renamed cplint.yap into lpadsld.yap
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1994 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
This commit is contained in:
parent
01432a467a
commit
56bbbad1e9
722
cplint/lpadsld.yap
Normal file
722
cplint/lpadsld.yap
Normal file
@ -0,0 +1,722 @@
|
||||
/*
|
||||
LPAD and CP-Logic interpreter
|
||||
|
||||
Copyright (c) 2007, Fabrizio Riguzzi
|
||||
|
||||
*/
|
||||
|
||||
:-dynamic rule/4,def_rule/2,setting/2.
|
||||
|
||||
:-use_module(library(lists)).
|
||||
:-use_module(library(ugraphs)).
|
||||
|
||||
:-load_foreign_files(['cplint'],[],init_my_predicates).
|
||||
|
||||
/* start of list of parameters that can be set by the user with
|
||||
set(Parameter,Value) */
|
||||
setting(epsilon_parsing,0.00001).
|
||||
setting(savedot,false).
|
||||
/* end of list of parameters */
|
||||
|
||||
/* s(GoalsLIst,Prob) compute the probability of a list of goals
|
||||
GoalsLis can have variables, s returns in backtracking all the solutions with their
|
||||
corresponding probability */
|
||||
s(GoalsList,Prob):-
|
||||
solve(GoalsList,Prob).
|
||||
|
||||
|
||||
solve(GoalsList,Prob):-
|
||||
setof(Deriv,find_deriv(GoalsList,Deriv),LDup),
|
||||
rem_dup_lists(LDup,L),
|
||||
build_formula(L,Formula,[],Var),
|
||||
var2numbers(Var,0,NewVar),
|
||||
(setting(savedot,true)->
|
||||
format("Variables: ~p~n",[Var]),
|
||||
compute_prob(NewVar,Formula,Prob,1)
|
||||
;
|
||||
compute_prob(NewVar,Formula,Prob,0)
|
||||
).
|
||||
|
||||
solve(GoalsList,0):-
|
||||
\+ find_deriv(GoalsList,_Deriv).
|
||||
|
||||
find_deriv(GoalsList,Deriv):-
|
||||
solve(GoalsList,[],DerivDup),
|
||||
remove_duplicates(DerivDup,Deriv).
|
||||
/* duplicate can appear in the C set because two different unistantiated clauses may become the
|
||||
same clause when instantiated */
|
||||
|
||||
/* sc(Goals,Evidence,Prob) compute the conditional probability of the list of goals
|
||||
Goals given the list of goals Evidence
|
||||
Goals and Evidence can have variables, sc returns in backtracking all the solutions with their
|
||||
corresponding probability
|
||||
if it fails, the conditional probability is undefined
|
||||
*/
|
||||
sc(Goals,Evidence,Prob):-
|
||||
solve_cond(Goals,Evidence,Prob).
|
||||
|
||||
solve_cond(Goals,Evidence,Prob):-
|
||||
setof(DerivE,find_deriv(Evidence,DerivE),LDupE),
|
||||
rem_dup_lists(LDupE,LE),
|
||||
build_formula(LE,FormulaE,[],VarE),
|
||||
var2numbers(VarE,0,NewVarE),
|
||||
compute_prob(NewVarE,FormulaE,ProbE,0),
|
||||
solve_cond_goals(Goals,LE,ProbGE),
|
||||
Prob is ProbGE/ProbE.
|
||||
|
||||
solve_cond_goals(Goals,LE,ProbGE):-
|
||||
setof(DerivGE,find_deriv_GE(LE,Goals,DerivGE),LDupGE),
|
||||
rem_dup_lists(LDupGE,LGE),
|
||||
build_formula(LGE,FormulaGE,[],VarGE),
|
||||
var2numbers(VarGE,0,NewVarGE),
|
||||
call_compute_prob(NewVarGE,FormulaGE,ProbGE).
|
||||
|
||||
solve_cond_goals(Goals,LE,0):-
|
||||
\+ find_deriv_GE(LE,Goals,_DerivGE).
|
||||
|
||||
call_compute_prob(NewVarGE,FormulaGE,ProbGE):-
|
||||
(setting(savedot,true)->
|
||||
format("Variables: ~p~n",[NewVarGE]),
|
||||
compute_prob(NewVarGE,FormulaGE,ProbGE,1)
|
||||
;
|
||||
compute_prob(NewVarGE,FormulaGE,ProbGE,0)
|
||||
).
|
||||
|
||||
find_deriv_GE(LD,GoalsList,Deriv):-
|
||||
member(D,LD),
|
||||
solve(GoalsList,D,DerivDup),
|
||||
remove_duplicates(DerivDup,Deriv).
|
||||
|
||||
/* solve(GoalsList,CIn,COut) takes a list of goals and an input C set
|
||||
and returns an output C set
|
||||
The C set is a list of triple (N,R,S) where
|
||||
- N is the index of the head atom used, starting from 0
|
||||
- R is the index of the non ground rule used, starting from 1
|
||||
- S is the substitution of rule R, in the form of a list whose elements
|
||||
are of the form 'VarName'=value
|
||||
*/
|
||||
solve([],C,C):-!.
|
||||
|
||||
solve([bagof(V,EV^G,L)|T],CIn,COut):-!,
|
||||
list2and(GL,G),
|
||||
bagof((V,C),EV^solve(GL,CIn,C),LD),
|
||||
length(LD,N),
|
||||
build_initial_graph(N,GrIn),
|
||||
build_graph(LD,0,GrIn,Gr),
|
||||
clique(Gr,Clique),
|
||||
build_Cset(LD,Clique,L,[],C1),
|
||||
remove_duplicates_eq(C1,C2),
|
||||
solve(T,C2,COut).
|
||||
|
||||
solve([bagof(V,G,L)|T],CIn,COut):-!,
|
||||
list2and(GL,G),
|
||||
bagof((V,C),solve(GL,CIn,C),LD),
|
||||
length(LD,N),
|
||||
build_initial_graph(N,GrIn),
|
||||
build_graph(LD,0,GrIn,Gr),
|
||||
clique(Gr,Clique),
|
||||
build_Cset(LD,Clique,L,[],C1),
|
||||
remove_duplicates_eq(C1,C2),
|
||||
solve(T,C2,COut).
|
||||
|
||||
|
||||
solve([setof(V,EV^G,L)|T],CIn,COut):-!,
|
||||
list2and(GL,G),
|
||||
setof((V,C),EV^solve(GL,CIn,C),LD),
|
||||
length(LD,N),
|
||||
build_initial_graph(N,GrIn),
|
||||
build_graph(LD,0,GrIn,Gr),
|
||||
clique(Gr,Clique),
|
||||
build_Cset(LD,Clique,L1,[],C1),
|
||||
remove_duplicates(L1,L),
|
||||
solve(T,C1,COut).
|
||||
|
||||
solve([setof(V,G,L)|T],CIn,COut):-!,
|
||||
list2and(GL,G),
|
||||
setof((V,C),solve(GL,CIn,C),LD),
|
||||
length(LD,N),
|
||||
build_initial_graph(N,GrIn),
|
||||
build_graph(LD,0,GrIn,Gr),
|
||||
clique(Gr,Clique),
|
||||
build_Cset(LD,Clique,L1,[],C1),
|
||||
remove_duplicates(L1,L),
|
||||
solve(T,C1,COut).
|
||||
|
||||
solve([\+ H |T],CIn,COut):-!,
|
||||
list2and(HL,H),
|
||||
(setof(D,find_deriv(HL,D),LDup)->
|
||||
rem_dup_lists(LDup,L),
|
||||
choose_clauses(CIn,L,C1),
|
||||
solve(T,C1,COut)
|
||||
;
|
||||
solve(T,CIn,COut)
|
||||
).
|
||||
|
||||
solve([H|T],CIn,COut):-
|
||||
builtin(H),!,
|
||||
call(H),
|
||||
solve(T,CIn,COut).
|
||||
|
||||
solve([H|T],CIn,COut):-
|
||||
def_rule(H,B),
|
||||
append(B,T,NG),
|
||||
solve(NG,CIn,COut).
|
||||
|
||||
solve([H|T],CIn,COut):-
|
||||
find_rule(H,(R,S,N),B,CIn),
|
||||
solve_pres(R,S,N,B,T,CIn,COut).
|
||||
|
||||
solve_pres(R,S,N,B,T,CIn,COut):-
|
||||
member_eq((N,R,S),CIn),!,
|
||||
append(B,T,NG),
|
||||
solve(NG,CIn,COut).
|
||||
|
||||
solve_pres(R,S,N,B,T,CIn,COut):-
|
||||
append(CIn,[(N,R,S)],C1),
|
||||
append(B,T,NG),
|
||||
solve(NG,C1,COut).
|
||||
|
||||
build_initial_graph(N,G):-
|
||||
listN(0,N,Vert),
|
||||
add_vertices([],Vert,G).
|
||||
|
||||
|
||||
build_graph([],_N,G,G).
|
||||
|
||||
build_graph([(_V,C)|T],N,GIn,GOut):-
|
||||
N1 is N+1,
|
||||
compatible(C,T,N,N1,GIn,G1),
|
||||
build_graph(T,N1,G1,GOut).
|
||||
|
||||
compatible(_C,[],_N,_N1,G,G).
|
||||
|
||||
compatible(C,[(_V,H)|T],N,N1,GIn,GOut):-
|
||||
(compatible(C,H)->
|
||||
add_edges(GIn,[N-N1,N1-N],G1)
|
||||
;
|
||||
G1=GIn
|
||||
),
|
||||
N2 is N1 +1,
|
||||
compatible(C,T,N,N2,G1,GOut).
|
||||
|
||||
compatible([],_C).
|
||||
|
||||
compatible([(N,R,S)|T],C):-
|
||||
not_present_with_a_different_head(N,R,S,C),
|
||||
compatible(T,C).
|
||||
|
||||
not_present_with_a_different_head(_N,_R,_S,[]).
|
||||
|
||||
not_present_with_a_different_head(N,R,S,[(N,R,S)|T]):-!,
|
||||
not_present_with_a_different_head(N,R,S,T).
|
||||
|
||||
not_present_with_a_different_head(N,R,S,[(_N1,R,S1)|T]):-
|
||||
S\=S1,!,
|
||||
not_present_with_a_different_head(N,R,S,T).
|
||||
|
||||
not_present_with_a_different_head(N,R,S,[(_N1,R1,_S1)|T]):-
|
||||
R\=R1,
|
||||
not_present_with_a_different_head(N,R,S,T).
|
||||
|
||||
|
||||
|
||||
build_Cset(_LD,[],[],C,C).
|
||||
|
||||
build_Cset(LD,[H|T],[V|L],CIn,COut):-
|
||||
nth0(H,LD,(V,C)),
|
||||
append(C,CIn,C1),
|
||||
build_Cset(LD,T,L,C1,COut).
|
||||
|
||||
|
||||
/* find_rule(G,(R,S,N),Body,C) takes a goal G and the current C set and
|
||||
returns the index R of a disjunctive rule resolving with G together with
|
||||
the index N of the resolving head, the substitution S and the Body of the
|
||||
rule */
|
||||
find_rule(H,(R,S,N),Body,C):-
|
||||
rule(R,S,_,Head,Body),
|
||||
member_head(H,Head,0,N),
|
||||
not_already_present_with_a_different_head(N,R,S,C).
|
||||
|
||||
find_rule(H,(R,S,Number),Body,C):-
|
||||
rule(R,S,_,uniform(H:1/_Num,_P,Number),Body),
|
||||
not_already_present_with_a_different_head(Number,R,S,C).
|
||||
|
||||
not_already_present_with_a_different_head(_N,_R,_S,[]).
|
||||
|
||||
not_already_present_with_a_different_head(N,R,S,[(N1,R,S1)|T]):-
|
||||
not_different(N,N1,S,S1),!,
|
||||
not_already_present_with_a_different_head(N,R,S,T).
|
||||
|
||||
not_already_present_with_a_different_head(N,R,S,[(_N1,R1,_S1)|T]):-
|
||||
R\==R1,
|
||||
not_already_present_with_a_different_head(N,R,S,T).
|
||||
|
||||
not_different(_N,_N1,S,S1):-
|
||||
S\=S1,!.
|
||||
|
||||
not_different(N,N1,S,S1):-
|
||||
N\=N1,!,
|
||||
dif(S,S1).
|
||||
|
||||
not_different(N,N,S,S).
|
||||
|
||||
|
||||
member_head(H,[(H:_P)|_T],N,N).
|
||||
|
||||
member_head(H,[(_H:_P)|T],NIn,NOut):-
|
||||
N1 is NIn+1,
|
||||
member_head(H,T,N1,NOut).
|
||||
|
||||
/* choose_clauses(CIn,LC,COut) takes as input the current C set and
|
||||
the set of C sets for a negative goal and returns a new C set that
|
||||
excludes all the derivations for the negative goals */
|
||||
choose_clauses(C,[],C).
|
||||
|
||||
choose_clauses(CIn,[D|T],COut):-
|
||||
member((N,R,S),D),
|
||||
instantiation_present_with_the_same_head(N,R,S,CIn),
|
||||
choose_a_different_head(N,R,S,T,CIn,COut).
|
||||
|
||||
choose_a_different_head(N,R,S,D,CIn,COut):-
|
||||
/* cases 1 and 2 of Select */
|
||||
choose_a_head(N,R,S,CIn,C1),
|
||||
choose_clauses(C1,D,COut).
|
||||
|
||||
choose_a_different_head(N,R,S,D,CIn,COut):-
|
||||
/* case 3 of Select */
|
||||
new_head(N,R,S,N1),
|
||||
\+ already_present(N1,R,S,CIn),
|
||||
choose_clauses([(N1,R,S)|CIn],D,COut).
|
||||
|
||||
/* instantiation_present_with_the_same_head(N,R,S,C)
|
||||
takes rule R with substitution S and selected head N and a C set
|
||||
and asserts dif constraints for all the clauses in C of which RS
|
||||
is an instantitation and have the same head selected */
|
||||
instantiation_present_with_the_same_head(_N,_R,_S,[]).
|
||||
|
||||
instantiation_present_with_the_same_head(N,R,S,[(NH,R,SH)|T]):-
|
||||
\+ \+ S=SH,
|
||||
dif(N,NH),
|
||||
instantiation_present_with_the_same_head(N,R,S,T).
|
||||
|
||||
instantiation_present_with_the_same_head(N,R,S,[(NH,R,SH)|T]):-
|
||||
\+ \+ S=SH,
|
||||
N=NH,!,
|
||||
dif(S,SH),
|
||||
instantiation_present_with_the_same_head(N,R,S,T).
|
||||
|
||||
instantiation_present_with_the_same_head(N,R,S,[_H|T]):-
|
||||
instantiation_present_with_the_same_head(N,R,S,T).
|
||||
|
||||
/* case 1 of Select: a more general rule is present in C with
|
||||
a different head, instantiate it */
|
||||
choose_a_head(N,R,S,[(NH,R,SH)|T],[(NH,R,SH)|T]):-
|
||||
S=SH,
|
||||
dif(N,NH).
|
||||
|
||||
/* case 2 of Select: a more general rule is present in C with
|
||||
a different head, ensure that they do not generate the same
|
||||
ground clause */
|
||||
choose_a_head(N,R,S,[(NH,R,SH)|T],[(NH,R,S),(NH,R,SH)|T]):-
|
||||
\+ \+ S=SH, S\==SH,
|
||||
dif(N,NH),
|
||||
dif(S,SH).
|
||||
|
||||
choose_a_head(N,R,S,[H|T],[H|T1]):-
|
||||
choose_a_head(N,R,S,T,T1).
|
||||
|
||||
/* select a head different from N for rule R with
|
||||
substitution S, return it in N1 */
|
||||
new_head(N,R,S,N1):-
|
||||
rule(R,S,Numbers,Head,_Body),
|
||||
Head\=uniform(_,_,_),!,
|
||||
nth0(N, Numbers, _Elem, Rest),
|
||||
member(N1,Rest).
|
||||
|
||||
new_head(N,R,S,N1):-
|
||||
rule(R,S,Numbers,uniform(_A:1/Tot,_L,_Number),_Body),
|
||||
listN(0,Tot,Numbers),
|
||||
nth0(N, Numbers, _Elem, Rest),
|
||||
member(N1,Rest).
|
||||
|
||||
/* checks that a rule R with head N and selection S is already
|
||||
present in C (or a generalization of it is in C) */
|
||||
already_present(N,R,S,[(N,R,SH)|_T]):-
|
||||
S=SH.
|
||||
|
||||
already_present(N,R,S,[_H|T]):-
|
||||
already_present(N,R,S,T).
|
||||
|
||||
/* rem_dup_lists removes the C sets that are a superset of
|
||||
another C sets further on in the list of C sets */
|
||||
rem_dup_lists([],[]).
|
||||
|
||||
rem_dup_lists([H|T],T1):-
|
||||
member_subset(H,T),!,
|
||||
rem_dup_lists(T,T1).
|
||||
|
||||
rem_dup_lists([H|T],[H|T1]):-
|
||||
rem_dup_lists(T,T1).
|
||||
|
||||
member_subset(E,[H|_T]):-
|
||||
subset_my(H,E),!.
|
||||
|
||||
member_subset(E,[_H|T]):-
|
||||
member_subset(E,T).
|
||||
|
||||
/* predicates for building the formula to be converted into a BDD */
|
||||
|
||||
/* build_formula(LC,Formula,VarIn,VarOut) takes as input a set of C sets
|
||||
LC and a list of Variables VarIn and returns the formula and a new list
|
||||
of variables VarOut
|
||||
Formula is of the form [Term1,...,Termn]
|
||||
Termi is of the form [Factor1,...,Factorm]
|
||||
Factorj is of the form (Var,Value) where Var is the index of
|
||||
the multivalued variable Var and Value is the index of the value
|
||||
*/
|
||||
build_formula([],[],Var,Var).
|
||||
|
||||
build_formula([D|TD],[F|TF],VarIn,VarOut):-
|
||||
build_term(D,F,VarIn,Var1),
|
||||
build_formula(TD,TF,Var1,VarOut).
|
||||
|
||||
build_term([],[],Var,Var).
|
||||
|
||||
build_term([(N,R,S)|TC],[[NVar,N]|TF],VarIn,VarOut):-
|
||||
(nth0_eq(0,NVar,VarIn,(R,S))->
|
||||
Var1=VarIn
|
||||
;
|
||||
append(VarIn,[(R,S)],Var1),
|
||||
length(VarIn,NVar)
|
||||
),
|
||||
build_term(TC,TF,Var1,VarOut).
|
||||
|
||||
/* nth0_eq(PosIn,PosOut,List,El) takes as input a List,
|
||||
an element El and an initial position PosIn and returns in PosOut
|
||||
the position in the List that contains an element exactly equal to El
|
||||
*/
|
||||
nth0_eq(N,N,[H|_T],El):-
|
||||
H==El,!.
|
||||
|
||||
nth0_eq(NIn,NOut,[_H|T],El):-
|
||||
N1 is NIn+1,
|
||||
nth0_eq(N1,NOut,T,El).
|
||||
|
||||
/* var2numbers converts a list of couples (Rule,Substitution) into a list
|
||||
of triples (N,NumberOfHeadsAtoms,ListOfProbabilities), where N is an integer
|
||||
starting from 0 */
|
||||
var2numbers([],_N,[]).
|
||||
|
||||
var2numbers([(R,S)|T],N,[[N,ValNumber,Probs]|TNV]):-
|
||||
find_probs(R,S,Probs),
|
||||
length(Probs,ValNumber),
|
||||
N1 is N+1,
|
||||
var2numbers(T,N1,TNV).
|
||||
|
||||
find_probs(R,S,Probs):-
|
||||
rule(R,S,_N,Head,_Body),
|
||||
get_probs(Head,Probs).
|
||||
|
||||
get_probs(uniform(_A:1/Num,_P,_Number),ListP):-
|
||||
Prob is 1/Num,
|
||||
list_el(Num,Prob,ListP).
|
||||
|
||||
get_probs([],[]).
|
||||
|
||||
get_probs([_H:P|T],[P1|T1]):-
|
||||
P1 is P,
|
||||
get_probs(T,T1).
|
||||
|
||||
list_el(0,_P,[]):-!.
|
||||
|
||||
list_el(N,P,[P|T]):-
|
||||
N1 is N-1,
|
||||
list_el(N1,P,T).
|
||||
|
||||
/* end of predicates for building the formula to be converted into a BDD */list_el(0,_P,[]):-!.
|
||||
|
||||
|
||||
/* start of predicates for parsing an input file containing a program */
|
||||
|
||||
/* p(File) parses the file File.cpl. It can be called more than once without
|
||||
exiting yap */
|
||||
p(File):-
|
||||
parse(File).
|
||||
|
||||
parse(File):-
|
||||
atom_concat(File,'.cpl',FilePl),
|
||||
open(FilePl,read,S),
|
||||
read_clauses(S,C),
|
||||
close(S),
|
||||
retractall(rule(_,_,_,_,_)),
|
||||
retractall(def_rule(_,_)),
|
||||
process_clauses(C,1).
|
||||
|
||||
process_clauses([(end_of_file,[])],_N).
|
||||
|
||||
process_clauses([((H:-B),V)|T],N):-
|
||||
H=uniform(A,P,L),!,
|
||||
list2and(BL,B),
|
||||
process_body(BL,V,V1),
|
||||
remove_vars([P],V1,V2),
|
||||
append(BL,[length(L,Tot),nth0(Number,L,P)],BL1),
|
||||
append(V2,['Tot'=Tot],V3),
|
||||
assertz(rule(N,V3,_NH,uniform(A:1/Tot,L,Number),BL1)),
|
||||
N1 is N+1,
|
||||
process_clauses(T,N1).
|
||||
|
||||
process_clauses([((H:-B),V)|T],N):-
|
||||
H=(_;_),!,
|
||||
list2or(HL1,H),
|
||||
process_head(HL1,HL),
|
||||
list2and(BL,B),
|
||||
process_body(BL,V,V1),
|
||||
length(HL,LH),
|
||||
listN(0,LH,NH),
|
||||
assertz(rule(N,V1,NH,HL,BL)),
|
||||
N1 is N+1,
|
||||
process_clauses(T,N1).
|
||||
|
||||
process_clauses([((H:-B),V)|T],N):-
|
||||
H=(_:_),!,
|
||||
list2or(HL1,H),
|
||||
process_head(HL1,HL),
|
||||
list2and(BL,B),
|
||||
process_body(BL,V,V1),
|
||||
length(HL,LH),
|
||||
listN(0,LH,NH),
|
||||
assertz(rule(N,V1,NH,HL,BL)),
|
||||
N1 is N+1,
|
||||
process_clauses(T,N1).
|
||||
|
||||
process_clauses([((H:-B),_V)|T],N):-!,
|
||||
list2and(BL,B),
|
||||
assert(def_rule(H,BL)),
|
||||
process_clauses(T,N).
|
||||
|
||||
process_clauses([(H,V)|T],N):-
|
||||
H=(_;_),!,
|
||||
list2or(HL1,H),
|
||||
process_head(HL1,HL),
|
||||
length(HL,LH),
|
||||
listN(0,LH,NH),
|
||||
assertz(rule(N,V,NH,HL,[])),
|
||||
N1 is N+1,
|
||||
process_clauses(T,N1).
|
||||
|
||||
process_clauses([(H,V)|T],N):-
|
||||
H=(_:_),!,
|
||||
list2or(HL1,H),
|
||||
process_head(HL1,HL),
|
||||
length(HL,LH),
|
||||
listN(0,LH,NH),
|
||||
assertz(rule(N,V,NH,HL,[])),
|
||||
N1 is N+1,
|
||||
process_clauses(T,N1).
|
||||
|
||||
process_clauses([(H,_V)|T],N):-
|
||||
assert(def_rule(H,[])),
|
||||
process_clauses(T,N).
|
||||
|
||||
/* if the annotation in the head are not ground, the null atom is not added
|
||||
and the eventual formulas are not evaluated */
|
||||
|
||||
process_head(HL,NHL):-
|
||||
(ground_prob(HL)->
|
||||
process_head_ground(HL,0,NHL)
|
||||
;
|
||||
NHL=HL
|
||||
).
|
||||
|
||||
ground_prob([]).
|
||||
|
||||
ground_prob([_H:PH|T]):-
|
||||
ground(PH),
|
||||
ground_prob(T).
|
||||
|
||||
process_head_ground([H:PH],P,[H:PH1|Null]):-
|
||||
PH1 is PH,
|
||||
PNull is 1-P-PH1,
|
||||
setting(epsilon_parsing,Eps),
|
||||
EpsNeg is - Eps,
|
||||
PNull > EpsNeg,
|
||||
(PNull>Eps->
|
||||
Null=['':PNull]
|
||||
;
|
||||
Null=[]
|
||||
).
|
||||
|
||||
process_head_ground([H:PH|T],P,[H:PH1|NT]):-
|
||||
PH1 is PH,
|
||||
P1 is P+PH1,
|
||||
process_head_ground(T,P1,NT).
|
||||
|
||||
/* setof must have a goal of the form B^G where B is a term containing the existential variables */
|
||||
process_body([],V,V).
|
||||
|
||||
process_body([setof(A,B^_G,_L)|T],VIn,VOut):-!,
|
||||
get_var(A,VA),
|
||||
get_var(B,VB),
|
||||
remove_vars(VA,VIn,V1),
|
||||
remove_vars(VB,V1,V2),
|
||||
process_body(T,V2,VOut).
|
||||
|
||||
process_body([setof(A,_G,_L)|T],VIn,VOut):-!,
|
||||
get_var(A,VA),
|
||||
remove_vars(VA,VIn,V1),
|
||||
process_body(T,V1,VOut).
|
||||
|
||||
process_body([bagof(A,B^_G,_L)|T],VIn,VOut):-!,
|
||||
get_var(A,VA),
|
||||
get_var(B,VB),
|
||||
remove_vars(VA,VIn,V1),
|
||||
remove_vars(VB,V1,V2),
|
||||
process_body(T,V2,VOut).
|
||||
|
||||
process_body([bagof(A,_G,_L)|T],VIn,VOut):-!,
|
||||
get_var(A,VA),
|
||||
remove_vars(VA,VIn,V1),
|
||||
process_body(T,V1,VOut).
|
||||
|
||||
process_body([_H|T],VIn,VOut):-!,
|
||||
process_body(T,VIn,VOut).
|
||||
|
||||
get_var_list([],[]).
|
||||
|
||||
get_var_list([H|T],[H|T1]):-
|
||||
var(H),!,
|
||||
get_var_list(T,T1).
|
||||
|
||||
get_var_list([H|T],VarOut):-!,
|
||||
get_var(H,Var),
|
||||
append(Var,T1,VarOut),
|
||||
get_var_list(T,T1).
|
||||
|
||||
get_var(A,[A]):-
|
||||
var(A),!.
|
||||
|
||||
get_var(A,V):-
|
||||
A=..[_F|Args],
|
||||
get_var_list(Args,V).
|
||||
|
||||
remove_vars([],V,V).
|
||||
|
||||
remove_vars([H|T],VIn,VOut):-
|
||||
delete_var(H,VIn,V1),
|
||||
remove_vars(T,V1,VOut).
|
||||
|
||||
delete_var(_H,[],[]).
|
||||
|
||||
delete_var(V,[VN=Var|T],[VN=Var|T1]):-
|
||||
V\==Var,!,
|
||||
delete_var(V,T,T1).
|
||||
|
||||
delete_var(_V,[_H|T],T).
|
||||
|
||||
read_clauses(S,[(Cl,V)|Out]):-
|
||||
read_term(S,Cl,[variable_names(V)]),
|
||||
(Cl=end_of_file->
|
||||
Out=[]
|
||||
;
|
||||
read_clauses(S,Out)
|
||||
).
|
||||
|
||||
listN(N,N,[]):-!.
|
||||
|
||||
listN(NIn,N,[NIn|T]):-
|
||||
N1 is NIn+1,
|
||||
listN(N1,N,T).
|
||||
/* end of predicates for parsing an input file containing a program */
|
||||
|
||||
/* start of utility predicates */
|
||||
list2or([X],X):-
|
||||
X\=;(_,_),!.
|
||||
|
||||
list2or([H|T],(H ; Ta)):-!,
|
||||
list2or(T,Ta).
|
||||
|
||||
list2and([X],X):-
|
||||
X\=(_,_),!.
|
||||
|
||||
list2and([H|T],(H,Ta)):-!,
|
||||
list2and(T,Ta).
|
||||
|
||||
member_eq(A,[H|_T]):-
|
||||
A==H.
|
||||
|
||||
member_eq(A,[_H|T]):-
|
||||
member_eq(A,T).
|
||||
|
||||
subset_my([],_).
|
||||
|
||||
subset_my([H|T],L):-
|
||||
member_eq(H,L),
|
||||
subset_my(T,L).
|
||||
|
||||
remove_duplicates_eq([],[]).
|
||||
|
||||
remove_duplicates_eq([H|T],T1):-
|
||||
member_eq(H,T),!,
|
||||
remove_duplicates_eq(T,T1).
|
||||
|
||||
remove_duplicates_eq([H|T],[H|T1]):-
|
||||
remove_duplicates_eq(T,T1).
|
||||
|
||||
builtin(_A is _B).
|
||||
builtin(_A > _B).
|
||||
builtin(_A < _B).
|
||||
builtin(_A >= _B).
|
||||
builtin(_A =< _B).
|
||||
builtin(_A =:= _B).
|
||||
builtin(_A =\= _B).
|
||||
builtin(true).
|
||||
builtin(false).
|
||||
builtin(_A = _B).
|
||||
builtin(_A==_B).
|
||||
builtin(_A\=_B).
|
||||
builtin(_A\==_B).
|
||||
builtin(length(_L,_N)).
|
||||
builtin(member(_El,_L)).
|
||||
builtin(average(_L,_Av)).
|
||||
builtin(max_list(_L,_Max)).
|
||||
builtin(min_list(_L,_Max)).
|
||||
builtin(nth0(_,_,_)).
|
||||
builtin(nth(_,_,_)).
|
||||
average(L,Av):-
|
||||
sum_list(L,Sum),
|
||||
length(L,N),
|
||||
Av is Sum/N.
|
||||
|
||||
clique(Graph,Clique):-
|
||||
vertices(Graph,Candidates),
|
||||
extend_cycle(Graph,Candidates,[],[],Clique).
|
||||
|
||||
extend_cycle(G,[H|T],Not,CS,CSOut):-
|
||||
neighbours(H, G, Neigh),
|
||||
intersection(Neigh,T,NewCand),
|
||||
intersection(Neigh,Not,NewNot),
|
||||
extend(G,NewCand,NewNot,[H|CS],CSOut).
|
||||
|
||||
extend_cycle(G,[H|T],Not,CS,CSOut):-
|
||||
extend_cycle(G,T,[H|Not],CS,CSOut).
|
||||
|
||||
extend(_G,[],[],CompSub,CompSub):-!.
|
||||
|
||||
extend(G,Cand,Not,CS,CSOut):-
|
||||
extend_cycle(G,Cand,Not,CS,CSOut).
|
||||
|
||||
intersection([],_Y,[]).
|
||||
|
||||
intersection([H|T],Y,[H|Z]):-
|
||||
member(H,Y),!,
|
||||
intersection(T,Y,Z).
|
||||
|
||||
intersection([_H|T],Y,Z):-
|
||||
intersection(T,Y,Z).
|
||||
|
||||
/* set(Par,Value) can be used to set the value of a parameter */
|
||||
set(Parameter,Value):-
|
||||
retract(setting(Parameter,_)),
|
||||
assert(setting(Parameter,Value)).
|
||||
|
||||
/* end of utility predicates */
|
Reference in New Issue
Block a user