Reduce the size of the section labels
This commit is contained in:
parent
cb6715664b
commit
745a034d43
@ -16,10 +16,15 @@
|
||||
<div class="header">
|
||||
<div id="leftcolumn"><h1>Prolog Factor Language</h1></div>
|
||||
<div id="rightcolumn">
|
||||
<table>
|
||||
<tr><td>vsc</td><td>at gmail.com</td></tr>
|
||||
<tr><td>tiago.avv</td><td>at gmail.com</td></tr>
|
||||
</table>
|
||||
<div>
|
||||
<div id=name>Vítor Costa</div>
|
||||
<div id=email>vsc at gmail.com </div>
|
||||
</div>
|
||||
<div style="padding-top:10px">
|
||||
<div id=name>Tiago Gomes</div>
|
||||
<div id=email>tiago.avv at gmail.com</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div style="clear: both"></div>
|
||||
<nav id="menu">
|
||||
@ -28,8 +33,8 @@
|
||||
<li><a href="#installation">Installation</a></li>
|
||||
<li><a href="#language">Language</a></li>
|
||||
<li><a href="#querying">Querying</a></li>
|
||||
<li><a href="#inference_options">Inference Options</a></li>
|
||||
<li><a href="#parameter_learning">Parameter Learning</a></li>
|
||||
<li><a href="#options">Options</a></li>
|
||||
<li><a href="#learning">Learning</a></li>
|
||||
<li><a href="#external_interface">External Interface</a></li>
|
||||
<li><a href="#papers">Papers</a></li>
|
||||
</ul>
|
||||
@ -238,7 +243,7 @@ In this section we demonstrate how to use PFL to solve probabilistic queries. We
|
||||
<!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->
|
||||
<!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->
|
||||
<!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->
|
||||
<h2 id="inference_options">Inference Options</h2>
|
||||
<h2 id="options">Options</h2>
|
||||
PFL supports both ground and lifted inference methods. The inference algorithm can be chosen by calling <span class=texttt>set_solver/1</span>. The following are supported:
|
||||
|
||||
<ul>
|
||||
@ -352,7 +357,7 @@ This option allows to print a textual representation of the factor graph.
|
||||
<!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->
|
||||
<!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->
|
||||
<!--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-->
|
||||
<h2 id="parameter_learning">Parameter Learning</h2>
|
||||
<h2 id="learning">Learning</h2>
|
||||
PFL is capable to learn the parameters for bayesian networks, through an implementation of the expectation-maximization algorithm.
|
||||
|
||||
<p>Next we show an example of parameter learning for the sprinkler network.</p>
|
||||
|
@ -43,9 +43,16 @@ body {
|
||||
padding-top:15px;
|
||||
padding-right:0px;
|
||||
margin-right:0px;
|
||||
}
|
||||
|
||||
#name {
|
||||
color:#2798CA;
|
||||
}
|
||||
|
||||
#email {
|
||||
color:gray;
|
||||
}
|
||||
|
||||
.mainbody {
|
||||
padding-top:10px;
|
||||
}
|
||||
@ -58,7 +65,7 @@ body {
|
||||
|
||||
#menu ul {
|
||||
padding:0px;
|
||||
margin:0px;
|
||||
margin: 20px 0px;
|
||||
background-color:#EDEDED;
|
||||
list-style:none;
|
||||
text-align: center;
|
||||
|
@ -274,7 +274,7 @@ PFL also supports calculating joint probability distributions. For instance, we
|
||||
%------------------------------------------------------------------------------
|
||||
%------------------------------------------------------------------------------
|
||||
%------------------------------------------------------------------------------
|
||||
\section{Inference Options}
|
||||
\section{Options}
|
||||
PFL supports both ground and lifted inference methods. The inference algorithm can be chosen by calling \texttt{set\_solver/1}. The following are supported:
|
||||
\begin{itemize}
|
||||
\item \texttt{ve}, variable elimination (written in Prolog)
|
||||
@ -397,7 +397,7 @@ This option allows to print a textual representation of the factor graph.
|
||||
%------------------------------------------------------------------------------
|
||||
%------------------------------------------------------------------------------
|
||||
%------------------------------------------------------------------------------
|
||||
\section{Parameter Learning}
|
||||
\section{Learning}
|
||||
PFL is capable to learn the parameters for bayesian networks, through an implementation of the expectation-maximization algorithm.
|
||||
|
||||
Next we show an example of parameter learning for the sprinkler network.
|
||||
|
Reference in New Issue
Block a user