element, or add a number to
all elements of a matrix or list
@item -/2
subtract two numbers, subtract two matrices or lists element-by-element, or subtract a number from
all elements of a matrix or list
@item */2
multiply two numbers, multiply two matrices or lists element-by-element, or multiply a number from
all elements of a matrix or list
@item log/1
natural logarithm of a number, matrix or list
@item exp/1
natural exponentiation of a number, matrix or list
@end table
@item matrix_new(+@var{Type},+@var{Dims},-@var{Matrix})
@findex matrix_new/3
@snindex matrix_new/3
@ -10143,7 +10362,7 @@ and @var{Matrix2}. Currently, only addition (@code{+}) is supported.
@var{Result} is the result of applying @var{Op} to all elements of
@var{Matrix1}, with @var{Operand} as the second argument. Currently,
only addition (@code{+}), multiplication (@code{+}), and division
only addition (@code{+}), multiplication (@code{*}), and division
(@code{/}) are supported.
@item matrix_op_to_lines(+@var{Matrix1},+@var{Lines},+@var{Op},-@var{Result})

View File

@ -50,7 +50,9 @@ PROGRAMS= \
$(srcdir)/lists.yap \
$(srcdir)/nb.yap \
$(srcdir)/ordsets.yap \
$(srcdir)/mapargs.yap \
$(srcdir)/maplist.yap \
$(srcdir)/maputils.yap \
$(srcdir)/matlab.yap \
$(srcdir)/matrix.yap \
$(srcdir)/prandom.yap \

View File

@ -20,7 +20,7 @@
may have a number of dimensions. These routines implement a number of
routine manipulation procedures.
matrix(Type,D1,D2,...,Dn,data(......))
'$matrix'(Type,D1,D2,...,Dn,data(......))
Type = int, float
@ -39,10 +39,11 @@ typedef enum {
:- module( matrix,
[op(100, yf, []),
(<==)/2, op(500, xfx, '<=='),
(<==)/2, op(600, xfx, '<=='),
op(700, xfx, in),
op(700, xfx, ins),
op(450, xfx, ..), % should bind more tightly than \/
op(710, xfx, of), of/2,
matrix_new/3,
matrix_new/4,
matrix_new_set/4,
@ -99,11 +100,50 @@ typedef enum {
:- load_foreign_files([matrix], [], init_matrix).
:- multifile rhs_opaque/1, array_extension/2.
:- meta_predicate for(+,0), for(+,2, +, -).
:- use_module(library(maplist)).
:- use_module(library(mapargs)).
:- use_module(library(lists)).
( X = '[]'(Dims0, array) of V ) :-
var(V), !,
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
length( L, Size ),
X <== matrix( L, [dim=Dims,base=Bases] ).
( X = '[]'(Dims0, array) of ints ) :- !,
foldl( norm_dim, Dims0, Dims, Bases, 1, _Size ),
matrix_new( ints , Dims, X ),
matrix_base(X, Bases).
( X = '[]'(Dims0, array) of floats ) :- !,
foldl( norm_dim, Dims0, Dims, Bases, 1, _Size ),
matrix_new( floats , Dims, X ),
matrix_base(X, Bases).
( X = '[]'(Dims0, array) of (I:J) ) :- !,
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
matrix_seq(I, J, Dims, X),
matrixn_size(X, Size),
matrix_base(X, Bases).
( X = '[]'(Dims0, array) of L ) :-
length( L, Size ), !,
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
X <== matrix( L, [dim=Dims,base=Bases] ).
( X = '[]'(Dims0, array) of Pattern ) :-
array_extension(Pattern, Goal),
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
call(Goal, Pattern, Dims, Size, L),
X <== matrix( L, [dim=Dims,base=Bases] ).
norm_dim( I..J, D, I, P0, P) :- !,
D is J+1-I,
P is P0*D.
norm_dim( I, I, 0, P0, P ) :-
P is P0*I.
( LHS <== RHS ) :-
rhs(RHS, R),
set_lhs( LHS, R).
@ -113,7 +153,7 @@ rhs(RHS, RHS) :- var(RHS), !.
rhs(A, A) :- atom(A), !.
rhs(RHS, RHS) :- number(RHS), !.
rhs(RHS, RHS) :- opaque(RHS), !.
rhs(RHS, RHS) :- RHS = m(_, _, _, _), !.
rhs(RHS, RHS) :- RHS = '$matrix'(_, _, _, _, _), !.
rhs(matrix(List), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [], RHS).
@ -123,15 +163,6 @@ rhs(matrix(List, Opt1), RHS) :- !,
rhs(matrix(List, Opt1, Opt2), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [Opt1, Opt2], RHS).
rhs(matrix(List, Opt1, Opt2, Opt3), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [Opt1, Opt2, Opt3], RHS).
rhs(matrix(List, Opt1, Opt2, Opt3, Opt4), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [Opt1, Opt2, Opt3, Opt4], RHS).
rhs(matrix(List, Opt1, Opt2, Opt3, Opt4, Opt5), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [Opt1, Opt2, Opt3, Opt4, Opt5], RHS).
rhs(dim(RHS), Dims) :- !,
rhs(RHS, X1),
matrix_dims( X1, Dims ).
@ -156,19 +187,23 @@ rhs(max(RHS), Size) :- !,
rhs(min(RHS), Size) :- !,
rhs(RHS, X1),
matrix_min( X1, Size ).
rhs(maxarg(RHS), Size) :- !,
rhs(RHS, X1),
matrix_maxarg( X1, Size ).
rhs(minarg(RHS), Size) :- !,
rhs(RHS, X1),
matrix_minarg( X1, Size ).
rhs(list(RHS), List) :- !,
rhs(RHS, X1),
matrix_to_list( X1, List ).
rhs(lists(RHS), List) :- !,
rhs(RHS, X1),
matrix_to_lists( X1, List ).
rhs(A=B, NA=NB) :- !,
rhs(A, NA),
rhs(B, NB).
rhs('[]'(Args, RHS), Val) :- !,
rhs('[]'(Args, RHS), Val) :-
!,
rhs(RHS, X1),
matrix_dims( X1, Dims ),
maplist( index(Range), Args, Dims, NArgs),
matrix_dims( X1, Dims, Bases),
maplist( index(Range), Args, Dims, Bases, NArgs),
(
var(Range)
->
@ -183,10 +218,23 @@ rhs('..'(I, J), [I1|Is]) :- !,
rhs([H|T], [NH|NT]) :- !,
rhs(H, NH),
rhs(T, NT).
rhs(':'(I, J), [I1|Is]) :- !,
rhs(I, I1),
rhs(J, J1),
once( foldl(inc, Is, I1, J1) ).
rhs(log(RHS), Logs ) :- !,
rhs(RHS, X1),
matrix_to_logs( X1, Logs ).
rhs(exp(RHS), Logs ) :- !,
rhs(RHS, X1),
matrix_to_exps( X1, Logs ).
rhs(S, NS) :-
rhs_opaque( S ), !,
S = NS.
rhs(E1+E2, V) :- !,
rhs(E1, R1),
rhs(E2, R2),
mplus(R1, R2, V).
rhs(E1-E2, V) :- !,
rhs(E1, R1),
rhs(E2, R2),
msub(R1, R2, V).
rhs(S, NS) :-
S =.. [N|As],
maplist(rhs, As, Bs),
@ -194,23 +242,32 @@ rhs(S, NS) :-
set_lhs(V, R) :- var(V), !, V = R.
set_lhs(V, R) :- number(V), !, V = R.
set_lhs(V, R) :- V = '[]'(Indx, M), !,
matrix_set( M, Indx, R).
set_lhs('[]'(Args, M), Val) :-
matrix_dims( M, Dims, Bases),
maplist( index(Range), Args, Dims, Bases, NArgs),
(
var(Range)
->
matrix_set( M, NArgs, Val )
;
matrix_set_range( M, NArgs, Val )
).
%
% ranges of arguments
%
index(Range, V, M, Indx) :- var(V), !,
index(Range, 0..(M-1), M, Indx).
index(Range, '*', M, Indx) :- !,
index(Range, 0..(M-1), M, Indx).
index(Range, Exp, M, Indx) :- !,
index(Range, V, M, Base, Indx) :- var(V), !,
Max is (M-1)+Base,
index(Range, Base..Max, M, Base, Indx).
index(Range, '*', M, Base, Indx) :- !,
Max is (M-1)+Base,
index(Range, Base..Max, M, Base, Indx).
index(Range, Exp, M, _Base, Indx) :- !,
index(Exp, M, Indx0),
( integer(Indx0) -> Indx = Indx0 ;
Indx0 = [Indx] -> true ;
Indx0 = Indx, Range = range ).
index(I, _M, I ) :- integer(I), !.
index(I..J, _M, [I|O] ) :- !,
I1 is I, J1 is J,
@ -218,23 +275,23 @@ index(I..J, _M, [I|O] ) :- !,
index(I:J, _M, [I|O] ) :- !,
I1 is I, J1 is J,
once( foldl(inc, O, I1, J1) ).
index(I+J, _M, O ) :-
index(I+J, _M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
add_index(I1, J1, O).
index(I-J, _M, O ) :-
index(I-J, _M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
add_index(I1, J1, O).
index(I*J, _M, O ) :-
sub_index(I1, J1, O).
index(I*J, _M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
O is I1*J1.
index(I div J, _M, O ) :-
index(I div J, _M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
O is I1 div J1.
index(I rem J, _M, O ) :-
index(I rem J, _M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
O is I1 rem J1.
@ -273,13 +330,73 @@ minus(X, Y, Z) :- Z is X-Y.
rminus(X, Y, Z) :- Z is Y-X.
times(X, Y, Z) :- Z is Y*X.
div(X, Y, Z) :- Z is X/Y.
rdiv(X, Y, Z) :- Z is Y/X.
zdiv(X, Y, Z) :- (X == 0 -> Z = 0 ; X == 0.0 -> Z = 0.0 ; Z is X / Y ).
mplus(I1, I2, V) :-
number(I1) ->
( number(I2) -> V is I1+I2 ;
'$matrix'(I2) -> matrix_op_to_all(I1, +, I2, V) ;
is_list(I2) -> maplist(plus(I1), I2, V) ;
V = I1+I2 ) ;
matrix(I1) ->
( number(I2) -> matrix_op_to_all(I1, +, I2, V) ;
'$matrix'(I2) -> matrix_op(I1, I2, +, V) ;
V = I1+I2 ) ;
is_list(I1) ->
( number(I2) -> maplist(plus(I2), I1, V) ;
is_list(I2) -> maplist(plus, I1, I2, V) ;
V = I1+I2 ) ;
V = I1 +I2.
msub(I1, I2, V) :-
number(I1) ->
( number(I2) -> V is I1-I2 ;
matrix(I2) -> matrix_op_to_all(I1, -, NI2, V) ;
is_list(I2) -> maplist(minus(I1), I2, V) ;
V = I1-I2 ) ;
matrix(I1) ->
( number(I2) -> NI2 is -I2, matrix_op_to_all(I1, +, NI2, V) ;
matrix(I2) -> matrix_op(I1, I2, -, V) ;
V = I1-I2 ) ;
is_list(I1) ->
( number(I2) -> NI2 is -I2, maplist(plus(NI2), I1, V) ;
is_list(I2) -> maplist(minus, I1, I2, V) ;
V = I1-I2 ) ;
V = I1-I2.
mtimes(I1, I2, V) :-
number(I1) ->
( number(I2) -> V is I1*I2 ;
matrix(I2) -> matrix_op_to_all(I1, *, I2, V) ;
is_list(I2) -> maplist(times(I1), I2, V) ;
V = I1*I2 ) ;
matrix(I1) ->
( number(I2) -> matrix_op_to_all(I1, *, I2, V) ;
matrix(I2) -> matrix_op(I1, I2, *, V) ;
V = I1*I2 ) ;
is_list(I1) ->
( number(I2) -> maplist(times(I2), I1, V) ;
is_list(I2) -> maplist(times, I1, I2, V) ;
V = I1*I2 ) ;
V = I1 *I2.
%
% three types of matrix: integers, floats and general terms.
%
matrix_new(terms,Dims, m(Dims, NDims, Size, Matrix) ) :-
matrix_new(terms,Dims, '$matrix'(Dims, NDims, Size, Offsets, Matrix) ) :-
length(Dims,NDims),
foldl(size, Dims, 1, Size),
maplist(zero, Dims, Offsets),
functor( Matrix, c, Size).
matrix_new(ints,Dims,Matrix) :-
length(Dims,NDims),
@ -289,9 +406,10 @@ matrix_new(floats,Dims,Matrix) :-
new_floats_matrix_set(NDims, Dims, 0.0, Matrix).
matrix_new(terms, Dims, Data, m(Dims, NDims, Size, Matrix) ) :-
matrix_new(terms, Dims, Data, '$matrix'(Dims, NDims, Size, Offsets, Matrix) ) :-
length(Dims,NDims),
foldl(size, Dims, 1, Size),
maplist(zero, Dims, Offsets),
functor( Matrix, c, Size),
Matrix =.. [c|Data].
matrix_new(ints,Dims,Data,Matrix) :-
@ -304,19 +422,23 @@ matrix_new(floats,Dims,Data,Matrix) :-
matrix_dims( Mat, Dims) :-
( opaque(Mat) -> matrixn_dims( Mat, Dims ) ;
Mat = m( Dims, _, _, _) ).
Mat = '$matrix'( Dims, _, _, _, _) ).
matrix_dims( Mat, Dims, Bases) :-
( opaque(Mat) -> matrixn_dims( Mat, Dims, Bases ) ;
Mat = '$matrix'( Dims, _, _, Bases, _) ).
matrix_ndims( Mat, NDims) :-
( opaque(Mat) -> matrixn_ndims( Mat, NDims ) ;
Mat = m( _, NDims, _, _) ).
Mat = '$matrix'( _, NDims, _, _, _) ).
matrix_size( Mat, Size) :-
( opaque(Mat) -> matrixn_size( Mat, Size ) ;
Mat = m( _, _, Size, _) ).
Mat = '$matrix'( _, _, Size, _, _) ).
matrix_to_list( Mat, ToList) :-
( opaque(Mat) -> matrixn_to_list( Mat, ToList ) ;
Mat = m( _, _, _, M), M=.. [_|ToList] ).
Mat = '$matrix'( _, _, _, _, M), M=.. [_|ToList] ).
matrix_to_lists( Mat, ToList) :-
matrix_dims( Mat, [D|Dims] ),
@ -350,6 +472,10 @@ add_index_prefix( [L|Els0] , H ) --> [[H|L]],
add_index_prefix( Els0 , H ).
matrix_set_range( Mat, Pos, Els) :-
slice(Pos, Keys),
maplist( matrix_set(Mat), Keys, Els).
matrix_set( Mat, Pos, El) :-
( opaque(Mat) -> matrixn_set( Mat, Pos, El ) ;
m_set(Mat, Pos, El) ).
@ -367,30 +493,70 @@ matrix_type(Matrix,Type) :-
opaque( Matrix ) -> Type = floats ;
Type = terms ).
matrix_base(Matrix, Bases) :-
( opaque( Matrix ) -> maplist('='(Base), Bases), matrixn_set_base( Matrix, Base ) ;
nb_setarg(4, Matrix, Bases ) ).
matrix_arg_to_offset(M, Index, Offset) :-
( opaque(M) -> matrixn_arg_to_offset( M, Index, Offset ) ;
M = m(Dims, _, Size, _) -> foldl2(indx, Index, Dims, Size, _, 0, Offset) ).
M = '$matrix'(Dims, _, Size, Bases, _) -> foldl2(indx, Index, Dims, Bases, Size, _, 0, Offset) ).
matrix_offset_to_arg(M, Offset, Index) :-
( opaque(M) -> matrixn_offset_to_arg( M, Offset, Index ) ;
M = m(Dims, _, Size, _) -> foldl2(offset, Index, Dims, Size, _, Offset, _) ).
M = '$matrix'(Dims, _, Size, Bases, _) -> foldl2(offset, Index, Dims, Bases, Size, _, Offset, _) ).
matrix_max(M, Max) :-
( opaque(M) -> matrixn_max( M, Max ) ;
M = m(_, _, _, M) -> fail ).
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(max, M, V0, Max) ;
M = [V0|L], foldl(max, L, V0, Max) ).
max(New, Old, Max) :- ( New >= Old -> New = Max ; Old = Max ).
matrix_maxarg(M, Max) :-
( opaque(M) -> matrixn_maxarg( M, Max ) ;
M = m(_, _, _, _) -> fail ).
matrix_maxarg(M, MaxArg) :-
( opaque(M) -> matrixn_maxarg( M, MaxArg );
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(maxarg, M, V0-0-0, _-Offset-_), matrix_offset_to_arg(M, Offset, MaxArg) ;
M = [V0|L], foldl(maxarg, L, V0-0-1, _Max-Off-_ ), MaxArg = [Off] ).
maxarg(New, Old-OPos-I0, Max-MPos-I) :- I is I0+1, ( New > Old -> New = Max, MPos = I0 ; Old = Max, MPos = OPos ).
matrix_min(M, Min) :-
( opaque(M) -> matrixn_min( M, Min ) ;
M = m(_, _, _, M) -> fail ).
matrix_minarg(M, Min) :-
( opaque(M) -> matrixn_minarg( M, Min ) ;
M = m(_Dims, _, _Size, _) -> fail ).
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(min, M, V0, Max) ;
M = [V0|L], foldl(min, L, V0, Max) ).
min(New, Old, Max) :- ( New =< Old -> New = Max ; Old = Max ).
matrix_minarg(M, MinArg) :-
( opaque(M) -> matrixn_minarg( M, MinArg );
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(minarg, M, V0-0-0, _-Offset-_), matrix_offset_to_arg(M, Offset, MinArg) ;
M = [V0|L], foldl(minarg, L, V0-0-1, _Min-Off-_ ), MinArg = [Off] ).
minarg(New, Old-OPos-I0, Min-MPos-I) :- I is I0+1, ( New < Old -> New = Min, MPos = I0 ; Old = Min, MPos = OPos ).
matrix_to_logs(M, LogM) :-
( opaque(M) -> matrixn_to_logs( M, LogM ) ;
M = '$matrix'(A, B, D, E, C) ->
LogM = '$matrix'(A, B, D, E, LogC),
mapargs(log, C, LogC) ;
M = [V0|L] -> maplist(log, [V0|L], LogM ) ;
LogM is log(M) ).
log(X, Y) :- Y is log(X).
matrix_to_exps(M, ExpM) :-
( opaque(M) -> matrixn_to_exps( M, ExpM ) ;
M = '$matrix'(A, B, D, E, C) ->
ExpM = '$matrix'(A, B, D, E, ExpC),
mapargs(exp, C, ExpC) ;
M = [V0|L] -> maplist(exp, [V0|L], ExpM ) ;
ExpM is exp(M) ).
exp(X, Y) :- Y is exp(X).
matrix_agg_lines(M1,+,NM) :-
do_matrix_agg_lines(M1,0,NM).
/* other operations: *, logprod */
@ -400,24 +566,77 @@ matrix_agg_cols(M1,+,NM) :-
/* other operations: *, logprod */
matrix_op(M1,M2,+,NM) :-
do_matrix_op(M1,M2,0,NM).
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,0,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(plus, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,-,NM) :-
do_matrix_op(M1,M2,1,NM).
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,1,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(minus, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,*,NM) :-
do_matrix_op(M1,M2,2,NM).
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,2,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(times, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,/,NM) :-
do_matrix_op(M1,M2,3,NM).
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,3,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(div, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,zdiv,NM) :-
do_matrix_op(M1,M2,5,NM).
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,5,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(zdiv, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op_to_all(M1,+,Num,NM) :-
do_matrix_op_to_all(M1,0,Num,NM).
( opaque(M1) ->
do_matrix_op_to_all(M1,0,Num,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(plus(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
matrix_op_to_all(M1,-,Num,NM) :-
( opaque(M1) ->
do_matrix_op_to_all(M1,1,Num,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(minus(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
matrix_op_to_all(M1,*,Num,NM) :-
do_matrix_op_to_all(M1,2,Num,NM).
( opaque(M1) ->
do_matrix_op_to_all(M1,2,Num,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(times(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
matrix_op_to_all(M1,/,Num,NM) :-
% can only use floats.
FNum is float(Num),
do_matrix_op_to_all(M1,3,FNum,NM).
( opaque(M1) ->
do_matrix_op_to_all(M1,3,FNum,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(div(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
/* other operations: *, logprod */
matrix_op_to_lines(M1,M2,/,NM) :-
@ -436,21 +655,21 @@ size(N0, N1, N2) :-
N2 is N0*N1.
% use 1 to get access to matrix
m_get(m(Dims, _, Sz, M), Indx, V) :-
foldl2(indx, Indx, Dims, Sz, _, 1, Offset),
m_get('$matrix'(Dims, _, Sz, Bases, M), Indx, V) :-
foldl2(indx, Indx, Dims, Bases, Sz, _, 1, Offset),
arg(Offset, M, V).
m_set(m(Dims, _, Sz, M), Indx, V) :-
foldl2(indx, Indx, Dims, Sz, _, 1, Offset),
nb_setarg(Offset, M, V).
m_set('$matrix'(Dims, _, Sz, Bases, M), Indx, V) :-
foldl2(indx, Indx, Dims, Bases, Sz, _, 1, Offset),
arg(Offset, M, V).
indx( I, Dim, BlkSz, NBlkSz, I0, IF) :-
NBlkSz is BlkSz div Dim,
IF is I*NBlkSz + I0.
indx( I, Dim, Base, BlkSz, NBlkSz, I0, IF) :-
NBlkSz is BlkSz div Dim ,
IF is (I-Base)*NBlkSz + I0.
offset( I, Dim, BlkSz, NBlkSz, I0, IF) :-
offset( I, Dim, BlkSz, NBlkSz, Base, I0, IF) :-
NBlkSz is BlkSz div Dim,
I is I0 div NBlkSz,
I is I0 div NBlkSz + Base,
IF is I0 rem NBlkSz.
inc(I1, I, I1) :-
@ -460,7 +679,7 @@ new_matrix(M0, Opts0, M) :-
opaque(M), !,
matrix_to_list(M0, L),
new_matrix(L, Opts0, M).
new_matrix(m(_,_,_,C), Opts0, M) :- !,
new_matrix('$matrix'(_,_,_,_,C), Opts0, M) :- !,
C =..[_|L],
new_matrix(L, Opts0, M).
new_matrix(C, Opts0, M) :-
@ -470,15 +689,17 @@ new_matrix(C, Opts0, M) :-
new_matrix(List, Opts0, M) :-
foldl2(el_list(MDims), List, Flat, [], 0, Dim), !,
fix_opts(Opts0, Opts),
foldl2(process_new_opt, Opts, Type, TypeF, [Dim|MDims], Dims),
foldl2(process_new_opt, Opts, Type, TypeF, [Dim|MDims], Dims, Base),
( var(TypeF) -> guess_type( Flat, Type ) ; true ),
matrix_new( Type, Dims, Flat, M).
matrix_new( Type, Dims, Flat, M),
( nonvar(Base) -> matrix_base(M, Base); true ).
new_matrix([H|List], Opts0, M) :-
length( [H|List], Size),
fix_opts(Opts0, Opts),
foldl2(process_new_opt, Opts, Type, TypeF, [Size], Dims),
foldl2(process_new_opt(Base), Opts, Type, TypeF, [Size], Dims),
( var(TypeF) -> guess_type( [H|List], Type ) ; true ),
matrix_new( Type, Dims, [H|List], M).
matrix_new( Type, Dims, [H|List], M),
( nonvar(Base) -> matrix_base(M, Base); true ).
fix_opts(V, _) :-
var(V), !,
@ -498,9 +719,10 @@ guess_type( List, Type ) :-
Type = floats.
guess_type( _List, terms ).
process_new_opt(dim=Dim, Type, Type, _, Dim) :- !.
process_new_opt(type=Type, _, Type, Dim, Dim) :- !.
process_new_opt(Opt, _, _Type, Dim, Dim) :-
process_new_opt(_Base, dim=Dim, Type, Type, _, Dim) :- !.
process_new_opt(_Base, type=Type, _, Type, Dim, Dim) :- !.
process_new_opt( Base, base=Base, Type, Type, Dim, Dim) :- !.
process_new_opt(_Base, Opt, Type, Type, Dim, Dim) :-
throw(error(domain_error(opt=Opt), new_matrix)).
el_list(_, V, _Els, _NEls, _I0, _I1) :-
@ -515,87 +737,106 @@ el_list([N], El, Els, NEls, I0, I1) :-
append(El, NEls, Els),
I1 is I0+1.
for( Domain, M:(Locals^Goal)) :- !,
global_variables( Domain, Locals, Goal, GlobalVars ),
iterate( Domain, [], GlobalVars, M:Goal, [], [] ).
for( Domain, Goal) :-
strip_module(Goal, M, Locals^NG), !,
term_variables(Domain+Locals, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [] ),
terms:reset_variables( LocalVars ).
for( Domain, Goal ) :-
global_variables( Domain, [], Goal, GlobalVars ),
iterate( Domain, [], GlobalVars, Goal, [], [] ).
strip_module(Goal, M, NG),
term_variables(Domain, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [] ),
terms:reset_variables( LocalVars ).
for( Domain, M:(Locals^Goal), Inp, Out) :- !,
global_variables( Domain, Locals, Goal, GlobalVars ),
iterate( Domain, [], GlobalVars, M:Goal, [], [], Inp, Out).
for( Domain, Goal, Inp, Out) :-
strip_module(Goal, M, Locals^NG), !,
term_variables(Domain+Locals, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [], Inp, Out).
for( Domain, Goal, Inp, Out ) :-
global_variables( Domain, [], Goal, GlobalVars ),
iterate( Domain, [], GlobalVars, Goal, [], [], Inp, Out ).
strip_module(Goal, M, NG),
term_variables(Domain, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [], Inp, Out ).
global_variables( Domain, Locals, Goal, GlobalVars ) :-
term_variables( Domain+Locals, Pars ),
term_variables( Goal, DGVs, Pars),
sort( DGVs, GVs ),
foldl( delv, Pars, GVs, GlobalVars ).
delv( V, [V1|Vs], Vs) :- V == V1, !.
delv( V, [V1|Vs], [V1|NVs]) :-
delv( V, Vs, NVs).
iterate( [], [], GlobalVars, Goal, Vs, Bs ) :-
copy_term(t(Vs, Goal, GlobalVars), t(Bs, G, GlobalVars) ),
strip_module(G, M, NG),
once( M:NG ).
iterate( [], [H|Cont], GlobalVars, Goal, Vs, Bs ) :-
iterate(H, Cont, GlobalVars, Goal, Vs, Bs ).
iterate( [H|L], Cont, GlobalVars, Goal, Vs, Bs ) :- !,
iterate( [], [], LocalVars, Goal, Vs, Bs ) :-
terms:freshen_variables(LocalVars),
Vs = Bs,
MG <== Goal,
once( MG ),
terms:reset_variables(LocalVars).
iterate( [], [H|Cont], LocalVars, Goal, Vs, Bs ) :-
iterate(H, Cont, LocalVars, Goal, Vs, Bs ).
iterate( [H|L], [], LocalVars, Goal, Vs, Bs ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs ).
iterate( [H|L], Cont, LocalVars, Goal, Vs, Bs ) :- !,
append(L, Cont, LCont),
iterate(H, LCont, GlobalVars, Goal, Vs, Bs ).
iterate( [] ins _A .. _B, Cont, GlobalVars, Goal, Vs, Bs ) :- !,
iterate(Cont, [], GlobalVars, Goal, Vs, Bs ).
iterate( [V|Ps] ins A..B, Cont, GlobalVars, Goal, Vs, Bs ) :-
iterate(H, LCont, LocalVars, Goal, Vs, Bs ).
iterate( [] ins _A .. _B, [H|L], LocalVars, Goal, Vs, Bs ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs ).
iterate( [] ins _A .. _B, [], LocalVars, Goal, Vs, Bs ) :- !,
iterate([], [], LocalVars, Goal, Vs, Bs ).
iterate( [V|Ps] ins A..B, Cont, LocalVars, Goal, Vs, Bs ) :-
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> true ;
A1 is NA+1,
iterate( Ps ins NA..NB, Cont, GlobalVars, Goal, [V|Vs], [NA|Bs] ),
iterate( [V|Ps] ins A1..NB, Cont, GlobalVars, Goal, Vs, Bs )
iterate( Ps ins NA..NB, Cont, LocalVars, Goal, [V|Vs], [NA|Bs] ),
iterate( [V|Ps] ins A1..NB, Cont, LocalVars, Goal, Vs, Bs )
).
iterate( V in A..B, Cont, GlobalVars, Goal, Vs, Bs) :-
iterate( V in A..B, Cont, LocalVars, Goal, Vs, Bs) :-
var(V),
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> true ;
A1 is NA+1,
iterate( Cont, [], GlobalVars, Goal, [V|Vs], [NA|Bs] ),
iterate( V in A1..NB, Cont, GlobalVars, Goal, Vs, Bs )
(Cont = [H|L] ->
iterate( H, L, LocalVars, Goal, [V|Vs], [NA|Bs] )
;
iterate( [], [], LocalVars, Goal, [V|Vs], [NA|Bs] )
),
iterate( V in A1..NB, Cont, LocalVars, Goal, Vs, Bs )
).
iterate( [], [], GlobalVars, Goal, Vs, Bs, Inp, Out ) :-
copy_term(t(Vs, Goal, GlobalVars), t(Bs, G, GlobalVars) ),
strip_module(G, M, NG),
MG <== NG,
once( call(M:MG, Inp, Out) ).
iterate( [], [H|Cont], GlobalVars, Goal, Vs, Bs, Inp, Out ) :-
iterate(H, Cont, GlobalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [H|L], Cont, GlobalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate( [], [], LocalVars, Goal, Vs, Bs, Inp, Out ) :-
terms:freshen_variables(LocalVars),
Vs = Bs,
MG <== Goal,
once( call(MG, Inp, Out) ),
terms:reset_variables(LocalVars).
iterate( [], [H|Cont], LocalVars, Goal, Vs, Bs, Inp, Out ) :-
iterate(H, Cont, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [H|L], [], LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [H|L], Cont, LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
append(L, Cont, LCont),
iterate(H, LCont, GlobalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [] ins _A .. _B, Cont, GlobalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate(Cont, [], GlobalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [V|Ps] ins A..B, Cont, GlobalVars, Goal, Vs, Bs, Inp, Out ) :-
iterate(H, LCont, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [] ins _A .. _B, [], LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate([], [], LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [] ins _A .. _B, [H|L], LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [V|Ps] ins A..B, Cont, LocalVars, Goal, Vs, Bs, Inp, Out ) :-
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> Inp = Out ;
A1 is NA+1,
iterate( Ps ins A..B, Cont, GlobalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid ),
iterate( [V|Ps] ins A1..NB, Cont, GlobalVars, Goal, Vs, Bs, Mid, Out )
iterate( Ps ins A..B, Cont, LocalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid ),
iterate( [V|Ps] ins A1..NB, Cont, LocalVars, Goal, Vs, Bs, Mid, Out )
).
iterate( V in A..B, Cont, GlobalVars, Goal, Vs, Bs, Inp, Out) :-
iterate( V in A..B, Cont, LocalVars, Goal, Vs, Bs, Inp, Out) :-
var(V),
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> Inp = Out ;
A1 is NA+1,
iterate( Cont, [], GlobalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid ),
iterate( V in A1..NB, Cont, GlobalVars, Goal, Vs, Bs, Mid, Out )
(Cont = [H|L] ->
iterate( H, L, LocalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid )
;
iterate( [], [], LocalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid )
),
iterate( V in A1..NB, Cont, LocalVars, Goal, Vs, Bs, Mid, Out )
).
@ -604,3 +845,12 @@ eval(I, Vs, Bs, NI) :-
copy_term(I+Vs, IA+Bs),
NI <== IA.
matrix_seq(A, B, Dims, M) :-
ints(A, B, L),
matrix_new(ints, Dims, L, M).
ints(A,B,O) :-
( A > B -> O = [] ; O = [A|L], A1 is A+1, ints(A1,B,L) ).
zero(_, 0).

View File

@ -29,6 +29,7 @@
A matrix is something of the form
TYPE = {int,double}
BASE = integer
#DIMS = an int
DIM1
...
@ -49,10 +50,11 @@ typedef enum {
typedef enum {
MAT_TYPE=0,
MAT_NDIMS=1,
MAT_SIZE=2,
MAT_ALIGN=3,
MAT_DIMS=4,
MAT_BASE=1,
MAT_NDIMS=2,
MAT_SIZE=3,
MAT_ALIGN=4,
MAT_DIMS=5,
} mat_type;
typedef enum {
@ -66,6 +68,9 @@ typedef enum {
MAT_EXP=7
} op_type;
YAP_Functor FunctorM;
YAP_Atom AtomC;
static long int *
matrix_long_data(int *mat, int ndims)
{
@ -85,11 +90,13 @@ matrix_get_offset(int *mat, int* indx)
/* find where we are */
for (i = 0; i < mat[MAT_NDIMS]; i++) {
int v;
pos /= mat[MAT_DIMS+i];
if (indx[i] >= mat[MAT_DIMS+i]) {
v = indx[i]-mat[MAT_BASE];
if (v >= mat[MAT_DIMS+i]) {
return off;
}
off += pos*indx[i];
off += pos*v;
}
return off;
}
@ -144,6 +151,7 @@ new_int_matrix(int ndims, int dims[], long int data[])
}
mat = (int *)YAP_BlobOfTerm(blob);
mat[MAT_TYPE] = INT_MATRIX;
mat[MAT_BASE] = 0;
mat[MAT_NDIMS] = ndims;
mat[MAT_SIZE] = nelems;
for (i=0;i< ndims;i++) {
@ -177,6 +185,7 @@ new_float_matrix(int ndims, int dims[], double data[])
return blob;
mat = YAP_BlobOfTerm(blob);
mat[MAT_TYPE] = FLOAT_MATRIX;
mat[MAT_BASE] = 0;
mat[MAT_NDIMS] = ndims;
mat[MAT_SIZE] = nelems;
for (i=0;i< ndims;i++) {
@ -436,6 +445,40 @@ mk_int_list(int nelems, int *data)
return tf;
}
static YAP_Term
mk_int_list2(int nelems, int base, int *data)
{
YAP_Term tn = YAP_TermNil();
YAP_Term tf = tn;
int i = 0;
for (i = nelems-1; i>= 0; i--) {
tf = YAP_MkPairTerm(YAP_MkIntTerm(data[i]+base),tf);
if (tf == tn) {
/* error */
return tn;
}
}
return tf;
}
static YAP_Term
mk_rep_int_list(int nelems, int data)
{
YAP_Term tn = YAP_TermNil();
YAP_Term tf = tn;
int i = 0;
for (i = nelems-1; i>= 0; i--) {
tf = YAP_MkPairTerm(YAP_MkIntTerm(data),tf);
if (tf == tn) {
/* error */
return tn;
}
}
return tf;
}
static YAP_Term
mk_long_list(int nelems, long int *data)
{
@ -869,6 +912,21 @@ matrix_to_list(void)
return YAP_Unify(YAP_ARG2, tf);
}
static int
matrix_set_base(void)
{
int *mat;
mat = (int *)YAP_BlobOfTerm(YAP_ARG1);
if (!mat) {
/* Error */
return FALSE;
}
mat[MAT_BASE] = YAP_IntOfTerm(YAP_ARG2);
return TRUE;
}
static int
matrix_dims(void)
{
@ -884,6 +942,22 @@ matrix_dims(void)
return YAP_Unify(YAP_ARG2, tf);
}
static int
matrix_dims3(void)
{
int *mat;
YAP_Term tf, tof;
mat = (int *)YAP_BlobOfTerm(YAP_ARG1);
if (!mat) {
/* Error */
return FALSE;
}
tf = mk_int_list(mat[MAT_NDIMS],mat+MAT_DIMS);
tof = mk_rep_int_list(mat[MAT_NDIMS],mat[MAT_BASE]);
return YAP_Unify(YAP_ARG2, tf) && YAP_Unify(YAP_ARG3, tof);
}
static int
matrix_size(void)
{
@ -967,7 +1041,7 @@ matrix_offset_to_arg(void)
}
off = YAP_IntOfTerm(ti);
matrix_get_index(mat, off, indx);
tf = mk_int_list(mat[MAT_NDIMS], indx);
tf = mk_int_list2(mat[MAT_NDIMS], mat[MAT_BASE], indx);
return YAP_Unify(YAP_ARG3, tf);
}
@ -1133,7 +1207,27 @@ matrix_log_all2(void)
return FALSE;
}
if (mat[MAT_TYPE] == INT_MATRIX) {
return FALSE;
YAP_Term out;
long int *data = matrix_long_data(mat, mat[MAT_NDIMS]);
double *ndata;
int i;
int *nmat;
if (!YAP_IsVarTerm(YAP_ARG2)) {
out = YAP_ARG2;
} else {
out = new_float_matrix(mat[MAT_NDIMS], mat+MAT_DIMS, NULL);
if (out == YAP_TermNil())
return FALSE;
}
nmat = (int *)YAP_BlobOfTerm(out);
ndata = matrix_double_data(nmat, mat[MAT_NDIMS]);
for (i=0; i< mat[MAT_SIZE]; i++) {
ndata[i] = log((double)data[i]);
}
if (YAP_IsVarTerm(YAP_ARG2)) {
return YAP_Unify(YAP_ARG2, out);
}
} else {
YAP_Term out;
double *data = matrix_double_data(mat, mat[MAT_NDIMS]), *ndata;
@ -1221,7 +1315,27 @@ matrix_exp_all2(void)
return FALSE;
}
if (mat[MAT_TYPE] == INT_MATRIX) {
return FALSE;
YAP_Term out;
long int *data = matrix_long_data(mat, mat[MAT_NDIMS]);
double *ndata;
int i;
int *nmat;
if (!YAP_IsVarTerm(YAP_ARG2)) {
out = YAP_ARG2;
} else {
out = new_float_matrix(mat[MAT_NDIMS], mat+MAT_DIMS, NULL);
if (out == YAP_TermNil())
return FALSE;
}
nmat = (int *)YAP_BlobOfTerm(out);
ndata = matrix_double_data(nmat, mat[MAT_NDIMS]);
for (i=0; i< mat[MAT_SIZE]; i++) {
ndata[i] = exp((double)data[i]);
}
if (YAP_IsVarTerm(YAP_ARG2)) {
return YAP_Unify(YAP_ARG2, out);
}
} else {
YAP_Term out;
double *data = matrix_double_data(mat, mat[MAT_NDIMS]), *ndata;
@ -2175,6 +2289,12 @@ matrix_op_to_all(void)
for (i = 0; i < mat[MAT_SIZE]; i++) {
ndata[i] = data[i] + num;
}
} else if (op == MAT_SUB) {
int i;
for (i = 0; i < mat[MAT_SIZE]; i++) {
ndata[i] = num - data[i];
}
} else if (op == MAT_TIMES) {
int i;
@ -2228,6 +2348,15 @@ matrix_op_to_all(void)
}
}
break;
case MAT_SUB:
{
int i;
for (i = 0; i < mat[MAT_SIZE]; i++) {
ndata[i] = num-data[i];
}
}
break;
case MAT_TIMES:
{
int i;
@ -3060,11 +3189,69 @@ matrix_set_all_that_disagree(void)
return YAP_Unify(YAP_ARG5, tf);
}
static int
matrix_m(void)
{
int ndims, i, size;
YAP_Term tm, *tp;
int *mat = (int *)YAP_BlobOfTerm(YAP_ARG1);
if (!mat) {
return YAP_Unify(YAP_ARG1, YAP_ARG2);
}
ndims = mat[MAT_NDIMS];
size = mat[MAT_SIZE];
tm = YAP_MkNewApplTerm(FunctorM, 5);
tp = YAP_ArgsOfTerm(tm);
tp[0] = mk_int_list(ndims,mat+MAT_DIMS);
tp[1] = YAP_MkIntTerm(ndims);
tp[2] = YAP_MkIntTerm(size);
tp[3] = mk_rep_int_list(ndims,mat[MAT_BASE]);
tp[4] = YAP_MkNewApplTerm(YAP_MkFunctor(AtomC, size), size);
tp = YAP_ArgsOfTerm(tp[3]);
if (mat[MAT_TYPE] == INT_MATRIX) {
long int *data;
/* in case the matrix moved */
mat = (int *)YAP_BlobOfTerm(YAP_ARG1);
data = matrix_long_data(mat,ndims);
for (i=0; i< mat[MAT_SIZE]; i++) {
tp[i] = YAP_MkIntTerm(data[i]);
}
} else {
double *data;
/* in case the matrix moved */
mat = (int *)YAP_BlobOfTerm(YAP_ARG1);
data = matrix_double_data(mat,ndims);
for (i=0; i< mat[MAT_SIZE]; i++) {
tp[i] = YAP_MkFloatTerm(data[i]);
}
}
return YAP_Unify(YAP_ARG2, tm);
}
static int
is_matrix(void)
{
YAP_Term t = YAP_ARG1;
int *mat = (int *)YAP_BlobOfTerm(t);
if (!mat) {
if (!YAP_IsApplTerm(t)) return FALSE;
return YAP_FunctorOfTerm(t) == FunctorM;
}
return TRUE;
}
void PROTO(init_matrix, (void));
void
init_matrix(void)
{
AtomC = YAP_LookupAtom("c");
FunctorM = YAP_MkFunctor(YAP_LookupAtom("$matrix"), 5);
YAP_UserCPredicate("new_ints_matrix", new_ints_matrix, 4);
YAP_UserCPredicate("new_ints_matrix_set", new_ints_matrix_set, 4);
YAP_UserCPredicate("new_floats_matrix", new_floats_matrix, 4);
@ -3080,7 +3267,9 @@ init_matrix(void)
YAP_UserCPredicate("matrix_inc", do_matrix_inc2, 3);
YAP_UserCPredicate("matrix_dec", do_matrix_dec2, 3);
YAP_UserCPredicate("matrixn_to_list", matrix_to_list, 2);
YAP_UserCPredicate("matrixn_set_base", matrix_set_base, 2);
YAP_UserCPredicate("matrixn_dims", matrix_dims, 2);
YAP_UserCPredicate("matrixn_dims", matrix_dims3, 3);
YAP_UserCPredicate("matrixn_ndims", matrix_ndims, 2);
YAP_UserCPredicate("matrixn_size", matrix_size, 2);
YAP_UserCPredicate("matrix_type_as_number", matrix_type, 2);
@ -3098,8 +3287,8 @@ init_matrix(void)
YAP_UserCPredicate("matrix_to_logs", matrix_log_all,1);
YAP_UserCPredicate("matrix_to_exps", matrix_exp_all, 1);
YAP_UserCPredicate("matrix_to_exps2", matrix_exp2_all, 1);
YAP_UserCPredicate("matrix_to_logs", matrix_log_all2,2);
YAP_UserCPredicate("matrix_to_exps", matrix_exp_all2, 2);
YAP_UserCPredicate("matrixn_to_logs", matrix_log_all2,2);
YAP_UserCPredicate("matrixn_to_exps", matrix_exp_all2, 2);
YAP_UserCPredicate("matrix_sum_out", matrix_sum_out, 3);
YAP_UserCPredicate("matrix_sum_out_several", matrix_sum_out_several, 3);
YAP_UserCPredicate("matrix_sum_logs_out", matrix_sum_out_logs, 3);
@ -3111,6 +3300,8 @@ init_matrix(void)
YAP_UserCPredicate("do_matrix_op_to_all", matrix_op_to_all, 4);
YAP_UserCPredicate("do_matrix_op_to_lines", matrix_op_to_lines, 4);
YAP_UserCPredicate("do_matrix_op_to_cols", matrix_op_to_cols, 4);
YAP_UserCPredicate("matrix_m", matrix_m, 2);
YAP_UserCPredicate("matrix", is_matrix, 1);
}
#ifdef _WIN32