diff --git a/packages/cplint/slipcover/slipcover.pl b/packages/cplint/slipcover/slipcover.pl index 7e6445298..a4cebfeda 100644 --- a/packages/cplint/slipcover/slipcover.pl +++ b/packages/cplint/slipcover/slipcover.pl @@ -86,16 +86,16 @@ sl(File):- ), % write('Initial theory'),nl, % write_rules(R1,user_output), - learn_struct(DB,R1,R2,CLL2), - learn_params(DB,R2,R,CLL), + learn_struct(DB,R1,R2,Score2), + learn_params(DB,R2,R,Score), statistics(walltime,[_,WT]), WTS is WT/1000, - format("~nRefinement CLL ~f - CLL after EMBLEM ~f~n",[CLL2,CLL]), + format("~nRefinement score ~f - score after EMBLEM ~f~n",[Score2,Score]), format("Total execution time ~f~n~n",[WTS]), write_rules(R,user_output), listing(setting/2), open(FileOut,write,Stream), - format(Stream,'/* SLIPCASE Final CLL ~f~n',[CLL]), + format(Stream,'/* SLIPCOVER Final score ~f~n',[Score]), format(Stream,'Execution time ~f~n',[WTS]), tell(Stream), listing(setting/2), @@ -111,7 +111,7 @@ gen_fixed([(H,B,BL)|T],[rule(R,H,B,BL)|T1]):- get_next_rule_number(R), gen_fixed(T,T1). -learn_struct_only(DB,R1,R,CLL):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL +learn_struct_only(DB,R1,R,Score):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL format("Clause search~n~n",[]), setting(max_iter,M), setting(depth_bound,DepthB), @@ -126,7 +126,7 @@ learn_struct_only(DB,R1,R,CLL):- %+R1:initial theory of the form [rule(NR,[h], set(depth_bound,DepthB), format("Theory search~n~n",[]), setting(max_iter_structure,MS), - cycle_structure(TCL,[HCL],S,-inf,DB,R2,CLL,MS), + cycle_structure(TCL,[HCL],S,-inf,DB,R2,Score,MS), format("Best target theory~n~n",[]), write_rules(R2,user_output), length(BG,NBG), @@ -135,7 +135,7 @@ learn_struct_only(DB,R1,R,CLL):- %+R1:initial theory of the form [rule(NR,[h], append(R2,BG2,R). -learn_struct(DB,R1,R,CLL):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL +learn_struct(DB,R1,R,Score):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL format("Clause search~n~n",[]), setting(max_iter,M), setting(depth_bound,DepthB), @@ -150,7 +150,7 @@ learn_struct(DB,R1,R,CLL):- %+R1:initial theory of the form [rule(NR,[h],[b]], set(depth_bound,DepthB), format("Theory search~n~n",[]), setting(max_iter_structure,MS), - cycle_structure(TCL,[HCL],S,-inf,DB,R2,CLL,MS), + cycle_structure(TCL,[HCL],S,-inf,DB,R2,Score,MS), format("Best target theory~n~n",[]), write_rules(R2,user_output), setting(background_clauses,NBG1), @@ -183,7 +183,7 @@ cycle_structure([(RH,_CLL)|RT],R0,S0,SP0,DB,R,S,M):- format("Theory iteration ~d",[M]),nl,nl, write('Already scored, updated refinement'),nl, write_rules(R3,user_output), - write('Score (CLL) '),write(Score),nl,nl,nl, + write('Score '),write(Score),nl,nl,nl, (Score>S0-> R4=R3, S4=Score, @@ -196,7 +196,7 @@ cycle_structure([(RH,_CLL)|RT],R0,S0,SP0,DB,R,S,M):- M1 is M-1, cycle_structure(RT,R4,S4,SP1,DB,R,S,M1). -cycle_structure([(RH,_CLL)|RT],R0,S0,SP0,DB,R,S,M):- +cycle_structure([(RH,_Score)|RT],R0,S0,SP0,DB,R,S,M):- format("Theory iteration ~d",[M]),nl,nl, generate_clauses([RH|R0],R2,0,[],Th1), format("Initial theory~n~n",[]), @@ -218,17 +218,17 @@ cycle_structure([(RH,_CLL)|RT],R0,S0,SP0,DB,R,S,M):- ), setting(random_restarts_number,N), format("~nInitial CLL ~f~n~n",[CLL0]), - random_restarts(N,Nodes,CLL0,CLL,initial,Par,LE), %output:CLL,Par - format("CLL after EMBLEM = ~f~n",[CLL]), + random_restarts(N,Nodes,CLL0,Score,initial,Par,LE), %output:CLL,Par + format("Score after EMBLEM = ~f~n",[Score]), retract_all(Th1), retract_all(R2),!, end, update_theory(R2,Par,R3), write('updated Theory'),nl, write_rules(R3,user_output), %definite rules without probabilities in the head are not written - (CLL>S0-> + (Score>S0-> R4=R3, - S4=CLL, + S4=Score, SP1=S0, write('New best score'),nl ; @@ -236,7 +236,7 @@ cycle_structure([(RH,_CLL)|RT],R0,S0,SP0,DB,R,S,M):- S4=S0, SP1=SP0 ), - store_refinement([RH|R0],R3,CLL), + store_refinement([RH|R0],R3,Score), M1 is M-1, cycle_structure(RT,R4,S4,SP1,DB,R,S,M1). @@ -259,15 +259,15 @@ em(File):- set(compiling,off), set(verbosity,3), statistics(walltime,[_,_]), - learn_params(DB,R0,R,CLL), + learn_params(DB,R0,R,Score), statistics(walltime,[_,CT]), CTS is CT/1000, - format("EM: Final CLL ~f~n",[CLL]), + format("EM: Final score ~f~n",[Score]), format("Execution time ~f~n~n",[CTS]), write_rules(R,user_output), listing(setting/2), open(FileOut,write,Stream), - format(Stream,'/* EMBLEM Final CLL ~f~n',[CLL]), + format(Stream,'/* EMBLEM Final score ~f~n',[Score]), format(Stream,'Execution time ~f~n',[CTS]), tell(Stream), listing(setting/2), @@ -277,7 +277,7 @@ em(File):- write_rules(R,Stream1), close(Stream1). -learn_params(DB,R0,R,CLL):- %Parameter Learning +learn_params(DB,R0,R,Score):- %Parameter Learning generate_clauses(R0,R1,0,[],Th0), assert_all(Th0), assert_all(R1),!, @@ -295,7 +295,7 @@ learn_params(DB,R0,R,CLL):- %Parameter Learning derive_bdd_nodes(DB,NEx,[],Nodes,0,_CLL0),! ), setting(random_restarts_number,N), - random_restarts(N,Nodes,-inf,CLL,initial,Par,LE), %computes new parameters Par + random_restarts(N,Nodes,-inf,Score,initial,Par,LE), %computes new parameters Par end, retract_all(Th0), retract_all(R1),!, @@ -368,7 +368,7 @@ score_clause_refinements([R1|T],Nrev,NRef,DB,NB0,NB,CL0,CL,CLBG0,CLBG):- %scans format('Score ref. ~d of ~d~n',[Nrev,NRef]), write('Already scored, updated refinement'),nl, write_rules([R3],user_output), - write('Score (CLL) '),write(Score),nl,nl,nl, + write('Score '),write(Score),nl,nl,nl, setting(beamsize,BS), insert_in_order(NB0,(R3,Score),BS,NB1), Nrev1 is Nrev+1, @@ -396,12 +396,11 @@ score_clause_refinements([R1|T],Nrev,NRef,DB,NB0,NB,CL0,CL,CLBG0,CLBG):- ), format("Initial CLL ~f~n",[CLL0]), setting(random_restarts_REFnumber,N), - random_restarts_ref(N,Nodes,CLL0,CLL,initial,Par,LE), + random_restarts_ref(N,Nodes,CLL0,Score,initial,Par,LE), end, update_theory([R2],Par,[R3]), write('Updated refinement'),nl, write_rules([R3],user_output), - Score = CLL, write('Score (CLL) '),write(Score),nl,nl,nl, retract_all(Th1), retract_all([R2]),!,