rework examples
This commit is contained in:
parent
ccba2d4177
commit
4310e42562
@ -1,23 +1,45 @@
|
||||
:- use_module(library(pfl)).
|
||||
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(hve).
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bdd).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
:- yap_flag(write_strings, off).
|
||||
bayes burglary ; burglary_table ; [].
|
||||
|
||||
bayes burglary::[t,f] ; [0.001, 0.999] ; [].
|
||||
bayes earthquake ; earthquake_table ; [].
|
||||
|
||||
bayes earthquake::[t,f] ; [0.002, 0.998]; [].
|
||||
bayes alarm, burglary, earthquake ; alarm_table ; [].
|
||||
|
||||
bayes alarm::[t,f], burglary, earthquake ;
|
||||
[0.95, 0.94, 0.29, 0.001, 0.05, 0.06, 0.71, 0.999] ;
|
||||
[].
|
||||
bayes john_calls, alarm ; john_calls_table ; [].
|
||||
|
||||
bayes john_calls::[t,f], alarm ; [0.9, 0.05, 0.1, 0.95] ; [].
|
||||
bayes mary_calls, alarm ; mary_calls_table ; [].
|
||||
|
||||
bayes mary_calls::[t,f], alarm ; [0.7, 0.01, 0.3, 0.99] ; [].
|
||||
burglary_table(
|
||||
[ 0.001,
|
||||
0.999 ]).
|
||||
|
||||
earthquake_table(
|
||||
[ 0.002,
|
||||
0.998 ]).
|
||||
|
||||
alarm_table(
|
||||
[ 0.95, 0.94, 0.29, 0.001,
|
||||
0.05, 0.06, 0.71, 0.999 ]).
|
||||
|
||||
john_calls_table(
|
||||
[ 0.9, 0.05,
|
||||
0.1, 0.95 ]).
|
||||
|
||||
mary_calls_table(
|
||||
[ 0.7, 0.01,
|
||||
0.3, 0.99 ]).
|
||||
|
||||
% ?- john_calls(J), mary_calls(t).
|
||||
|
||||
|
@ -1,9 +1,15 @@
|
||||
:- use_module(library(pfl)).
|
||||
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(hve).
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bdd).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
:- multifile people/2.
|
||||
:- multifile ev/1.
|
||||
@ -14,74 +20,97 @@ people(p3, nyc).
|
||||
people(p4, nyc).
|
||||
people(p5, nyc).
|
||||
|
||||
ev(descn(p2, t)).
|
||||
ev(descn(p3, t)).
|
||||
ev(descn(p4, t)).
|
||||
ev(descn(p5, t)).
|
||||
ev(descn(p2, fits)).
|
||||
ev(descn(p3, fits)).
|
||||
ev(descn(p4, fits)).
|
||||
ev(descn(p5, fits)).
|
||||
|
||||
bayes city_conservativeness(C)::[y,n] ; cons_table(C) ; [people(_,C)].
|
||||
bayes city_conservativeness(C)::[high,low] ;
|
||||
cons_table(C) ;
|
||||
[people(_,C)].
|
||||
|
||||
bayes gender(P)::[m,f] ; gender_table(P) ; [people(P,_)].
|
||||
bayes gender(P)::[male,female] ;
|
||||
gender_table(P) ;
|
||||
[people(P,_)].
|
||||
|
||||
bayes hair_color(P)::[t,f], city_conservativeness(C) ; hair_color_table(P) ; [people(P,C)].
|
||||
bayes hair_color(P)::[dark,bright], city_conservativeness(C) ;
|
||||
hair_color_table(P) ;
|
||||
[people(P,C)].
|
||||
|
||||
bayes car_color(P)::[t,f], hair_color(P) ; car_color_table(P); [people(P,_)].
|
||||
bayes car_color(P)::[dark,bright], hair_color(P) ;
|
||||
car_color_table(P) ;
|
||||
[people(P,_)].
|
||||
|
||||
bayes height(P)::[t,f], gender(P) ; height_table(P) ; [people(P,_)].
|
||||
bayes height(P)::[tall,short], gender(P) ;
|
||||
height_table(P) ;
|
||||
[people(P,_)].
|
||||
|
||||
bayes shoe_size(P)::[t,f], height(P) ; shoe_size_table(P); [people(P,_)].
|
||||
bayes shoe_size(P)::[big,small], height(P) ;
|
||||
shoe_size_table(P) ;
|
||||
[people(P,_)].
|
||||
|
||||
bayes guilty(P)::[y,n] ; guilty_table(P) ; [people(P,_)].
|
||||
bayes guilty(P)::[y,n] ;
|
||||
guilty_table(P) ;
|
||||
[people(P,_)].
|
||||
|
||||
bayes descn(P)::[t,f], car_color(P), hair_color(P), height(P), guilty(P) ; descn_table(P) ; [people(P,_)].
|
||||
bayes descn(P)::[fits,dont_fit], car_color(P),
|
||||
hair_color(P), height(P), guilty(P) ;
|
||||
descn_table(P) ;
|
||||
[people(P,_)].
|
||||
|
||||
bayes witness(C)::[t,f], descn(Joe), descn(P2) ; wit_table ; [people(_,C), Joe=joe, P2=p2].
|
||||
|
||||
% FIXME
|
||||
%cons_table(amsterdam, [0.2, 0.8]) :- !.
|
||||
cons_table(_, [0.8, 0.2]).
|
||||
bayes witness(C), descn(Joe), descn(P2) ;
|
||||
witness_table ;
|
||||
[people(_,C), Joe=joe, P2=p2].
|
||||
|
||||
|
||||
gender_table(_, [0.55, 0.45]).
|
||||
cons_table(amsterdam,
|
||||
% special case for amsterdam: amsterdam is
|
||||
% less conservative than other cities (is it?)
|
||||
/* y */ [ 0.2,
|
||||
/* n */ 0.8 ]) :- !. % FIXME
|
||||
cons_table(_,
|
||||
/* y */ [ 0.8,
|
||||
/* n */ 0.2 ]).
|
||||
|
||||
gender_table(_,
|
||||
/* male */ [ 0.55,
|
||||
/* female */ 0.45 ]).
|
||||
|
||||
hair_color_table(_,
|
||||
/* conservative_city */
|
||||
/* y n */
|
||||
[ 0.05, 0.1,
|
||||
0.95, 0.9 ]).
|
||||
|
||||
/* high low */
|
||||
/* dark */ [ 0.05, 0.1,
|
||||
/* bright */ 0.95, 0.9 ]).
|
||||
|
||||
car_color_table(_,
|
||||
/* t f */
|
||||
[ 0.9, 0.2,
|
||||
0.1, 0.8 ]).
|
||||
|
||||
/* dark bright */
|
||||
/* dark */ [ 0.9, 0.2,
|
||||
/* bright */ 0.1, 0.8 ]).
|
||||
|
||||
height_table(_,
|
||||
/* m f */
|
||||
[ 0.6, 0.4,
|
||||
0.4, 0.6 ]).
|
||||
|
||||
/* male female */
|
||||
/* tall */ [ 0.6, 0.4,
|
||||
/* short */ 0.4, 0.6 ]).
|
||||
|
||||
shoe_size_table(_,
|
||||
/* t f */
|
||||
[ 0.9, 0.1,
|
||||
0.1, 0.9 ]).
|
||||
|
||||
|
||||
guilty_table(_, [0.23, 0.77]).
|
||||
/* tall short */
|
||||
/* big */ [ 0.9, 0.1,
|
||||
/* small */ 0.1, 0.9 ]).
|
||||
|
||||
guilty_table(_,
|
||||
/* yes */ [ 0.23,
|
||||
/* no */ 0.77 ]).
|
||||
|
||||
descn_table(_,
|
||||
/* color, hair, height, guilt */
|
||||
/* ttttt tttf ttft ttff tfttt tftf tfft tfff ttttt fttf ftft ftff ffttt fftf ffft ffff */
|
||||
[ 0.99, 0.5, 0.23, 0.88, 0.41, 0.3, 0.76, 0.87, 0.44, 0.43, 0.29, 0.72, 0.23, 0.91, 0.95, 0.92,
|
||||
0.01, 0.5, 0.77, 0.12, 0.59, 0.7, 0.24, 0.13, 0.56, 0.57, 0.71, 0.28, 0.77, 0.09, 0.05, 0.08]).
|
||||
/* car_color(P), hair_color(P), height(P), guilty(P) */
|
||||
/* fits */ [ 0.99, 0.5, 0.23, 0.88, 0.41, 0.3, 0.76, 0.87,
|
||||
/* fits */ 0.44, 0.43, 0.29, 0.72, 0.23, 0.91, 0.95, 0.92,
|
||||
/* dont_fit */ 0.01, 0.5, 0.77, 0.12, 0.59, 0.7, 0.24, 0.13,
|
||||
/* dont_fit */ 0.56, 0.57, 0.71, 0.28, 0.77, 0.09, 0.05, 0.08 ]).
|
||||
|
||||
|
||||
wit_table([0.2, 0.45, 0.24, 0.34,
|
||||
0.8, 0.55, 0.76, 0.66]).
|
||||
witness_table(
|
||||
/* descn(Joe), descn(P2) */
|
||||
/* t */ [ 0.2, 0.45, 0.24, 0.34,
|
||||
/* f */ 0.8, 0.55, 0.76, 0.66 ]).
|
||||
|
||||
|
||||
runall(G, Wrapper) :-
|
||||
@ -101,5 +130,5 @@ is_joe_guilty(Guilty) :-
|
||||
guilty(joe, Guilty).
|
||||
|
||||
|
||||
% ?- is_joe_guilty(Guilty)
|
||||
?- is_joe_guilty(Guilty).
|
||||
|
||||
|
@ -1,11 +1,14 @@
|
||||
:- use_module(library(pfl)).
|
||||
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(hve).
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
|
||||
:- yap_flag(write_strings, off).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
:- multifile c/2.
|
||||
|
||||
@ -25,9 +28,13 @@ c(p5,w1).
|
||||
c(p5,w2).
|
||||
c(p5,w3).
|
||||
|
||||
markov attends(P)::[t,f], hot(W)::[t,f] ; [0.2, 0.8, 0.8, 0.8] ; [c(P,W)].
|
||||
markov attends(P), hot(W) ;
|
||||
[0.2, 0.8, 0.8, 0.8] ;
|
||||
[c(P,W)].
|
||||
|
||||
markov attends(P)::[t,f], series::[t,f] ; [0.501, 0.499, 0.499, 0.499] ; [c(P,_)].
|
||||
markov attends(P), series ;
|
||||
[0.501, 0.499, 0.499, 0.499] ;
|
||||
[c(P,_)].
|
||||
|
||||
% ?- series(X).
|
||||
?- series(X).
|
||||
|
||||
|
@ -1,5 +1,3 @@
|
||||
|
||||
|
||||
professor_ability(p0,h).
|
||||
professor_ability(p1,h).
|
||||
professor_ability(p2,m).
|
||||
@ -1250,6 +1248,7 @@ registration_grade(r854,c).
|
||||
registration_grade(r855,d).
|
||||
registration_grade(r856,c).
|
||||
|
||||
|
||||
registration_satisfaction(r0,h).
|
||||
registration_satisfaction(r1,l).
|
||||
registration_satisfaction(r2,h).
|
||||
@ -2431,3 +2430,4 @@ student_ranking(s252,b).
|
||||
student_ranking(s253,b).
|
||||
student_ranking(s254,b).
|
||||
student_ranking(s255,c).
|
||||
|
||||
|
@ -1,11 +1,15 @@
|
||||
:- use_module(library(pfl)).
|
||||
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(hve).
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bdd).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
|
||||
:- yap_flag(write_strings, off).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
:- multifile people/1.
|
||||
|
||||
@ -16,16 +20,19 @@ people(X,Y) :-
|
||||
people(Y),
|
||||
X \== Y.
|
||||
|
||||
markov smokes(X)::[t,f]; [1.0, 4.0552]; [people(X)].
|
||||
markov smokes(X) ; [1.0, 4.0552]; [people(X)].
|
||||
|
||||
markov cancer(X)::[t,f]; [1.0, 9.9742]; [people(X)].
|
||||
markov cancer(X) ; [1.0, 9.9742]; [people(X)].
|
||||
|
||||
markov friends(X,Y)::[t,f] ; [1.0, 99.48432] ; [people(X,Y)].
|
||||
markov friends(X,Y) ; [1.0, 99.48432] ; [people(X,Y)].
|
||||
|
||||
markov smokes(X)::[t,f], cancer(X)::[t,f] ; [4.48169, 4.48169, 1.0, 4.48169] ; [people(X)].
|
||||
markov smokes(X), cancer(X) ;
|
||||
[4.48169, 4.48169, 1.0, 4.48169] ;
|
||||
[people(X)].
|
||||
|
||||
markov friends(X,Y)::[t,f], smokes(X)::[t,f], smokes(Y)::[t,f] ;
|
||||
[3.004166, 3.004166, 3.004166, 3.004166, 3.004166, 1.0, 1.0, 3.004166] ; [people(X,Y)].
|
||||
markov friends(X,Y), smokes(X), smokes(Y) ;
|
||||
[3.004166, 3.004166, 3.004166, 3.004166, 3.004166, 1.0, 1.0, 3.004166] ;
|
||||
[people(X,Y)].
|
||||
|
||||
% ?- friends(p1,p2,X).
|
||||
|
||||
|
@ -1,11 +1,15 @@
|
||||
:- use_module(library(pfl)).
|
||||
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(hve).
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bdd).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
|
||||
:- yap_flag(write_strings, off).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
:- multifile people/1.
|
||||
|
||||
@ -16,16 +20,19 @@ people(X,Y) :-
|
||||
people(Y).
|
||||
% X \== Y.
|
||||
|
||||
markov smokes(X)::[t,f]; [1.0, 4.0552]; [people(X)].
|
||||
markov smokes(X); [1.0, 4.0552]; [people(X)].
|
||||
|
||||
markov asthma(X)::[t,f]; [1.0, 9.9742] ; [people(X)].
|
||||
markov asthma(X); [1.0, 9.9742] ; [people(X)].
|
||||
|
||||
markov friends(X,Y)::[t,f]; [1.0, 99.48432] ; [people(X,Y)].
|
||||
markov friends(X,Y); [1.0, 99.48432] ; [people(X,Y)].
|
||||
|
||||
markov asthma(X)::[t,f], smokes(X)::[t,f]; [4.48169, 4.48169, 1.0, 4.48169] ; [people(X)].
|
||||
markov asthma(X), smokes(X);
|
||||
[4.48169, 4.48169, 1.0, 4.48169] ;
|
||||
[people(X)].
|
||||
|
||||
markov asthma(X)::[t,f], friends(X,Y)::[t,f], smokes(Y)::[t,f];
|
||||
[3.004166, 3.004166, 3.004166, 3.004166, 3.004166, 1.0, 1.0, 3.004166] ; [people(X,Y)].
|
||||
markov asthma(X), friends(X,Y), smokes(Y);
|
||||
[3.004166, 3.004166, 3.004166, 3.004166, 3.004166, 1.0, 1.0, 3.004166] ;
|
||||
[people(X,Y)].
|
||||
|
||||
% ?- smokes(p1,t), smokes(p2,t), friends(p1,p2,X)
|
||||
|
||||
|
@ -1,12 +1,15 @@
|
||||
|
||||
:- style_check(all).
|
||||
|
||||
:- ensure_loaded(library(pfl)).
|
||||
|
||||
% 1. define domain of random variables
|
||||
% not necessary if they are boolean.
|
||||
|
||||
% 2. define parfactors
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bdd).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
bayes cloudy ; cloudy_table ; [].
|
||||
|
||||
@ -16,18 +19,21 @@ bayes rain, cloudy ; rain_table ; [].
|
||||
|
||||
bayes wet_grass, sprinkler, rain ; wet_grass_table ; [].
|
||||
|
||||
cloudy_table(
|
||||
[ 0.5,
|
||||
0.5 ]).
|
||||
|
||||
% 3. define CPTs.
|
||||
sprinkler_table(
|
||||
[ 0.5, 0.9,
|
||||
0.5, 0.1 ]).
|
||||
|
||||
wet_grass_table([1.0,0.1,0.1,0.01,
|
||||
0.0,0.9,0.9,0.99]).
|
||||
rain_table(
|
||||
[ 0.8, 0.2,
|
||||
0.2, 0.8 ]).
|
||||
|
||||
sprinkler_table([0.5,0.9,
|
||||
0.5,0.1]).
|
||||
|
||||
rain_table([0.8,0.2,
|
||||
0.2,0.8]).
|
||||
|
||||
cloudy_table([0.5,0.5]).
|
||||
wet_grass_table(
|
||||
[ 1.0, 0.1, 0.1, 0.01,
|
||||
0.0, 0.9, 0.9, 0.99 ]).
|
||||
|
||||
% ?- wet_grass(X).
|
||||
|
||||
|
@ -1,29 +1,33 @@
|
||||
:- use_module(library(pfl)).
|
||||
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(hve).
|
||||
:- set_solver(hve).
|
||||
%:- set_solver(ve).
|
||||
%:- set_solver(jt).
|
||||
%:- set_solver(bdd).
|
||||
%:- set_solver(bp).
|
||||
%:- set_solver(cbp).
|
||||
|
||||
:- yap_flag(write_strings, off).
|
||||
%:- set_solver(gibbs).
|
||||
%:- set_solver(lve).
|
||||
%:- set_solver(lkc).
|
||||
%:- set_solver(lbp).
|
||||
|
||||
:- multifile people/1.
|
||||
|
||||
people @ 5.
|
||||
|
||||
markov attends(P)::[t,f], attr1::[t,f] ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
markov attends(P), attr1 ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
|
||||
markov attends(P)::[t,f], attr2::[t,f] ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
markov attends(P), attr2 ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
|
||||
markov attends(P)::[t,f], attr3::[t,f] ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
markov attends(P), attr3 ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
|
||||
markov attends(P)::[t,f], attr4::[t,f] ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
markov attends(P), attr4 ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
|
||||
markov attends(P)::[t,f], attr5::[t,f] ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
markov attends(P), attr5 ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
|
||||
markov attends(P)::[t,f], attr6::[t,f] ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
markov attends(P), attr6 ; [0.7, 0.3, 0.3, 0.3] ; [people(P)].
|
||||
|
||||
markov attends(P)::[t,f], series::[t,f] ; [0.501, 0.499, 0.499, 0.499] ; [people(P)].
|
||||
markov attends(P), series ; [0.501, 0.499, 0.499, 0.499] ; [people(P)].
|
||||
|
||||
% ?- series(X).
|
||||
|
||||
|
Reference in New Issue
Block a user