Logtalk 2.30.7 files.

git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1973 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
This commit is contained in:
pmoura
2007-11-06 01:50:09 +00:00
parent 6c3aee8c63
commit 42aabce1bb
320 changed files with 2252 additions and 1289 deletions

View File

@@ -1,6 +1,6 @@
================================================================
Logtalk - Open source object-oriented logic programming language
Release 2.30.2
Release 2.30.7
Copyright (c) 1998-2007 Paulo Moura. All Rights Reserved.
================================================================

View File

@@ -1,6 +1,6 @@
================================================================
Logtalk - Open source object-oriented logic programming language
Release 2.30.2
Release 2.30.7
Copyright (c) 1998-2007 Paulo Moura. All Rights Reserved.
================================================================
@@ -14,31 +14,31 @@ Copyright (c) 1998-2007 Paulo Moura. All Rights Reserved.
% find the roots of some functions using each one of provided methods:
| ?- bisection::find_root(f1, 1.0, 2.3, 1e-15, Zero).
| ?- bisection::find_root(f1, 1.0, 2.3, 1.0e-15, Zero).
Zero = 2.0
yes
| ?- newton::find_root(f1, 1.0, 2.3, 1e-15, Zero).
| ?- newton::find_root(f1, 1.0, 2.3, 1.0e-15, Zero).
Zero = 2.0
yes
| ?- muller::find_root(f1, 1.0, 2.3, 1e-15, Zero).
| ?- muller::find_root(f1, 1.0, 2.3, 1.0e-15, Zero).
Zero = 2.0
yes
| ?- bisection::find_root(f2, 1.0, 1.3, 1e-15, Zero).
| ?- bisection::find_root(f2, 1.0, 1.3, 1.0e-15, Zero).
Zero = 1.25809265664599
yes
| ?- newton::find_root(f2, 1.0, 1.3, 1e-15, Zero).
| ?- newton::find_root(f2, 1.0, 1.3, 1.0e-15, Zero).
Zero = 1.25809265664599
yes
| ?- muller::find_root(f2, 1.0, 1.3, 1e-15, Zero).
| ?- muller::find_root(f2, 1.0, 1.3, 1.0e-15, Zero).
Zero = 1.25809265664599
yes
@@ -46,20 +46,26 @@ yes
% find the roots of some functions running all methods at once using multi-threading:
| ?- function_root::find_root(f1, 1.0, 2.3, 1e-15, Zero, Method).
| ?- function_root::find_root(f1, 1.0, 2.3, 1.0e-15, Zero, Method).
Zero = 2.0
Method = bisection
yes
| ?- function_root::find_root(f2, 1.0, 1.3, 1e-15, Zero, Method).
| ?- function_root::find_root(f2, 1.0, 1.3, 1.0e-15, Zero, Method).
Zero = 1.25809265664599
Method = newton
yes
| ?- function_root::find_root(f3, 0.0, 3.0, 1e-15, Zero, Method).
| ?- function_root::find_root(f3, 0.0, 3.0, 1.0e-15, Zero, Method).
Zero = 1.4142135623731
Method = newton
yes
| ?- function_root::find_root(f4, -1.0, 2.0, 1.0e-15, Zero, Method).
Zero = -8.88178419700125e-16
Method = bisection
yes

View File

@@ -13,15 +13,10 @@
comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error.',
argnames is ['Function', 'A', 'B', 'Error', 'Zero']]).
:- public(find_root/6).
:- mode(find_root(+object_identifier, +float, +float, +float, -float, -object_identifier), one).
:- info(find_root/6, [
comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error. Return the method used.',
argnames is ['Function', 'A', 'B', 'Error', 'Zero', 'Method']]).
:- end_protocol.
:- protocol(functionp).
:- info([
@@ -33,18 +28,19 @@
:- public(eval/2).
:- mode(eval(+float, -float), one).
:- info(eval/2, [
comment is 'Calculate the function value.',
comment is 'Calculates the function value.',
argnames is ['X', 'Fx']]).
:- public(evald/2).
:- mode(evald(+float, -float), one).
:- info(evald/2, [
comment is 'Calculate the value of the function derivative.',
comment is 'Calculates the value of the function derivative.',
argnames is ['X', 'DFx']]).
:- end_protocol.
:- object(f1,
implements(functionp)).
@@ -53,12 +49,14 @@
eval(X, Y) :-
Y is X * X - 4.
evald(X, Y) :-
Y is 2 * X.
:- end_object.
:- object(f2,
implements(functionp)).
@@ -74,6 +72,7 @@
:- end_object.
:- object(f3,
implements(functionp)).
@@ -89,41 +88,30 @@
:- end_object.
:- object(function_root,
implements(find_rootp)).
:- info([
version is 1.1,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
comment is 'Multi-threading interface to root finding algorithms.']).
:- object(f4,
implements(functionp)).
:- threaded.
% x + x^2*sin(2.0/x)
% 0.0
eval(X, Y) :-
Y is X + (X**2)*sin(2.0/X).
find_root(Function, A, B, Error, Zero) :-
find_root(Function, A, B, Error, Zero, _).
find_root(Function, A, B, Error, Zero, Algorithm) :-
threaded_race(
( try_method(bisection, Function, A, B, Error, Zero)
; try_method(newton, Function, A, B, Error, Zero)
; try_method(muller, Function, A, B, Error, Zero)
)),
threaded_exit(try_method(Algorithm, Function, A, B, Error, Zero)).
try_method(Algorithm, Function, A, B, Error, Zero) :-
Algorithm::find_root(Function, A, B, Error, Zero).
evald(X, Y) :-
Y is 1 + 2*X*sin(2.0/X) - 2*cos(2.0/X).
:- end_object.
:- object(bisection,
implements(find_rootp)).
:- info([
version is 1.1,
version is 1.2,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
date is 2007/7/7,
comment is 'Bisection algorithm.']).
find_root(Function, A, B, Error, Zero) :-
@@ -133,19 +121,15 @@
true
; Fa < 0.0, Fb > 0.0
),
X0 is (A + B) / 2,
X0 is (A + B) / 2.0,
Function::eval(X0, F0),
bisection(Function, A, B, X0, F0, Error, Zero).
bisection(_, _, _, Xn1, 0.0, _, Xn1) :-
bisection(_, _, _, Xn, Fn, Error, Xn) :-
abs(Fn) < Error,
!.
bisection(_, Xn1, Xn, _, _, Error, Xn1) :-
abs(Xn1 - Xn) < Error,
!.
bisection(Function, An, Bn, _, _, Error, Zero) :-
Xn1 is (An + Bn) / 2,
Xn1 is (An + Bn) / 2.0,
Function::eval(Xn1, Fn1),
Function::eval(An, FAn),
( Fn1*FAn < 0.0 ->
@@ -159,42 +143,29 @@
:- end_object.
:- object(newton,
implements(find_rootp)).
:- info([
version is 1.1,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
version is 1.2,
author is 'Paul Crocker... No More Coffee',
date is 2007/07/06,
comment is 'Newton algorithm.']).
find_root(Function, Xa, Xb, Deviation, Zero) :-
X0 is (Xa + Xb) / 2,
newton(Function, X0, Deviation, Zero).
find_root(Function, Xa, Xb, Deviation, Zero) :-
Ac is (Xb - Xa) / 2,
newton(Function, Xa, Ac, Deviation, Zero).
newton(Function, X0, Deviation, Zero) :-
Xn1 is X0,
Function::eval(Xn1, Fn1),
Function::evald(Xn1, DFn1),
Ac is -(Fn1 / DFn1),
newton(Function, Xn1, Deviation, Fn1, Ac, Zero).
% test deviation
newton(_, Xn1, Deviation, _, Ac, Xn1) :-
abs(Ac) < Deviation,
newton(_, Zero, Ac, Deviation, Zero) :-
abs(Ac) < Deviation,
!.
% test solution
newton(_, Xn1, _, 0.0, _, Xn1) :-
!.
% calc
newton(Function, Xn, Deviation, _, Ac, Zero) :-
Xn1 is Xn + Ac,
Function::eval(Xn1, Fn1),
Function::evald(Xn1, DFn1),
Ac1 is (-(Fn1 / DFn1)),
newton(Function, Xn1, Deviation, Fn1, Ac1, Zero).
newton(Function, X0, Ac, Deviation, Zero):-
Xn1 is X0 + Ac,
Function::eval(Xn1, Fx),
Function::evald(Xn1, DFx),
Ac2 is -(Fx/DFx),
newton(Function, Xn1, Ac2, Deviation, Zero).
:- end_object.
@@ -203,66 +174,90 @@
implements(find_rootp)).
:- info([
version is 1.1,
version is 1.2,
author is 'Paulo Moura and Paulo Nunes',
date is 2006/11/26,
comment is 'Muller algorithm.']).
find_root(Function, Xa, Xb, Deviation, Zero) :-
Xc is (Xa + Xb) / 2,
Xc is (Xa + Xb) / 2.0,
muller(Function, Xa, Xc, Xb, Deviation, Zero).
muller(Function, Xa, Xb, Xc, Deviation, Zero) :-
Function::eval(Xa, Ya),
Function::eval(Xb, Yb),
Function::eval(Xc, Yc),
H1 is (Xb - Xa),
DDba is ((Yb - Ya) / H1),
Ac is (Deviation + 1),
H1 is Xb - Xa,
DDba is (Yb - Ya) / H1,
Ac is Deviation + 1.0,
muller(Function, Xa, Xb, Xc, Deviation, Ya, Yb, Yc, Ac, H1, DDba, Zero).
% complex
muller(_, _, _, complex, _, _, _, _, _, _, _, complex) :-
!.
% test deviation
muller(_, _, _, Xc, Deviation, _, _, _, Ac, _, _, Xc) :-
abs(Ac) < Deviation,
!.
% test solution
muller(_, _, _, Xc, _, _, _, 0.0, _, _, _, Xc) :-
!.
% calc
muller(Function, Xa, Xb, Xc, Deviation, _, Yb, Yc, _, _, DDba, Zero) :-
H2n is (Xc - Xb),
DDcbn is ((Yc - Yb) / H2n),
Cn is ((DDcbn - DDba) / (Xc - Xa)),
Bn is (DDcbn + H2n * Cn),
Rn is (Bn * Bn - 4.0 * Yc * Cn),
% complex
% write(Rn),
H2n is Xc - Xb,
DDcbn is (Yc - Yb) / H2n,
Cn is (DDcbn - DDba) / (Xc - Xa),
Bn is DDcbn + H2n * Cn,
Rn is Bn * Bn - 4.0 * Yc * Cn,
( Rn < 0.0 ->
muller(Function, _, _, complex, Deviation, _, _, _, _, _, _, Zero),
!, fail
fail
; V is sqrt(Rn)
),
( Bn > 0.0 ->
Dn is (Bn + V)
; Dn is (Bn - V)
Dn is Bn + V
; Dn is Bn - V
),
Acn is (-(2 * Yc / Dn)),
Acn is -(2 * Yc / Dn),
Xan is Xb,
Xbn is Xc,
Xcn is Xc + Acn,
Yan is Yb,
Ybn is Yc,
Function::eval(Xcn, Ycn),
H1n is H2n,
DDban is DDcbn,
muller(Function, Xan, Xbn, Xcn, Deviation, Yan, Ybn, Ycn, Acn, H1n, DDban, Zero).
:- end_object.
:- object(function_root,
implements(find_rootp)).
:- info([
version is 2.0,
author is 'Paulo Moura and Paulo Nunes',
date is 2007/07/05,
comment is 'Multi-threading interface to root finding algorithms.']).
:- threaded.
:- public(find_root/6).
:- mode(find_root(+object_identifier, +float, +float, +float, -float, -object_identifier), one).
:- info(find_root/6, [
comment is 'Finds the root of a function in the interval [A, B] given a maximum aproximation error. Returns the method used.',
argnames is ['Function', 'A', 'B', 'Error', 'Zero', 'Method']]).
find_root(Function, A, B, Error, Zero, Algorithm) :-
threaded((
(bisection::find_root(Function, A, B, Error, Zero), Algorithm = bisection)
; (newton::find_root(Function, A, B, Error, Zero), Algorithm = newton)
; (muller::find_root(Function, A, B, Error, Zero), Algorithm = muller)
)).
% an alternative, possibly better definition would be to make the methods simply fail in case of error:
%
% find_root(Function, A, B, Error, Zero, Algorithm) :-
% threaded((
% (catch(bisection::find_root(Function, A, B, Error, Zero), _, fail), Algorithm = bisection)
% ; (catch(newton::find_root(Function, A, B, Error, Zero), _, fail), Algorithm = newton)
% ; (catch(muller::find_root(Function, A, B, Error, Zero), _, fail), Algorithm = muller)
% )).
find_root(Function, A, B, Error, Zero) :-
find_root(Function, A, B, Error, Zero, _).
:- end_object.