docsc
This commit is contained in:
@@ -1,5 +1,7 @@
|
||||
Boolean Decision Making in YAP (#BDDs)
|
||||
==============================
|
||||
|
||||
This is an experimental interface to BDD libraries. It is not as
|
||||
This is an experimental interface to BDD libraries. It is not as
|
||||
sophisticated as simplecudd, but it should be fun to play around with bdds.
|
||||
|
||||
It currently works with cudd only, although it should be possible to
|
||||
@@ -9,10 +11,7 @@ with cudd binaries. This works:
|
||||
- in fedora with standard package
|
||||
- in osx with hand-compiled and ports package
|
||||
|
||||
In ubuntu, you may want to install the fedora rpm, or just contact me
|
||||
for instructions.
|
||||
|
||||
Good Luck!
|
||||
|
||||
Vitor
|
||||
In ubuntu, you may want to install the fedora rpm, or just download the package from the original
|
||||
and compile it.
|
||||
|
||||
.
|
528
packages/chr/chr.md
Normal file
528
packages/chr/chr.md
Normal file
@@ -0,0 +1,528 @@
|
||||
CHR: Constraint Handling Rules {#chr}
|
||||
==============================
|
||||
|
||||
|
||||
This chapter is written by Tom Schrijvers, K.U. Leuven for the hProlog
|
||||
system. Adjusted by Jan Wielemaker to fit the SWI-Prolog documentation
|
||||
infrastructure and remove hProlog specific references.
|
||||
|
||||
The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The
|
||||
runtime environment is written by Christian Holzbaur and Tom
|
||||
Schrijvers while the compiler is written by Tom Schrijvers. Both are
|
||||
integrated with SWI-Prolog and licenced under compatible conditions
|
||||
with permission from the authors. Porting and maintenance on YAP is
|
||||
the entire responsability of Vítor Santos Costa.
|
||||
|
||||
The main reference for SWI-Prolog's CHR system is:
|
||||
|
||||
+ T. Schrijvers, and B. Demoen, <em>The K.U.Leuven CHR System: Implementation and Application</em>, First Workshop on Constraint Handling Rules: Selected
|
||||
Contributions (Fruwirth, T. and Meister, M., eds.), pp. 1--5, 2004.
|
||||
|
||||
# Introduction
|
||||
|
||||
Constraint Handling Rules (CHR) is a committed-choice bottom-up language
|
||||
embedded in Prolog. It is designed for writing constraint solvers and is
|
||||
particularily useful for providing application-specific constraints.
|
||||
It has been used in many kinds of applications, like scheduling,
|
||||
model checking, abduction, type checking among many others.
|
||||
|
||||
CHR has previously been implemented in other Prolog systems (SICStus,
|
||||
Eclipse, Yap), Haskell and Java. This CHR system is based on the
|
||||
compilation scheme and runtime environment of CHR in SICStus.
|
||||
|
||||
In this documentation we restrict ourselves to giving a short overview
|
||||
of CHR in general and mainly focus on elements specific to this
|
||||
implementation. For a more thorough review of CHR we refer the reader to
|
||||
[Freuhwirth:98]. More background on CHR can be found at the CHR web site.
|
||||
|
||||
### Syntax and Semantics
|
||||
|
||||
We present informally the syntax and semantics of CHR.
|
||||
|
||||
|
||||
#### CHR Syntax
|
||||
|
||||
The syntax of CHR rules in hProlog is the following:
|
||||
|
||||
~~~~~
|
||||
rules --> rule, rules.
|
||||
rules --> [].
|
||||
|
||||
rule --> name, actual_rule, pragma, [atom(`.`)].
|
||||
|
||||
name --> atom, [atom(`@`)].
|
||||
name --> [].
|
||||
|
||||
actual_rule --> simplification_rule.
|
||||
actual_rule --> propagation_rule.
|
||||
actual_rule --> simpagation_rule.
|
||||
|
||||
simplification_rule --> constraints, [atom(`<=>`)], guard, body.
|
||||
propagation_rule --> constraints, [atom(`==>`)], guard, body.
|
||||
simpagation_rule --> constraints, [atom(`\`)], constraints, [atom(`<=>`)],
|
||||
guard, body.
|
||||
|
||||
constraints --> constraint, constraint_id.
|
||||
constraints --> constraint, [atom(`,`)], constraints.
|
||||
|
||||
constraint --> compound_term.
|
||||
|
||||
constraint_id --> [].
|
||||
constraint_id --> [atom(`#`)], variable.
|
||||
|
||||
guard --> [].
|
||||
guard --> goal, [atom(`|`)].
|
||||
|
||||
body --> goal.
|
||||
|
||||
pragma --> [].
|
||||
pragma --> [atom(`pragma`)], actual_pragmas.
|
||||
|
||||
actual_pragmas --> actual_pragma.
|
||||
actual_pragmas --> actual_pragma, [atom(`,`)], actual_pragmas.
|
||||
|
||||
actual_pragma --> [atom(`passive(`)], variable, [atom(`)`)].
|
||||
|
||||
~~~~~
|
||||
|
||||
Additional syntax-related terminology:
|
||||
|
||||
+ *head:* the constraints in an `actual_rule` before
|
||||
the arrow (either `<=>` or `==>`)
|
||||
|
||||
|
||||
#### Semantics Semantics
|
||||
|
||||
In this subsection the operational semantics of CHR in Prolog are presented
|
||||
informally. They do not differ essentially from other CHR systems.
|
||||
|
||||
When a constraint is called, it is considered an active constraint and
|
||||
the system will try to apply the rules to it. Rules are tried and executed
|
||||
sequentially in the order they are written.
|
||||
|
||||
A rule is conceptually tried for an active constraint in the following
|
||||
way. The active constraint is matched with a constraint in the head of
|
||||
the rule. If more constraints appear in the head they are looked for
|
||||
among the suspended constraints, which are called passive constraints in
|
||||
this context. If the necessary passive constraints can be found and all
|
||||
match with the head of the rule and the guard of the rule succeeds, then
|
||||
the rule is committed and the body of the rule executed. If not all the
|
||||
necessary passive constraint can be found, the matching fails or the
|
||||
guard fails, then the body is not executed and the process of trying and
|
||||
executing simply continues with the following rules. If for a rule,
|
||||
there are multiple constraints in the head, the active constraint will
|
||||
try the rule sequentially multiple times, each time trying to match with
|
||||
another constraint.
|
||||
|
||||
This process ends either when the active constraint disappears, i.e. it
|
||||
is removed by some rule, or after the last rule has been processed. In
|
||||
the latter case the active constraint becomes suspended.
|
||||
|
||||
A suspended constraint is eligible as a passive constraint for an active
|
||||
constraint. The other way it may interact again with the rules, is when
|
||||
a variable appearing in the constraint becomes bound to either a nonvariable
|
||||
or another variable involved in one or more constraints. In that case the
|
||||
constraint is triggered, i.e. it becomes an active constraint and all
|
||||
the rules are tried.
|
||||
|
||||
### Rules
|
||||
|
||||
There are three different kinds of rules, each with their specific semantics:
|
||||
|
||||
+ simplification
|
||||
The simplification rule removes the constraints in its head and calls its body.
|
||||
|
||||
+ propagation
|
||||
The propagation rule calls its body exactly once for the constraints in
|
||||
its head.
|
||||
|
||||
+ simpagation
|
||||
The simpagation rule removes the constraints in its head after the
|
||||
`\` and then calls its body. It is an optimization of
|
||||
simplification rules of the form: \[constraints_1, constraints_2 <=>
|
||||
constraints_1, body \] Namely, in the simpagation form:
|
||||
|
||||
~~~~~
|
||||
constraints1 \ constraints2 <=> body
|
||||
~~~~~
|
||||
_constraints1_
|
||||
constraints are not called in the body.
|
||||
|
||||
|
||||
|
||||
#### Rule Names
|
||||
|
||||
Naming a rule is optional and has no semantical meaning. It only functions
|
||||
as documentation for the programmer.
|
||||
|
||||
### Pragmas
|
||||
|
||||
The semantics of the pragmas are:
|
||||
|
||||
+ passive(Identifier)
|
||||
The constraint in the head of a rule _Identifier_ can only act as a
|
||||
passive constraint in that rule.
|
||||
|
||||
|
||||
Additional pragmas may be released in the future.
|
||||
|
||||
### CHR_Options Options
|
||||
|
||||
It is possible to specify options that apply to all the CHR rules in the module.
|
||||
Options are specified with the `option/2` declaration:
|
||||
|
||||
~~~~~
|
||||
option(Option,Value).
|
||||
~~~~~
|
||||
|
||||
Available options are:
|
||||
|
||||
+ check_guard_bindings
|
||||
This option controls whether guards should be checked for illegal
|
||||
variable bindings or not. Possible values for this option are
|
||||
`on`, to enable the checks, and `off`, to disable the
|
||||
checks.
|
||||
|
||||
+ optimize
|
||||
This is an experimental option controlling the degree of optimization.
|
||||
Possible values are `full`, to enable all available
|
||||
optimizations, and `off` (default), to disable all optimizations.
|
||||
The default is derived from the SWI-Prolog flag `optimise`, where
|
||||
`true` is mapped to `full`. Therefore the commandline
|
||||
option `-O` provides full CHR optimization.
|
||||
If optimization is enabled, debugging should be disabled.
|
||||
|
||||
+ debug
|
||||
This options enables or disables the possibility to debug the CHR code.
|
||||
Possible values are `on` (default) and `off`. See
|
||||
`debugging` for more details on debugging. The default is
|
||||
derived from the prolog flag `generate_debug_info`, which
|
||||
is `true` by default. See `-nodebug`.
|
||||
If debugging is enabled, optimization should be disabled.
|
||||
|
||||
+ mode
|
||||
This option specifies the mode for a particular constraint. The
|
||||
value is a term with functor and arity equal to that of a constraint.
|
||||
The arguments can be one of `-`, `+` or `?`.
|
||||
The latter is the default. The meaning is the following:
|
||||
|
||||
+ -
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint is always unbound.
|
||||
+ +
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint is always ground.
|
||||
+ ?
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint can have any instantiation, which may change
|
||||
over time. This is the default value.
|
||||
|
||||
The declaration is used by the compiler for various optimizations.
|
||||
Note that it is up to the user the ensure that the mode declaration
|
||||
is correct with respect to the use of the constraint.
|
||||
This option may occur once for each constraint.
|
||||
|
||||
+ type_declaration
|
||||
This option specifies the argument types for a particular constraint. The
|
||||
value is a term with functor and arity equal to that of a constraint.
|
||||
The arguments can be a user-defined type or one of
|
||||
the built-in types:
|
||||
|
||||
+ int
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint is an integer number.
|
||||
+ float
|
||||
...{} a floating point number.
|
||||
+ number
|
||||
...{} a number.
|
||||
+ natural
|
||||
...{} a positive integer.
|
||||
+ any
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint can have any type. This is the default value.
|
||||
|
||||
|
||||
Currently, type declarations are only used to improve certain
|
||||
optimizations (guard simplification, occurrence subsumption, ...{}).
|
||||
|
||||
+ type_definition
|
||||
This option defines a new user-defined type which can be used in
|
||||
type declarations. The value is a term of the form
|
||||
`type(` _name_`,` _list_`)`, where
|
||||
_name_ is a term and _list_ is a list of alternatives.
|
||||
Variables can be used to define generic types. Recursive definitions
|
||||
are allowed. Examples are
|
||||
|
||||
~~~~~
|
||||
type(bool,[true,false]).
|
||||
type(complex_number,[float + float * i]).
|
||||
type(binary_tree(T),[ leaf(T) | node(binary_tree(T),binary_tree(T)) ]).
|
||||
type(list(T),[ [] | [T | list(T)]).
|
||||
~~~~~
|
||||
|
||||
|
||||
|
||||
The mode, type_declaration and type_definition options are provided
|
||||
for backward compatibility. The new syntax is described below.
|
||||
|
||||
|
||||
|
||||
### CHR in Prolog Programs
|
||||
|
||||
|
||||
The CHR constraints defined in a particulary chr file are
|
||||
associated with a module. The default module is `user`. One should
|
||||
never load different chr files with the same CHR module name.
|
||||
|
||||
|
||||
|
||||
#### Constraint Declarations
|
||||
|
||||
|
||||
Every constraint used in CHR rules has to be declared.
|
||||
There are two ways to do this. The old style is as follows:
|
||||
|
||||
~~~~~
|
||||
option(type_definition,type(list(T),[ [] , [T|list(T)] ]).
|
||||
option(mode,foo(+,?)).
|
||||
option(type_declaration,foo(list(int),float)).
|
||||
:- constraints foo/2, bar/0.
|
||||
~~~~~
|
||||
|
||||
The new style is as follows:
|
||||
|
||||
~~~~~
|
||||
:- chr_type list(T) ---> [] ; [T|list(T)].
|
||||
:- constraints foo(+list(int),?float), bar.
|
||||
~~~~~
|
||||
|
||||
|
||||
|
||||
#### Compilation
|
||||
|
||||
The
|
||||
SWI-Prolog CHR compiler exploits term_expansion/2 rules to translate
|
||||
the constraint handling rules to plain Prolog. These rules are loaded
|
||||
from the library chr. They are activated if the compiled file
|
||||
has the chr extension or after finding a declaration of the
|
||||
format below.
|
||||
|
||||
~~~~~
|
||||
:- constraints ...
|
||||
~~~~~
|
||||
|
||||
It is adviced to define CHR rules in a module file, where the module
|
||||
declaration is immediately followed by including the chr
|
||||
library as examplified below:
|
||||
|
||||
~~~~~
|
||||
:- module(zebra, [ zebra/0 ]).
|
||||
:- use_module(library(chr)).
|
||||
|
||||
:- constraints ...
|
||||
~~~~~
|
||||
|
||||
Using this style CHR rules can be defined in ordinary Prolog
|
||||
pl files and the operator definitions required by CHR do not
|
||||
leak into modules where they might cause conflicts.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#### CHR Debugging
|
||||
|
||||
The CHR debugging facilities are currently rather limited. Only tracing
|
||||
is currently available. To use the CHR debugging facilities for a CHR
|
||||
file it must be compiled for debugging. Generating debug info is
|
||||
controlled by the CHR option debug, whose default is derived
|
||||
from the SWI-Prolog flag `generate_debug_info`. Therefore debug
|
||||
info is provided unless the `-nodebug` is used.
|
||||
|
||||
#### Ports
|
||||
|
||||
vFor CHR constraints the four standard ports are defined:
|
||||
|
||||
+ call
|
||||
A new constraint is called and becomes active.
|
||||
+ exit
|
||||
An active constraint exits: it has either been inserted in the store after
|
||||
trying all rules or has been removed from the constraint store.
|
||||
+ fail
|
||||
An active constraint fails.
|
||||
+ redo
|
||||
An active constraint starts looking for an alternative solution.
|
||||
|
||||
|
||||
In addition to the above ports, CHR constraints have five additional
|
||||
ports:
|
||||
|
||||
+ wake
|
||||
A suspended constraint is woken and becomes active.
|
||||
+ insert
|
||||
An active constraint has tried all rules and is suspended in
|
||||
the constraint store.
|
||||
+ remove
|
||||
An active or passive constraint is removed from the constraint
|
||||
store, if it had been inserted.
|
||||
+ try
|
||||
An active constraints tries a rule with possibly
|
||||
some passive constraints. The try port is entered
|
||||
just before committing to the rule.
|
||||
+ apply
|
||||
An active constraints commits to a rule with possibly
|
||||
some passive constraints. The apply port is entered
|
||||
just after committing to the rule.
|
||||
|
||||
#### Tracing
|
||||
|
||||
Tracing is enabled with the chr_trace/0 predicate
|
||||
and disabled with the chr_notrace/0 predicate.
|
||||
|
||||
When enabled the tracer will step through the `call`,
|
||||
`exit`, `fail`, `wake` and `apply` ports,
|
||||
accepting debug commands, and simply write out the other ports.
|
||||
|
||||
The following debug commans are currently supported:
|
||||
|
||||
~~~~~
|
||||
CHR debug options:
|
||||
|
||||
<cr> creep c creep
|
||||
s skip
|
||||
g ancestors
|
||||
n nodebug
|
||||
b break
|
||||
a abort
|
||||
f fail
|
||||
? help h help
|
||||
~~~~~
|
||||
|
||||
Their meaning is:
|
||||
|
||||
+ creep
|
||||
Step to the next port.
|
||||
+ skip
|
||||
Skip to exit port of this call or wake port.
|
||||
+ ancestors
|
||||
Print list of ancestor call and wake ports.
|
||||
+ nodebug
|
||||
Disable the tracer.
|
||||
+ break
|
||||
Enter a recursive Prolog toplevel. See break/0.
|
||||
+ abort
|
||||
Exit to the toplevel. See abort/0.
|
||||
+ fail
|
||||
Insert failure in execution.
|
||||
+ help
|
||||
Print the above available debug options.
|
||||
|
||||
|
||||
#### CHR Debugging Predicates
|
||||
|
||||
|
||||
The chr module contains several predicates that allow
|
||||
inspecting and printing the content of the constraint store.
|
||||
|
||||
+ chr_trace
|
||||
Activate the CHR tracer. By default the CHR tracer is activated and
|
||||
deactivated automatically by the Prolog predicates trace/0 and
|
||||
notrace/0.
|
||||
|
||||
### CHR_Examples Examples
|
||||
|
||||
Here are two example constraint solvers written in CHR.
|
||||
|
||||
+
|
||||
The program below defines a solver with one constraint,
|
||||
`leq/2`, which is a less-than-or-equal constraint.
|
||||
|
||||
~~~~~
|
||||
:- module(leq,[cycle/3, leq/2]).
|
||||
:- use_module(library(chr)).
|
||||
|
||||
:- constraints leq/2.
|
||||
reflexivity @ leq(X,X) <=> true.
|
||||
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
|
||||
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
|
||||
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).
|
||||
|
||||
cycle(X,Y,Z):-
|
||||
leq(X,Y),
|
||||
leq(Y,Z),
|
||||
leq(Z,X).
|
||||
~~~~~
|
||||
|
||||
+
|
||||
The program below implements a simple finite domain
|
||||
constraint solver.
|
||||
|
||||
~~~~~
|
||||
:- module(dom,[dom/2]).
|
||||
:- use_module(library(chr)).
|
||||
|
||||
:- constraints dom/2.
|
||||
|
||||
dom(X,[]) <=> fail.
|
||||
dom(X,[Y]) <=> X = Y.
|
||||
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).
|
||||
|
||||
intersection([],_,[]).
|
||||
intersection([H|T],L2,[H|L3]) :-
|
||||
member(H,L2), !,
|
||||
intersection(T,L2,L3).
|
||||
intersection([_|T],L2,L3) :-
|
||||
intersection(T,L2,L3).
|
||||
~~~~~
|
||||
|
||||
|
||||
|
||||
### Compatibility with SICStus CHR
|
||||
|
||||
|
||||
There are small differences between CHR in SWI-Prolog and newer
|
||||
YAPs and SICStus and older versions of YAP. Besides differences in
|
||||
available options and pragmas, the following differences should be
|
||||
noted:
|
||||
|
||||
+ [The handler/1 declaration]
|
||||
In SICStus every CHR module requires a `handler/1`
|
||||
declaration declaring a unique handler name. This declaration is valid
|
||||
syntax in SWI-Prolog, but will have no effect. A warning will be given
|
||||
during compilation.
|
||||
|
||||
+ [The rules/1 declaration]
|
||||
In SICStus, for every CHR module it is possible to only enable a subset
|
||||
of the available rules through the `rules/1` declaration. The
|
||||
declaration is valid syntax in SWI-Prolog, but has no effect. A
|
||||
warning is given during compilation.
|
||||
|
||||
+ [Sourcefile naming]
|
||||
SICStus uses a two-step compiler, where chr files are
|
||||
first translated into pl files. For SWI-Prolog CHR
|
||||
rules may be defined in a file with any extension.
|
||||
|
||||
### Guidelines
|
||||
|
||||
In this section we cover several guidelines on how to use CHR to write
|
||||
constraint solvers and how to do so efficiently.
|
||||
|
||||
+ [Set semantics]
|
||||
The CHR system allows the presence of identical constraints, i.e.
|
||||
multiple constraints with the same functor, arity and arguments. For
|
||||
most constraint solvers, this is not desirable: it affects efficiency
|
||||
and possibly termination. Hence appropriate simpagation rules should be
|
||||
added of the form:
|
||||
|
||||
~~~~~
|
||||
{constraint \ constraint <=> true}.
|
||||
~~~~~
|
||||
|
||||
+ [Multi-headed rules]
|
||||
Multi-headed rules are executed more efficiently when the constraints
|
||||
share one or more variables.
|
||||
|
||||
+ [Mode and type declarations]
|
||||
Provide mode and type declarations to get more efficient program execution.
|
||||
Make sure to disable debug (`-nodebug`) and enable optimization
|
||||
(`-O`).
|
@@ -1,538 +1,2 @@
|
||||
%
|
||||
% chr.pl is generated automatically.
|
||||
% This package is just here to work as a stub for YAP analysis.
|
||||
%
|
||||
|
||||
/**
|
||||
|
||||
@defgroup CHR CHR: Constraint Handling Rules
|
||||
|
||||
@ingroup swi
|
||||
|
||||
This chapter is written by Tom Schrijvers, K.U. Leuven for the hProlog
|
||||
system. Adjusted by Jan Wielemaker to fit the SWI-Prolog documentation
|
||||
infrastructure and remove hProlog specific references.
|
||||
|
||||
The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The runtime
|
||||
environment is written by Christian Holzbaur and Tom Schrijvers while the
|
||||
compiler is written by Tom Schrijvers. Both are integrated with SWI-Prolog
|
||||
and licenced under compatible conditions with permission from the authors.
|
||||
|
||||
The main reference for SWI-Prolog's CHR system is:
|
||||
|
||||
+ T. Schrijvers, and B. Demoen, <em>The K.U.Leuven CHR System: Implementation and Application</em>, First Workshop on Constraint Handling Rules: Selected
|
||||
Contributions (Fruwirth, T. and Meister, M., eds.), pp. 1--5, 2004.
|
||||
|
||||
# Introduction
|
||||
|
||||
Constraint Handling Rules (CHR) is a committed-choice bottom-up language
|
||||
embedded in Prolog. It is designed for writing constraint solvers and is
|
||||
particularily useful for providing application-specific constraints.
|
||||
It has been used in many kinds of applications, like scheduling,
|
||||
model checking, abduction, type checking among many others.
|
||||
|
||||
CHR has previously been implemented in other Prolog systems (SICStus,
|
||||
Eclipse, Yap), Haskell and Java. This CHR system is based on the
|
||||
compilation scheme and runtime environment of CHR in SICStus.
|
||||
|
||||
In this documentation we restrict ourselves to giving a short overview
|
||||
of CHR in general and mainly focus on elements specific to this
|
||||
implementation. For a more thorough review of CHR we refer the reader to
|
||||
[Freuhwirth:98]. More background on CHR can be found at the CHR web site.
|
||||
|
||||
### Syntax and Semantics
|
||||
|
||||
We present informally the syntax and semantics of CHR.
|
||||
|
||||
|
||||
#### CHR Syntax
|
||||
|
||||
The syntax of CHR rules in hProlog is the following:
|
||||
|
||||
~~~~~
|
||||
rules --> rule, rules.
|
||||
rules --> [].
|
||||
|
||||
rule --> name, actual_rule, pragma, [atom(`.`)].
|
||||
|
||||
name --> atom, [atom(`@`)].
|
||||
name --> [].
|
||||
|
||||
actual_rule --> simplification_rule.
|
||||
actual_rule --> propagation_rule.
|
||||
actual_rule --> simpagation_rule.
|
||||
|
||||
simplification_rule --> constraints, [atom(`<=>`)], guard, body.
|
||||
propagation_rule --> constraints, [atom(`==>`)], guard, body.
|
||||
simpagation_rule --> constraints, [atom(`\`)], constraints, [atom(`<=>`)],
|
||||
guard, body.
|
||||
|
||||
constraints --> constraint, constraint_id.
|
||||
constraints --> constraint, [atom(`,`)], constraints.
|
||||
|
||||
constraint --> compound_term.
|
||||
|
||||
constraint_id --> [].
|
||||
constraint_id --> [atom(`#`)], variable.
|
||||
|
||||
guard --> [].
|
||||
guard --> goal, [atom(`|`)].
|
||||
|
||||
body --> goal.
|
||||
|
||||
pragma --> [].
|
||||
pragma --> [atom(`pragma`)], actual_pragmas.
|
||||
|
||||
actual_pragmas --> actual_pragma.
|
||||
actual_pragmas --> actual_pragma, [atom(`,`)], actual_pragmas.
|
||||
|
||||
actual_pragma --> [atom(`passive(`)], variable, [atom(`)`)].
|
||||
|
||||
~~~~~
|
||||
|
||||
Additional syntax-related terminology:
|
||||
|
||||
+ *head:* the constraints in an `actual_rule` before
|
||||
the arrow (either `<=>` or `==>`)
|
||||
|
||||
|
||||
#### Semantics Semantics
|
||||
|
||||
In this subsection the operational semantics of CHR in Prolog are presented
|
||||
informally. They do not differ essentially from other CHR systems.
|
||||
|
||||
When a constraint is called, it is considered an active constraint and
|
||||
the system will try to apply the rules to it. Rules are tried and executed
|
||||
sequentially in the order they are written.
|
||||
|
||||
A rule is conceptually tried for an active constraint in the following
|
||||
way. The active constraint is matched with a constraint in the head of
|
||||
the rule. If more constraints appear in the head they are looked for
|
||||
among the suspended constraints, which are called passive constraints in
|
||||
this context. If the necessary passive constraints can be found and all
|
||||
match with the head of the rule and the guard of the rule succeeds, then
|
||||
the rule is committed and the body of the rule executed. If not all the
|
||||
necessary passive constraint can be found, the matching fails or the
|
||||
guard fails, then the body is not executed and the process of trying and
|
||||
executing simply continues with the following rules. If for a rule,
|
||||
there are multiple constraints in the head, the active constraint will
|
||||
try the rule sequentially multiple times, each time trying to match with
|
||||
another constraint.
|
||||
|
||||
This process ends either when the active constraint disappears, i.e. it
|
||||
is removed by some rule, or after the last rule has been processed. In
|
||||
the latter case the active constraint becomes suspended.
|
||||
|
||||
A suspended constraint is eligible as a passive constraint for an active
|
||||
constraint. The other way it may interact again with the rules, is when
|
||||
a variable appearing in the constraint becomes bound to either a nonvariable
|
||||
or another variable involved in one or more constraints. In that case the
|
||||
constraint is triggered, i.e. it becomes an active constraint and all
|
||||
the rules are tried.
|
||||
|
||||
### Rules
|
||||
|
||||
There are three different kinds of rules, each with their specific semantics:
|
||||
|
||||
+ simplification
|
||||
The simplification rule removes the constraints in its head and calls its body.
|
||||
|
||||
+ propagation
|
||||
The propagation rule calls its body exactly once for the constraints in
|
||||
its head.
|
||||
|
||||
+ simpagation
|
||||
The simpagation rule removes the constraints in its head after the
|
||||
`\` and then calls its body. It is an optimization of
|
||||
simplification rules of the form: \[constraints_1, constraints_2 <=>
|
||||
constraints_1, body \] Namely, in the simpagation form:
|
||||
|
||||
~~~~~
|
||||
constraints1 \ constraints2 <=> body
|
||||
~~~~~
|
||||
_constraints1_
|
||||
constraints are not called in the body.
|
||||
|
||||
|
||||
|
||||
#### Rule Names
|
||||
|
||||
Naming a rule is optional and has no semantical meaning. It only functions
|
||||
as documentation for the programmer.
|
||||
|
||||
### Pragmas
|
||||
|
||||
The semantics of the pragmas are:
|
||||
|
||||
+ passive(Identifier)
|
||||
The constraint in the head of a rule _Identifier_ can only act as a
|
||||
passive constraint in that rule.
|
||||
|
||||
|
||||
Additional pragmas may be released in the future.
|
||||
|
||||
### CHR_Options Options
|
||||
|
||||
It is possible to specify options that apply to all the CHR rules in the module.
|
||||
Options are specified with the `option/2` declaration:
|
||||
|
||||
~~~~~
|
||||
option(Option,Value).
|
||||
~~~~~
|
||||
|
||||
Available options are:
|
||||
|
||||
+ check_guard_bindings
|
||||
This option controls whether guards should be checked for illegal
|
||||
variable bindings or not. Possible values for this option are
|
||||
`on`, to enable the checks, and `off`, to disable the
|
||||
checks.
|
||||
|
||||
+ optimize
|
||||
This is an experimental option controlling the degree of optimization.
|
||||
Possible values are `full`, to enable all available
|
||||
optimizations, and `off` (default), to disable all optimizations.
|
||||
The default is derived from the SWI-Prolog flag `optimise`, where
|
||||
`true` is mapped to `full`. Therefore the commandline
|
||||
option `-O` provides full CHR optimization.
|
||||
If optimization is enabled, debugging should be disabled.
|
||||
|
||||
+ debug
|
||||
This options enables or disables the possibility to debug the CHR code.
|
||||
Possible values are `on` (default) and `off`. See
|
||||
`debugging` for more details on debugging. The default is
|
||||
derived from the prolog flag `generate_debug_info`, which
|
||||
is `true` by default. See `-nodebug`.
|
||||
If debugging is enabled, optimization should be disabled.
|
||||
|
||||
+ mode
|
||||
This option specifies the mode for a particular constraint. The
|
||||
value is a term with functor and arity equal to that of a constraint.
|
||||
The arguments can be one of `-`, `+` or `?`.
|
||||
The latter is the default. The meaning is the following:
|
||||
|
||||
+ -
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint is always unbound.
|
||||
+ +
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint is always ground.
|
||||
+ ?
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint can have any instantiation, which may change
|
||||
over time. This is the default value.
|
||||
|
||||
The declaration is used by the compiler for various optimizations.
|
||||
Note that it is up to the user the ensure that the mode declaration
|
||||
is correct with respect to the use of the constraint.
|
||||
This option may occur once for each constraint.
|
||||
|
||||
+ type_declaration
|
||||
This option specifies the argument types for a particular constraint. The
|
||||
value is a term with functor and arity equal to that of a constraint.
|
||||
The arguments can be a user-defined type or one of
|
||||
the built-in types:
|
||||
|
||||
+ int
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint is an integer number.
|
||||
+ float
|
||||
...{} a floating point number.
|
||||
+ number
|
||||
...{} a number.
|
||||
+ natural
|
||||
...{} a positive integer.
|
||||
+ any
|
||||
The corresponding argument of every occurrence
|
||||
of the constraint can have any type. This is the default value.
|
||||
|
||||
|
||||
Currently, type declarations are only used to improve certain
|
||||
optimizations (guard simplification, occurrence subsumption, ...{}).
|
||||
|
||||
+ type_definition
|
||||
This option defines a new user-defined type which can be used in
|
||||
type declarations. The value is a term of the form
|
||||
`type(` _name_`,` _list_`)`, where
|
||||
_name_ is a term and _list_ is a list of alternatives.
|
||||
Variables can be used to define generic types. Recursive definitions
|
||||
are allowed. Examples are
|
||||
|
||||
~~~~~
|
||||
type(bool,[true,false]).
|
||||
type(complex_number,[float + float * i]).
|
||||
type(binary_tree(T),[ leaf(T) | node(binary_tree(T),binary_tree(T)) ]).
|
||||
type(list(T),[ [] | [T | list(T)]).
|
||||
~~~~~
|
||||
|
||||
|
||||
|
||||
The mode, type_declaration and type_definition options are provided
|
||||
for backward compatibility. The new syntax is described below.
|
||||
|
||||
|
||||
|
||||
### CHR in Prolog Programs
|
||||
|
||||
|
||||
The CHR constraints defined in a particulary chr file are
|
||||
associated with a module. The default module is `user`. One should
|
||||
never load different chr files with the same CHR module name.
|
||||
|
||||
|
||||
|
||||
#### Constraint Declarations
|
||||
|
||||
|
||||
Every constraint used in CHR rules has to be declared.
|
||||
There are two ways to do this. The old style is as follows:
|
||||
|
||||
~~~~~
|
||||
option(type_definition,type(list(T),[ [] , [T|list(T)] ]).
|
||||
option(mode,foo(+,?)).
|
||||
option(type_declaration,foo(list(int),float)).
|
||||
:- constraints foo/2, bar/0.
|
||||
~~~~~
|
||||
|
||||
The new style is as follows:
|
||||
|
||||
~~~~~
|
||||
:- chr_type list(T) ---> [] ; [T|list(T)].
|
||||
:- constraints foo(+list(int),?float), bar.
|
||||
~~~~~
|
||||
|
||||
|
||||
|
||||
#### Compilation
|
||||
|
||||
The
|
||||
SWI-Prolog CHR compiler exploits term_expansion/2 rules to translate
|
||||
the constraint handling rules to plain Prolog. These rules are loaded
|
||||
from the library chr. They are activated if the compiled file
|
||||
has the chr extension or after finding a declaration of the
|
||||
format below.
|
||||
|
||||
~~~~~
|
||||
:- constraints ...
|
||||
~~~~~
|
||||
|
||||
It is adviced to define CHR rules in a module file, where the module
|
||||
declaration is immediately followed by including the chr
|
||||
library as examplified below:
|
||||
|
||||
~~~~~
|
||||
:- module(zebra, [ zebra/0 ]).
|
||||
:- use_module(library(chr)).
|
||||
|
||||
:- constraints ...
|
||||
~~~~~
|
||||
|
||||
Using this style CHR rules can be defined in ordinary Prolog
|
||||
pl files and the operator definitions required by CHR do not
|
||||
leak into modules where they might cause conflicts.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#### CHR Debugging
|
||||
|
||||
The CHR debugging facilities are currently rather limited. Only tracing
|
||||
is currently available. To use the CHR debugging facilities for a CHR
|
||||
file it must be compiled for debugging. Generating debug info is
|
||||
controlled by the CHR option debug, whose default is derived
|
||||
from the SWI-Prolog flag `generate_debug_info`. Therefore debug
|
||||
info is provided unless the `-nodebug` is used.
|
||||
|
||||
#### Ports
|
||||
|
||||
For CHR constraints the four standard ports are defined:
|
||||
|
||||
+ call
|
||||
A new constraint is called and becomes active.
|
||||
+ exit
|
||||
An active constraint exits: it has either been inserted in the store after
|
||||
trying all rules or has been removed from the constraint store.
|
||||
+ fail
|
||||
An active constraint fails.
|
||||
+ redo
|
||||
An active constraint starts looking for an alternative solution.
|
||||
|
||||
|
||||
In addition to the above ports, CHR constraints have five additional
|
||||
ports:
|
||||
|
||||
+ wake
|
||||
A suspended constraint is woken and becomes active.
|
||||
+ insert
|
||||
An active constraint has tried all rules and is suspended in
|
||||
the constraint store.
|
||||
+ remove
|
||||
An active or passive constraint is removed from the constraint
|
||||
store, if it had been inserted.
|
||||
+ try
|
||||
An active constraints tries a rule with possibly
|
||||
some passive constraints. The try port is entered
|
||||
just before committing to the rule.
|
||||
+ apply
|
||||
An active constraints commits to a rule with possibly
|
||||
some passive constraints. The apply port is entered
|
||||
just after committing to the rule.
|
||||
|
||||
#### Tracing
|
||||
|
||||
Tracing is enabled with the chr_trace/0 predicate
|
||||
and disabled with the chr_notrace/0 predicate.
|
||||
|
||||
When enabled the tracer will step through the `call`,
|
||||
`exit`, `fail`, `wake` and `apply` ports,
|
||||
accepting debug commands, and simply write out the other ports.
|
||||
|
||||
The following debug commans are currently supported:
|
||||
|
||||
~~~~~
|
||||
CHR debug options:
|
||||
|
||||
<cr> creep c creep
|
||||
s skip
|
||||
g ancestors
|
||||
n nodebug
|
||||
b break
|
||||
a abort
|
||||
f fail
|
||||
? help h help
|
||||
~~~~~
|
||||
|
||||
Their meaning is:
|
||||
|
||||
+ creep
|
||||
Step to the next port.
|
||||
+ skip
|
||||
Skip to exit port of this call or wake port.
|
||||
+ ancestors
|
||||
Print list of ancestor call and wake ports.
|
||||
+ nodebug
|
||||
Disable the tracer.
|
||||
+ break
|
||||
Enter a recursive Prolog toplevel. See break/0.
|
||||
+ abort
|
||||
Exit to the toplevel. See abort/0.
|
||||
+ fail
|
||||
Insert failure in execution.
|
||||
+ help
|
||||
Print the above available debug options.
|
||||
|
||||
|
||||
#### CHR Debugging Predicates
|
||||
|
||||
|
||||
The chr module contains several predicates that allow
|
||||
inspecting and printing the content of the constraint store.
|
||||
|
||||
+ chr_trace
|
||||
Activate the CHR tracer. By default the CHR tracer is activated and
|
||||
deactivated automatically by the Prolog predicates trace/0 and
|
||||
notrace/0.
|
||||
|
||||
### CHR_Examples Examples
|
||||
|
||||
Here are two example constraint solvers written in CHR.
|
||||
|
||||
+
|
||||
The program below defines a solver with one constraint,
|
||||
`leq/2`, which is a less-than-or-equal constraint.
|
||||
|
||||
~~~~~
|
||||
:- module(leq,[cycle/3, leq/2]).
|
||||
:- use_module(library(chr)).
|
||||
|
||||
:- constraints leq/2.
|
||||
reflexivity @ leq(X,X) <=> true.
|
||||
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
|
||||
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
|
||||
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).
|
||||
|
||||
cycle(X,Y,Z):-
|
||||
leq(X,Y),
|
||||
leq(Y,Z),
|
||||
leq(Z,X).
|
||||
~~~~~
|
||||
|
||||
+
|
||||
The program below implements a simple finite domain
|
||||
constraint solver.
|
||||
|
||||
~~~~~
|
||||
:- module(dom,[dom/2]).
|
||||
:- use_module(library(chr)).
|
||||
|
||||
:- constraints dom/2.
|
||||
|
||||
dom(X,[]) <=> fail.
|
||||
dom(X,[Y]) <=> X = Y.
|
||||
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).
|
||||
|
||||
intersection([],_,[]).
|
||||
intersection([H|T],L2,[H|L3]) :-
|
||||
member(H,L2), !,
|
||||
intersection(T,L2,L3).
|
||||
intersection([_|T],L2,L3) :-
|
||||
intersection(T,L2,L3).
|
||||
~~~~~
|
||||
|
||||
|
||||
|
||||
### Compatibility with SICStus CHR
|
||||
|
||||
|
||||
There are small differences between CHR in SWI-Prolog and newer
|
||||
YAPs and SICStus and older versions of YAP. Besides differences in
|
||||
available options and pragmas, the following differences should be
|
||||
noted:
|
||||
|
||||
+ [The handler/1 declaration]
|
||||
In SICStus every CHR module requires a `handler/1`
|
||||
declaration declaring a unique handler name. This declaration is valid
|
||||
syntax in SWI-Prolog, but will have no effect. A warning will be given
|
||||
during compilation.
|
||||
|
||||
+ [The rules/1 declaration]
|
||||
In SICStus, for every CHR module it is possible to only enable a subset
|
||||
of the available rules through the `rules/1` declaration. The
|
||||
declaration is valid syntax in SWI-Prolog, but has no effect. A
|
||||
warning is given during compilation.
|
||||
|
||||
+ [Sourcefile naming]
|
||||
SICStus uses a two-step compiler, where chr files are
|
||||
first translated into pl files. For SWI-Prolog CHR
|
||||
rules may be defined in a file with any extension.
|
||||
|
||||
### Guidelines
|
||||
|
||||
In this section we cover several guidelines on how to use CHR to write
|
||||
constraint solvers and how to do so efficiently.
|
||||
|
||||
+ [Set semantics]
|
||||
The CHR system allows the presence of identical constraints, i.e.
|
||||
multiple constraints with the same functor, arity and arguments. For
|
||||
most constraint solvers, this is not desirable: it affects efficiency
|
||||
and possibly termination. Hence appropriate simpagation rules should be
|
||||
added of the form:
|
||||
|
||||
~~~~~
|
||||
{constraint \ constraint <=> true}.
|
||||
~~~~~
|
||||
|
||||
+ [Multi-headed rules]
|
||||
Multi-headed rules are executed more efficiently when the constraints
|
||||
share one or more variables.
|
||||
|
||||
+ [Mode and type declarations]
|
||||
Provide mode and type declarations to get more efficient program execution.
|
||||
Make sure to disable debug (`-nodebug`) and enable optimization
|
||||
(`-O`).
|
||||
|
||||
*/
|
||||
|
||||
:- include(chr_op).
|
||||
|
||||
|
119
packages/clpqr/clpqr.md
Normal file
119
packages/clpqr/clpqr.md
Normal file
@@ -0,0 +1,119 @@
|
||||
Constraint Logic Programming over Rationals and Reals {#clpqr}
|
||||
=====================================================
|
||||
|
||||
YAP now uses the CLP(R) package developed by <em>Leslie De Koninck</em>,
|
||||
K.U. Leuven as part of a thesis with supervisor Bart Demoen and daily
|
||||
advisor Tom Schrijvers, and distributed with SWI-Prolog.
|
||||
|
||||
This CLP(R) system is a port of the CLP(Q,R) system of Sicstus Prolog
|
||||
and YAP by Christian Holzbaur: Holzbaur C.: OFAI clp(q,r) Manual,
|
||||
Edition 1.3.3, Austrian Research Institute for Artificial
|
||||
Intelligence, Vienna, TR-95-09, 1995,
|
||||
<http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09> This
|
||||
port only contains the part concerning real arithmetics. This manual
|
||||
is roughly based on the manual of the above mentioned *CLP(QR)*
|
||||
implementation.
|
||||
|
||||
Please note that the clpr library is <em>not</em> an
|
||||
`autoload` library and therefore this library must be loaded
|
||||
explicitely before using it:
|
||||
|
||||
~~~~~
|
||||
:- use_module(library(clpr)).
|
||||
~~~~~
|
||||
|
||||
### Solver Predicates {#CLPQR_Solver_Predicates}
|
||||
|
||||
The following predicates are provided to work with constraints:
|
||||
|
||||
|
||||
### Syntax of the predicate arguments {#CLPQR_Syntax}
|
||||
|
||||
|
||||
The arguments of the predicates defined in the subsection above are
|
||||
defined in the following table. Failing to meet the syntax rules will
|
||||
result in an exception.
|
||||
|
||||
~~~~~
|
||||
<Constraints> ---> <Constraint> \ single constraint \
|
||||
| <Constraint> , <Constraints> \ conjunction \
|
||||
| <Constraint> ; <Constraints> \ disjunction \
|
||||
|
||||
<Constraint> ---> <Expression> {<} <Expression> \ less than \
|
||||
| <Expression> {>} <Expression> \ greater than \
|
||||
| <Expression> {=<} <Expression> \ less or equal \
|
||||
| {<=}(<Expression>, <Expression>) \ less or equal \
|
||||
| <Expression> {>=} <Expression> \ greater or equal \
|
||||
| <Expression> {=\=} <Expression> \ not equal \
|
||||
| <Expression> =:= <Expression> \ equal \
|
||||
| <Expression> = <Expression> \ equal \
|
||||
|
||||
<Expression> ---> <Variable> \ Prolog variable \
|
||||
| <Number> \ Prolog number (float, integer) \
|
||||
| +<Expression> \ unary plus \
|
||||
| -<Expression> \ unary minus \
|
||||
| <Expression> + <Expression> \ addition \
|
||||
| <Expression> - <Expression> \ substraction \
|
||||
| <Expression> * <Expression> \ multiplication \
|
||||
| <Expression> / <Expression> \ division \
|
||||
| abs(<Expression>) \ absolute value \
|
||||
| sin(<Expression>) \ sine \
|
||||
| cos(<Expression>) \ cosine \
|
||||
| tan(<Expression>) \ tangent \
|
||||
| exp(<Expression>) \ exponent \
|
||||
| pow(<Expression>) \ exponent \
|
||||
| <Expression> {^} <Expression> \ exponent \
|
||||
| min(<Expression>, <Expression>) \ minimum \
|
||||
| max(<Expression>, <Expression>) \ maximum \
|
||||
~~~~~
|
||||
|
||||
|
||||
### Use of unification {#CLPQR_Unification}
|
||||
|
||||
Instead of using the `{}/1` predicate, you can also use the standard
|
||||
unification mechanism to store constraints. The following code samples
|
||||
are equivalent:
|
||||
|
||||
+ Unification with a variable
|
||||
|
||||
~~~~~
|
||||
{X =:= Y}
|
||||
{X = Y}
|
||||
X = Y
|
||||
~~~~~
|
||||
|
||||
+ Unification with a number
|
||||
|
||||
~~~~~
|
||||
{X =:= 5.0}
|
||||
{X = 5.0}
|
||||
X = 5.0
|
||||
~~~~~
|
||||
|
||||
|
||||
#### Non-Linear Constraints {#CLPQR_NonhYlinear_Constraints}
|
||||
|
||||
|
||||
In this version, non-linear constraints do not get solved until certain
|
||||
conditions are satisfied. We call these conditions the _isolation_ axioms.
|
||||
They are given in the following table.
|
||||
|
||||
~~~~~
|
||||
A = B * C when B or C is ground or // A = 5 * C or A = B * 4 \\
|
||||
A and (B or C) are ground // 20 = 5 * C or 20 = B * 4 \\
|
||||
|
||||
A = B / C when C is ground or // A = B / 3
|
||||
A and B are ground // 4 = 12 / C
|
||||
|
||||
X = min(Y,Z) when Y and Z are ground or // X = min(4,3)
|
||||
X = max(Y,Z) Y and Z are ground // X = max(4,3)
|
||||
X = abs(Y) Y is ground // X = abs(-7)
|
||||
|
||||
X = pow(Y,Z) when X and Y are ground or // 8 = 2 ^ Z
|
||||
X = exp(Y,Z) X and Z are ground // 8 = Y ^ 3
|
||||
X = Y ^ Z Y and Z are ground // X = 2 ^ 3
|
||||
|
||||
X = sin(Y) when X is ground or // 1 = sin(Y)
|
||||
X = cos(Y) Y is ground // X = sin(1.5707)
|
||||
X = tan(Y)
|
||||
~~~~~
|
@@ -38,7 +38,10 @@
|
||||
the GNU General Public License.
|
||||
*/
|
||||
|
||||
|
||||
/** @defgroup clpr_implementation CLP(QR) Predicates
|
||||
@ingroup clpqr
|
||||
|
||||
*/
|
||||
|
||||
/** @pred bb_inf(+ _Ints_,+ _Expression_,- _Inf_)
|
||||
The same as bb_inf/5 but without returning the values of the integers
|
||||
|
@@ -1,16 +1,24 @@
|
||||
USING THE GECODE MODULE
|
||||
USING THE GECODE MODULE (#Gecode)
|
||||
=======================
|
||||
|
||||
There are two ways to use the gecode interface from YAP. The original approach,
|
||||
designed by Denys Duchier, requires loading the library:
|
||||
|
||||
:- use_module(library(gecode)).
|
||||
|
||||
A second approach is closer to CLP(FD), and is described in:
|
||||
|
||||
- \ref Gecode_and_ClPbBFDbC
|
||||
|
||||
In what follows, we refer the reader to the~\cite{gecode} manual for the necessary background.
|
||||
|
||||
CREATING A SPACE
|
||||
================
|
||||
----------------
|
||||
|
||||
Space := space
|
||||
|
||||
CREATING VARIABLES
|
||||
==================
|
||||
-----------------
|
||||
|
||||
Unlike in Gecode, variable objects are not bound to a specific Space. Each one
|
||||
actually contains an index with which it is possible to access a Space-bound
|
||||
@@ -49,7 +57,7 @@ kept. Thus marking variables as "kept" is purely an optimization.
|
||||
|
||||
|
||||
CONSTRAINTS AND BRANCHINGS
|
||||
==========================
|
||||
---------------------------
|
||||
|
||||
all constraint and branching posting functions are available just like in
|
||||
Gecode. Wherever a XXXArgs or YYYSharedArray is expected, simply use a list.
|
||||
@@ -68,7 +76,7 @@ represented by atoms with the same name as the Gecode constant
|
||||
(e.g. 'INT_VAR_SIZE_MIN').
|
||||
|
||||
SEARCHING FOR SOLUTIONS
|
||||
=======================
|
||||
--------------------
|
||||
|
||||
SolSpace := search(Space)
|
||||
|
||||
@@ -90,7 +98,7 @@ a_d=N
|
||||
to set the adaptive distance for recomputation
|
||||
|
||||
EXTRACTING INFO FROM A SOLUTION
|
||||
===============================
|
||||
------------------------------
|
||||
|
||||
An advantage of non Space-bound variables, is that you can use them both to
|
||||
post constraints in the original space AND to consult their values in
|
||||
@@ -126,7 +134,7 @@ variables, and returns resp. either a value, or a list of values:
|
||||
Val := unknown_values(Space,V)
|
||||
|
||||
DISJUNCTORS
|
||||
===========
|
||||
-----------
|
||||
|
||||
Disjunctors provide support for disjunctions of clauses, where each clause is a
|
||||
conjunction of constraints:
|
574
packages/myddas/myddas.md
Normal file
574
packages/myddas/myddas.md
Normal file
@@ -0,0 +1,574 @@
|
||||
The MYDDAS Data-base interface {#myddas}
|
||||
==============================
|
||||
|
||||
The MYDDAS database project was developed within a FCT project aiming at
|
||||
the development of a highly efficient deductive database system, based
|
||||
on the coupling of the MySQL relational database system with the YAP
|
||||
Prolog system. MYDDAS was later expanded to support the ODBC interface.
|
||||
|
||||
|
||||
@defgroup Requirements_and_Installation_Guide Requirements and Installation Guide
|
||||
ee
|
||||
Next, we describe how to usen of the YAP with the MYDDAS System. The
|
||||
use of this system is entirely depend of the MySQL development libraries
|
||||
or the ODBC development libraries. At least one of the this development
|
||||
libraries must be installed on the computer system, otherwise MYDDAS
|
||||
will not compile. The MySQL development libraries from MySQL 3.23 an
|
||||
above are know to work. We recommend the usage of MySQL versus ODBC,
|
||||
but it is possible to have both options installed
|
||||
|
||||
At the same time, without any problem. The MYDDAS system automatically
|
||||
controls the two options. Currently, MYDDAS is know to compile without
|
||||
problems in Linux. The usage of this system on Windows has not been
|
||||
tested yet. MYDDAS must be enabled at configure time. This can be done
|
||||
with the following options:
|
||||
|
||||
+ --enable-myddas
|
||||
|
||||
This option will detect which development libraries are installed on the computer system, MySQL, ODBC or both, and will compile the Yap system with the support for which libraries it detects;
|
||||
|
||||
+ --enable-myddas-stats
|
||||
|
||||
This option is only available in MySQL. It includes code to get
|
||||
statistics from the MYDDAS system;
|
||||
|
||||
|
||||
+ --enable-top-level
|
||||
|
||||
This option is only available in MySQL. It enables the option to interact with the MySQL server in
|
||||
two different ways. As if we were on the MySQL Client Shell, and as if
|
||||
we were using Datalog.
|
||||
|
||||
@defgroup MYDDAS_Architecture MYDDAS Architecture
|
||||
|
||||
The system includes four main blocks that are put together through the
|
||||
MYDDAS interface: the Yap Prolog compiler, the MySQL database system, an
|
||||
ODBC level and a Prolog to SQL compiler. Current effort is put on the
|
||||
MySQL interface rather than on the ODBC interface. If you want to use
|
||||
the full power of the MYDDAS interface we recommend you to use a MySQL
|
||||
database. Other databases, such as Oracle, PostGres or Microsoft SQL
|
||||
Server, can be interfaced through the ODBC layer, but with limited
|
||||
performance and features support.
|
||||
|
||||
The main structure of the MYDDAS interface is simple. Prolog queries
|
||||
involving database goals are translated to SQL using the Prolog to SQL
|
||||
compiler; then the SQL expression is sent to the database system, which
|
||||
returns the set of tuples satisfying the query; and finally those tuples
|
||||
are made available to the Prolog engine as terms. For recursive queries
|
||||
involving database goals, the YapTab tabling engine provides the
|
||||
necessary support for an efficient evaluation of such queries.
|
||||
|
||||
An important aspect of the MYDDAS interface is that for the programmer
|
||||
the use of predicates which are defined in database relations is
|
||||
completely transparent. An example of this transparent support is the
|
||||
Prolog cut operator, which has exactly the same behaviour from
|
||||
predicates defined in the Prolog program source code, or from predicates
|
||||
defined in database as relations.
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Name = 'John Doe',
|
||||
Number = 123456789 ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Backtracking can then be used to retrieve the next row
|
||||
of the relation phonebook. Records with particular field values may be
|
||||
selected in the same way as in Prolog. (In particular, no mode
|
||||
specification for database predicates is required). For instance:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- phonebook(Letter,'John Doe',Letter).
|
||||
Letter = 'D',
|
||||
Number = 123456789 ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
generates the query
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
SELECT A.Letter , 'John Doe' , A.Number
|
||||
FROM 'phonebook' A
|
||||
WHERE A.Name = 'John Doe';
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
||||
@defgroup View_Level_Interface View Level Interface
|
||||
|
||||
@pred db view(+,+,+).
|
||||
|
||||
|
||||
|
||||
@pred db view(+,+).
|
||||
|
||||
|
||||
If we import a database relation, such as an edge relation representing the edges of a directed graph, through
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_import('Edge',edge).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
sqliand we then write a query to retrieve all the direct cycles in the
|
||||
graph, such as
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- edge(A,B), edge(B,A).
|
||||
A = 10,
|
||||
B = 20 ?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
this is clearly inefficient [3], because of relation-level
|
||||
access. Relation-level access means that a separate SQL query will be
|
||||
generated for every goal in the body of the clause. For the second
|
||||
`edge/2` goal, a SQL query is generated using the variable bindings that
|
||||
result from the first `edge/2` goal execution. If the second
|
||||
`edge/2` goal
|
||||
fails, or if alternative solutions are demanded, backtracking access the
|
||||
next tuple for the first `edge/2` goal and another SQL query will be
|
||||
generated for the second `edge/2` goal. The generation of this large
|
||||
number of queries and the communication overhead with the database
|
||||
system for each of them, makes the relation-level approach inefficient.
|
||||
To solve this problem the view level interface can be used for the
|
||||
definition of rules whose bodies includes only imported database
|
||||
predicates. One can use the view level interface through the predicates
|
||||
db_view/3 and `db_view/2`:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_view(Conn,PredName(Arg_1,...,Arg_n),DbGoal).
|
||||
?- db_view(PredName(Arg_1,...,Arg_n),DbGoal).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
All arguments are standard Prolog terms. _Arg1_ through _Argn_
|
||||
define the attributes to be retrieved from the database, while
|
||||
_DbGoal_ defines the selection restrictions and join
|
||||
conditions. _Conn_ is the connection identifier, which again can be
|
||||
dropped. Calling predicate `PredName/n` will retrieve database
|
||||
tuples using a single SQL query generated for the _DbGoal_. We next show
|
||||
an example of a view definition for the direct cycles discussed
|
||||
above. Assuming the declaration:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_import('Edge',edge).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
we
|
||||
write:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_view(direct_cycle(A,B),(edge(A,B), edge(B,A))).
|
||||
yes
|
||||
?- direct_cycle(A,B)).
|
||||
A = 10,
|
||||
B = 20 ?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This call generates the SQL
|
||||
statement:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
SELECT A.attr1 , A.attr2
|
||||
FROM Edge A , Edge B
|
||||
WHERE B.attr1 = A.attr2 AND B.attr2 = A.attr1;
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Backtracking, as in relational level interface, can be used to retrieve the next row of the view.
|
||||
The view interface also supports aggregate function predicates such as
|
||||
`sum`, `avg`, `count`, `min` and `max`. For
|
||||
instance:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_view(count(X),(X is count(B, B^edge(10,B)))).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
generates the query :
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
SELECT COUNT(A.attr2)
|
||||
FROM Edge A WHERE A.attr1 = 10;
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
To know how to use db `view/3`, please refer to Draxler's Prolog to
|
||||
SQL Compiler Manual.
|
||||
|
||||
@defgroup Accessing_Tables_in_Data_Sources_Using_SQL Accessing Tables in Data Sources Using SQL
|
||||
|
||||
|
||||
@pred db_sql(+,+,?).
|
||||
|
||||
|
||||
|
||||
@pred db_sql(+,?).
|
||||
|
||||
|
||||
|
||||
It is also possible to explicitly send a SQL query to the database server using
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_sql(Conn,SQL,List).
|
||||
?- db_sql(SQL,List).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
where _SQL_ is an arbitrary SQL expression, and _List_ is a list
|
||||
holding the first tuple of result set returned by the server. The result
|
||||
set can also be navigated through backtracking.
|
||||
|
||||
Example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_sql('SELECT * FROM phonebook',LA).
|
||||
LA = ['D','John Doe',123456789] ?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@defgroup Insertion_of_Rows Insertion of Rows
|
||||
@ingroup MYDDAS
|
||||
|
||||
@pred db_assert(+,+).
|
||||
@pred db_assert(+).
|
||||
|
||||
|
||||
|
||||
|
||||
Assuming you have imported the related base table using
|
||||
`db_import/2` or db_import/3, you can insert to that table
|
||||
by using db_assert/2 predicate any given fact.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_assert(Conn,Fact).
|
||||
?- db_assert(Fact).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
The second argument must be declared with all of its arguments bound to
|
||||
constants. For example assuming `helloWorld` is imported through
|
||||
`db_import/2`:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_import('Hello World',helloWorld).
|
||||
yes
|
||||
?- db_assert(helloWorld('A' ,'Ana',31)).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This, would generate the following query
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
INSERT INTO helloWorld
|
||||
VALUES ('A','Ana',3)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
which would insert into the helloWorld, the following row:
|
||||
`A,Ana,31`. If we want to insert `NULL` values into the
|
||||
relation, we call db_assert/2 with a uninstantiated variable in
|
||||
the data base imported predicate. For example, the following query on
|
||||
the YAP-prolog system:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_assert(helloWorld('A',NULL,31)).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Would insert the row: `A,null value,31` into the relation
|
||||
`Hello World`, assuming that the second row allows null values.
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db insert(+,+,+).
|
||||
@pred db insert(+,+).
|
||||
|
||||
|
||||
|
||||
This predicate would create a new database predicate, which will insert
|
||||
any given tuple into the database.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_insert(Conn,RelationName,PredName).
|
||||
?- db_insert(RelationName,PredName).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This would create a new predicate with name _PredName_, that will
|
||||
insert tuples into the relation _RelationName_. is the connection
|
||||
identifier. For example, if we wanted to insert the new tuple
|
||||
`('A',null,31)` into the relation `Hello World`, we do:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_insert('Hello World',helloWorldInsert).
|
||||
yes
|
||||
?- helloWorldInsert('A',NULL,31).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@defgroup Types_of_Attributes Types of AttributesL
|
||||
|
||||
|
||||
@pred db_get_attributes_types(+,+,?).
|
||||
|
||||
|
||||
|
||||
@pred db_get_attributes_types(+,?).
|
||||
|
||||
|
||||
|
||||
|
||||
The prototype for this predicate is the following:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_get_attributes_types(Conn,RelationName,ListOfFields).
|
||||
?- db_get_attributes_types(RelationName,ListOfFields).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
You can use the
|
||||
predicate `db_get_attributes types/2` or db_get_attributes_types/3, to
|
||||
know what are the names and attributes types of the fields of a given
|
||||
relation. For example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_get_attributes_types(myddas,'Hello World',LA).
|
||||
LA = ['Number',integer,'Name',string,'Letter',string] ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
where <tt>Hello World</tt> is the name of the relation and <tt>myddas</tt> is the
|
||||
connection identifier.
|
||||
|
||||
@defgroup Number_of_Fields Number of Fields
|
||||
|
||||
|
||||
@pred db_number_of_fields(+,?).
|
||||
@pred db_number_of_fields(+,+,?).
|
||||
|
||||
|
||||
|
||||
The prototype for this
|
||||
predicate is the following:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_number_of_fields(Conn,RelationName,Arity).
|
||||
?- db_number_of_fields(RelationName,Arity).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
You can use the predicate db_number_of_fields/2 or
|
||||
`db_number_of_fields/3` to know what is the arity of a given
|
||||
relation. Example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_number_of_fields(myddas,'Hello World',Arity).
|
||||
Arity = 3 ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
where `Hello World` is the name of the
|
||||
relation and `myddas` is the connection identifier.
|
||||
|
||||
@defgroup Describing_a_Relation Describing a Relation
|
||||
|
||||
@pred db_datalog_describe(+,+).
|
||||
@pred db_datalog_describe(+).
|
||||
|
||||
|
||||
|
||||
The db `datalog_describe/2` predicate does not really returns any
|
||||
value. It simply prints to the screen the result of the MySQL describe
|
||||
command, the same way as `DESCRIBE` in the MySQL prompt would.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_datalog_describe(myddas,'Hello World').
|
||||
+----------+----------+------+-----+---------+-------+
|
||||
| Field | Type | Null | Key | Default | Extra |
|
||||
+----------+----------+------+-----+---------+-------+
|
||||
+ Number | int(11) | YES | | NULL | |
|
||||
+ Name | char(10) | YES | | NULL | |
|
||||
+ Letter | char(1) | YES | | NULL | |
|
||||
+----------+----------+------+-----+---------+-------+
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@pred db_describe(+,+).
|
||||
|
||||
|
||||
|
||||
@pred db_describe(+)
|
||||
|
||||
The `db_describe/3` predicate does the same action as
|
||||
db_datalog_describe/2 predicate but with one major
|
||||
difference. The results are returned by backtracking. For example, the
|
||||
last query:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_describe(myddas,'Hello World',Term).
|
||||
Term = tableInfo('Number',int(11),'YES','',null(0),'') ? ;
|
||||
Term = tableInfo('Name',char(10),'YES','',null(1),'' ? ;
|
||||
Term = tableInfo('Letter',char(1),'YES','',null(2),'') ? ;
|
||||
no
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@defgroup Enumerating_Relations Enumeration Relations Describing_a_Relation Describing a Relation
|
||||
|
||||
|
||||
/@pred db_datalog_show_tables(+).
|
||||
@pred db_datalog_show_tables
|
||||
|
||||
|
||||
If we need to know what relations exists in a given MySQL Schema, we can use
|
||||
the `db_datalog_show_tables/1` predicate. As <tt>db_datalog_describe/2</tt>,
|
||||
it does not returns any value, but instead prints to the screen the result of the
|
||||
`SHOW TABLES` command, the same way as it would be in the MySQL prompt.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_datalog_show_tables(myddas).
|
||||
+-----------------+
|
||||
| Tables_in_guest |
|
||||
+-----------------+
|
||||
| Hello World |
|
||||
+-----------------+
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@pred db_show_tables(+, ?).
|
||||
|
||||
|
||||
|
||||
@pred db_show_tables(?)
|
||||
|
||||
|
||||
|
||||
|
||||
The db_show_tables/2 predicate does the same action as
|
||||
`db_show_tables/1` predicate but with one major difference. The
|
||||
results are returned by backtracking. For example, given the last query:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_show_tables(myddas,Table).
|
||||
Table = table('Hello World') ? ;
|
||||
no
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@defgroup The_MYDDAS_MySQL_Top_Level The MYDDAS MySQL Top Level
|
||||
|
||||
@pred db_top_level(+,+,+,+,+).
|
||||
@pred db_top_level(+,+,+,+).
|
||||
|
||||
|
||||
|
||||
|
||||
Through MYDDAS is also possible to access the MySQL Database Server, in
|
||||
the same wthe mysql client. In this mode, is possible to query the
|
||||
SQL server by just using the standard SQL language. This mode is exactly the same as
|
||||
different from the standard mysql client. We can use this
|
||||
mode, by invoking the db top level/5. as one of the following:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_top_level(mysql,Connection,Host/Database,User,Password).
|
||||
?- db_top_level(mysql,Connection,Host/Database/Port,User,Password).
|
||||
?- db_top_level(mysql,Connection,Host/Database/UnixSocket,User,Password).
|
||||
?- db_top_level(mysql,Connection,Host/Database/Port/UnixSocket,User,Password).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Usage is similar as the one described for the db_open/5 predicate
|
||||
discussed above. If the login is successful, automatically the prompt of
|
||||
the mysql client will be used. For example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_top_level(mysql,con1,localhost/guest_db,guest,'').
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
opens a
|
||||
connection identified by the `con1` atom, to an instance of a MySQL server
|
||||
running on host `localhost`, using database guest `db` and user `guest` with
|
||||
empty password. After this is possible to use MYDDAS as the mysql
|
||||
client.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_top_level(mysql,con1,localhost/guest_db,guest,'').
|
||||
Reading table information for completion of table and column names
|
||||
You can turn off this feature to get a quicker startup with -A
|
||||
|
||||
Welcome to the MySQL monitor.
|
||||
Commands end with ; or \g.
|
||||
|
||||
Your MySQL connection id is 4468 to server version: 4.0.20
|
||||
Type 'help;' or '\h' for help.
|
||||
Type '\c' to clear the buffer.
|
||||
mysql> exit
|
||||
Bye
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@defgroup Other_MYDDAS_Properties Other MYDDAS Properties
|
||||
|
||||
@pred db_verbose(+).
|
||||
|
||||
|
||||
When we ask a question to YAP, using a predicate asserted by
|
||||
db_import/3, or by db_view/3, this will generate a SQL
|
||||
`QUERY`. If we want to see that query, we must to this at a given
|
||||
point in our session on YAP.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_verbose(1).
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
If we want to
|
||||
disable this feature, we must call the `db_verbose/1` predicate with the value 0.
|
||||
|
||||
@pred db_top_level(+,+,+,+).
|
||||
|
||||
@pred db_module(?).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
When we create a new database predicate, by using db_import/3,
|
||||
db_view/3 or db_insert/3, that predicate will be asserted
|
||||
by default on the `user` module. If we want to change this value, we can
|
||||
use the db_module/1 predicate to do so.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_module(lists).
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
By executing this predicate, all of the predicates asserted by the
|
||||
predicates enumerated earlier will created in the lists module.
|
||||
If we want to put back the value on default, we can manually put the
|
||||
value user. Example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_module(user).
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We can also see in what module the predicates are being asserted by doing:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_module(X).
|
||||
X=user
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
@pred db_my_result_set(?).
|
||||
|
||||
The MySQL C API permits two modes for transferring the data generated by
|
||||
a query to the client, in our case YAP. The first mode, and the default
|
||||
mode used by the MYDDAS-MySQL, is to store the result. This mode copies all the
|
||||
information generated to the client side.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_my_result_set(X).
|
||||
X=store_result
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The other mode that we can use is use result. This one uses the result
|
||||
set created directly from the server. If we want to use this mode, he
|
||||
simply do
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_my_result_set(use_result).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
After this command, all
|
||||
of the database predicates will use use result by default. We can change
|
||||
this by doing again `db_my_result_set(store_result)`.
|
||||
|
||||
@pred db_my_sql_mode(+Conn,?SQL_Mode).
|
||||
|
||||
|
||||
|
||||
@pred db_my_sql_mode(?SQL_Mode).
|
||||
|
||||
|
||||
|
||||
|
||||
The MySQL server allows the user to change the SQL mode. This can be
|
||||
very useful for debugging proposes. For example, if we want MySQL server
|
||||
not to ignore the INSERT statement warnings and instead of taking
|
||||
action, report an error, we could use the following SQL mode.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?-db_my_sql_mode(traditional). yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
You can see the available SQL Modes at the MySQL homepage at
|
||||
<http://www.mysql.org>.
|
@@ -104,685 +104,6 @@
|
||||
]).
|
||||
|
||||
|
||||
/**
|
||||
|
||||
@defgroup MYDDAS The MYDDAS Data-base interface.
|
||||
@ingroup YAPPackages
|
||||
@{
|
||||
|
||||
The MYDDAS database project was developed within a FCT project aiming at
|
||||
the development of a highly efficient deductive database system, based
|
||||
on the coupling of the MySQL relational database system with the YAP
|
||||
Prolog system. MYDDAS was later expanded to support the ODBC interface.
|
||||
|
||||
*/
|
||||
|
||||
/** @defgroup Requirements_and_Installation_Guide Requirements and Installation Guide
|
||||
ee
|
||||
Next, we describe how to usen of the YAP with the MYDDAS System. The
|
||||
use of this system is entirely depend of the MySQL development libraries
|
||||
or the ODBC development libraries. At least one of the this development
|
||||
libraries must be installed on the computer system, otherwise MYDDAS
|
||||
will not compile. The MySQL development libraries from MySQL 3.23 an
|
||||
above are know to work. We recommend the usage of MySQL versus ODBC,
|
||||
but it is possible to have both options installed
|
||||
|
||||
At the same time, without any problem. The MYDDAS system automatically
|
||||
controls the two options. Currently, MYDDAS is know to compile without
|
||||
problems in Linux. The usage of this system on Windows has not been
|
||||
tested yet. MYDDAS must be enabled at configure time. This can be done
|
||||
with the following options:
|
||||
|
||||
+ --enable-myddas
|
||||
|
||||
This option will detect which development libraries are installed on the computer system, MySQL, ODBC or both, and will compile the Yap system with the support for which libraries it detects;
|
||||
|
||||
+ --enable-myddas-stats
|
||||
|
||||
This option is only available in MySQL. It includes code to get
|
||||
statistics from the MYDDAS system;
|
||||
|
||||
|
||||
+ --enable-top-level
|
||||
|
||||
This option is only available in MySQL. It enables the option to interact with the MySQL server in
|
||||
two different ways. As if we were on the MySQL Client Shell, and as if
|
||||
we were using Datalog.
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
/** @defgroup MYDDAS_Architecture MYDDAS Architecture
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
The system includes four main blocks that are put together through the
|
||||
MYDDAS interface: the Yap Prolog compiler, the MySQL database system, an
|
||||
ODBC level and a Prolog to SQL compiler. Current effort is put on the
|
||||
MySQL interface rather than on the ODBC interface. If you want to use
|
||||
the full power of the MYDDAS interface we recommend you to use a MySQL
|
||||
database. Other databases, such as Oracle, PostGres or Microsoft SQL
|
||||
Server, can be interfaced through the ODBC layer, but with limited
|
||||
performance and features support.
|
||||
|
||||
The main structure of the MYDDAS interface is simple. Prolog queries
|
||||
involving database goals are translated to SQL using the Prolog to SQL
|
||||
compiler; then the SQL expression is sent to the database system, which
|
||||
returns the set of tuples satisfying the query; and finally those tuples
|
||||
are made available to the Prolog engine as terms. For recursive queries
|
||||
involving database goals, the YapTab tabling engine provides the
|
||||
necessary support for an efficient evaluation of such queries.
|
||||
|
||||
An important aspect of the MYDDAS interface is that for the programmer
|
||||
the use of predicates which are defined in database relations is
|
||||
completely transparent. An example of this transparent support is the
|
||||
Prolog cut operator, which has exactly the same behaviour from
|
||||
predicates defined in the Prolog program source code, or from predicates
|
||||
defined in database as relations.
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Name = 'John Doe',
|
||||
Number = 123456789 ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Backtracking can then be used to retrieve the next row
|
||||
of the relation phonebook. Records with particular field values may be
|
||||
selected in the same way as in Prolog. (In particular, no mode
|
||||
specification for database predicates is required). For instance:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- phonebook(Letter,'John Doe',Letter).
|
||||
Letter = 'D',
|
||||
Number = 123456789 ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
generates the query
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
SELECT A.Letter , 'John Doe' , A.Number
|
||||
FROM 'phonebook' A
|
||||
WHERE A.Name = 'John Doe';
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
|
||||
/** @defgroup View_Level_Interface View Level Interface
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/**
|
||||
@pred db view(+,+,+).
|
||||
|
||||
|
||||
|
||||
@pred db view(+,+).
|
||||
|
||||
|
||||
If we import a database relation, such as an edge relation representing the edges of a directed graph, through
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_import('Edge',edge).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
sqliand we then write a query to retrieve all the direct cycles in the
|
||||
graph, such as
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- edge(A,B), edge(B,A).
|
||||
A = 10,
|
||||
B = 20 ?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
this is clearly inefficient [3], because of relation-level
|
||||
access. Relation-level access means that a separate SQL query will be
|
||||
generated for every goal in the body of the clause. For the second
|
||||
`edge/2` goal, a SQL query is generated using the variable bindings that
|
||||
result from the first `edge/2` goal execution. If the second
|
||||
`edge/2` goal
|
||||
fails, or if alternative solutions are demanded, backtracking access the
|
||||
next tuple for the first `edge/2` goal and another SQL query will be
|
||||
generated for the second `edge/2` goal. The generation of this large
|
||||
number of queries and the communication overhead with the database
|
||||
system for each of them, makes the relation-level approach inefficient.
|
||||
To solve this problem the view level interface can be used for the
|
||||
definition of rules whose bodies includes only imported database
|
||||
predicates. One can use the view level interface through the predicates
|
||||
db_view/3 and `db_view/2`:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_view(Conn,PredName(Arg_1,...,Arg_n),DbGoal).
|
||||
?- db_view(PredName(Arg_1,...,Arg_n),DbGoal).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
All arguments are standard Prolog terms. _Arg1_ through _Argn_
|
||||
define the attributes to be retrieved from the database, while
|
||||
_DbGoal_ defines the selection restrictions and join
|
||||
conditions. _Conn_ is the connection identifier, which again can be
|
||||
dropped. Calling predicate `PredName/n` will retrieve database
|
||||
tuples using a single SQL query generated for the _DbGoal_. We next show
|
||||
an example of a view definition for the direct cycles discussed
|
||||
above. Assuming the declaration:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_import('Edge',edge).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
we
|
||||
write:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_view(direct_cycle(A,B),(edge(A,B), edge(B,A))).
|
||||
yes
|
||||
?- direct_cycle(A,B)).
|
||||
A = 10,
|
||||
B = 20 ?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This call generates the SQL
|
||||
statement:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
SELECT A.attr1 , A.attr2
|
||||
FROM Edge A , Edge B
|
||||
WHERE B.attr1 = A.attr2 AND B.attr2 = A.attr1;
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Backtracking, as in relational level interface, can be used to retrieve the next row of the view.
|
||||
The view interface also supports aggregate function predicates such as
|
||||
`sum`, `avg`, `count`, `min` and `max`. For
|
||||
instance:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_view(count(X),(X is count(B, B^edge(10,B)))).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
generates the query :
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
SELECT COUNT(A.attr2)
|
||||
FROM Edge A WHERE A.attr1 = 10;
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
To know how to use db `view/3`, please refer to Draxler's Prolog to
|
||||
SQL Compiler Manual.
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
/** @defgroup Accessing_Tables_in_Data_Sources_Using_SQL Accessing Tables in Data Sources Using SQL
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_sql(+,+,?).
|
||||
|
||||
|
||||
|
||||
@pred db_sql(+,?).
|
||||
|
||||
|
||||
|
||||
It is also possible to explicitly send a SQL query to the database server using
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_sql(Conn,SQL,List).
|
||||
?- db_sql(SQL,List).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
where _SQL_ is an arbitrary SQL expression, and _List_ is a list
|
||||
holding the first tuple of result set returned by the server. The result
|
||||
set can also be navigated through backtracking.
|
||||
|
||||
Example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_sql('SELECT * FROM phonebook',LA).
|
||||
LA = ['D','John Doe',123456789] ?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
/** @defgroup Insertion_of_Rows Insertion of Rows
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_assert(+,+).
|
||||
@pred db_assert(+).
|
||||
|
||||
|
||||
|
||||
|
||||
Assuming you have imported the related base table using
|
||||
`db_import/2` or db_import/3, you can insert to that table
|
||||
by using db_assert/2 predicate any given fact.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_assert(Conn,Fact).
|
||||
?- db_assert(Fact).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
The second argument must be declared with all of its arguments bound to
|
||||
constants. For example assuming `helloWorld` is imported through
|
||||
`db_import/2`:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_import('Hello World',helloWorld).
|
||||
yes
|
||||
?- db_assert(helloWorld('A' ,'Ana',31)).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This, would generate the following query
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
INSERT INTO helloWorld
|
||||
VALUES ('A','Ana',3)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
which would insert into the helloWorld, the following row:
|
||||
`A,Ana,31`. If we want to insert `NULL` values into the
|
||||
relation, we call db_assert/2 with a uninstantiated variable in
|
||||
the data base imported predicate. For example, the following query on
|
||||
the YAP-prolog system:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_assert(helloWorld('A',NULL,31)).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Would insert the row: `A,null value,31` into the relation
|
||||
`Hello World`, assuming that the second row allows null values.
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db insert(+,+,+).
|
||||
@pred db insert(+,+).
|
||||
|
||||
|
||||
|
||||
This predicate would create a new database predicate, which will insert
|
||||
any given tuple into the database.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_insert(Conn,RelationName,PredName).
|
||||
?- db_insert(RelationName,PredName).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This would create a new predicate with name _PredName_, that will
|
||||
insert tuples into the relation _RelationName_. is the connection
|
||||
identifier. For example, if we wanted to insert the new tuple
|
||||
`('A',null,31)` into the relation `Hello World`, we do:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_insert('Hello World',helloWorldInsert).
|
||||
yes
|
||||
?- helloWorldInsert('A',NULL,31).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
/** @defgroup Types_of_Attributes Types of AttributesL
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_get_attributes_types(+,+,?).
|
||||
|
||||
|
||||
|
||||
@pred db_get_attributes_types(+,?).
|
||||
|
||||
|
||||
|
||||
|
||||
The prototype for this predicate is the following:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_get_attributes_types(Conn,RelationName,ListOfFields).
|
||||
?- db_get_attributes_types(RelationName,ListOfFields).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
You can use the
|
||||
predicate `db_get_attributes types/2` or db_get_attributes_types/3, to
|
||||
know what are the names and attributes types of the fields of a given
|
||||
relation. For example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_get_attributes_types(myddas,'Hello World',LA).
|
||||
LA = ['Number',integer,'Name',string,'Letter',string] ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
where <tt>Hello World</tt> is the name of the relation and <tt>myddas</tt> is the
|
||||
connection identifier.
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
|
||||
/** @defgroup Number_of_Fields Number of Fields
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_number_of_fields(+,?).
|
||||
@pred db_number_of_fields(+,+,?).
|
||||
|
||||
|
||||
|
||||
The prototype for this
|
||||
predicate is the following:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_number_of_fields(Conn,RelationName,Arity).
|
||||
?- db_number_of_fields(RelationName,Arity).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
You can use the predicate db_number_of_fields/2 or
|
||||
`db_number_of_fields/3` to know what is the arity of a given
|
||||
relation. Example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_number_of_fields(myddas,'Hello World',Arity).
|
||||
Arity = 3 ?
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
where `Hello World` is the name of the
|
||||
relation and `myddas` is the connection identifier.
|
||||
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
|
||||
/** @defgroup Describing_a_Relation Describing a Relation
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_datalog_describe(+,+).
|
||||
@pred db_datalog_describe(+).
|
||||
|
||||
|
||||
|
||||
The db `datalog_describe/2` predicate does not really returns any
|
||||
value. It simply prints to the screen the result of the MySQL describe
|
||||
command, the same way as `DESCRIBE` in the MySQL prompt would.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_datalog_describe(myddas,'Hello World').
|
||||
+----------+----------+------+-----+---------+-------+
|
||||
| Field | Type | Null | Key | Default | Extra |
|
||||
+----------+----------+------+-----+---------+-------+
|
||||
+ Number | int(11) | YES | | NULL | |
|
||||
+ Name | char(10) | YES | | NULL | |
|
||||
+ Letter | char(1) | YES | | NULL | |
|
||||
+----------+----------+------+-----+---------+-------+
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_describe(+,+).
|
||||
|
||||
|
||||
|
||||
@pred db_describe(+)
|
||||
|
||||
The `db_describe/3` predicate does the same action as
|
||||
db_datalog_describe/2 predicate but with one major
|
||||
difference. The results are returned by backtracking. For example, the
|
||||
last query:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_describe(myddas,'Hello World',Term).
|
||||
Term = tableInfo('Number',int(11),'YES','',null(0),'') ? ;
|
||||
Term = tableInfo('Name',char(10),'YES','',null(1),'' ? ;
|
||||
Term = tableInfo('Letter',char(1),'YES','',null(2),'') ? ;
|
||||
no
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
|
||||
*/
|
||||
%% @}
|
||||
|
||||
|
||||
/** @defgroup Enumerating_Relations Enumeration Relations Describing_a_Relation Describing a Relation
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_datalog_show_tables(+).
|
||||
@pred db_datalog_show_tables
|
||||
|
||||
|
||||
If we need to know what relations exists in a given MySQL Schema, we can use
|
||||
the `db_datalog_show_tables/1` predicate. As <tt>db_datalog_describe/2</tt>,
|
||||
it does not returns any value, but instead prints to the screen the result of the
|
||||
`SHOW TABLES` command, the same way as it would be in the MySQL prompt.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_datalog_show_tables(myddas).
|
||||
+-----------------+
|
||||
| Tables_in_guest |
|
||||
+-----------------+
|
||||
| Hello World |
|
||||
+-----------------+
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_show_tables(+, ?).
|
||||
|
||||
|
||||
|
||||
@pred db_show_tables(?)
|
||||
|
||||
|
||||
|
||||
|
||||
The db_show_tables/2 predicate does the same action as
|
||||
`db_show_tables/1` predicate but with one major difference. The
|
||||
results are returned by backtracking. For example, given the last query:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_show_tables(myddas,Table).
|
||||
Table = table('Hello World') ? ;
|
||||
no
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
%%@}
|
||||
|
||||
|
||||
/** @defgroup The_MYDDAS_MySQL_Top_Level The MYDDAS MySQL Top Level
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/**
|
||||
@pred db_top_level(+,+,+,+,+).
|
||||
@pred db_top_level(+,+,+,+).
|
||||
|
||||
|
||||
|
||||
|
||||
Through MYDDAS is also possible to access the MySQL Database Server, in
|
||||
the same wthe mysql client. In this mode, is possible to query the
|
||||
SQL server by just using the standard SQL language. This mode is exactly the same as
|
||||
different from the standard mysql client. We can use this
|
||||
mode, by invoking the db top level/5. as one of the following:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_top_level(mysql,Connection,Host/Database,User,Password).
|
||||
?- db_top_level(mysql,Connection,Host/Database/Port,User,Password).
|
||||
?- db_top_level(mysql,Connection,Host/Database/UnixSocket,User,Password).
|
||||
?- db_top_level(mysql,Connection,Host/Database/Port/UnixSocket,User,Password).
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Usage is similar as the one described for the db_open/5 predicate
|
||||
discussed above. If the login is successful, automatically the prompt of
|
||||
the mysql client will be used. For example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_top_level(mysql,con1,localhost/guest_db,guest,'').
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
opens a
|
||||
connection identified by the `con1` atom, to an instance of a MySQL server
|
||||
running on host `localhost`, using database guest `db` and user `guest` with
|
||||
empty password. After this is possible to use MYDDAS as the mysql
|
||||
client.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_top_level(mysql,con1,localhost/guest_db,guest,'').
|
||||
Reading table information for completion of table and column names
|
||||
You can turn off this feature to get a quicker startup with -A
|
||||
|
||||
Welcome to the MySQL monitor.
|
||||
Commands end with ; or \g.
|
||||
|
||||
Your MySQL connection id is 4468 to server version: 4.0.20
|
||||
Type 'help;' or '\h' for help.
|
||||
Type '\c' to clear the buffer.
|
||||
mysql> exit
|
||||
Bye
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
*/
|
||||
|
||||
%%@}
|
||||
|
||||
|
||||
/** @defgroup Other_MYDDAS_Properties Other MYDDAS Properties
|
||||
@ingroup MYDDAS
|
||||
@{
|
||||
|
||||
*/
|
||||
|
||||
/**
|
||||
@pred db_verbose(+).
|
||||
|
||||
|
||||
When we ask a question to YAP, using a predicate asserted by
|
||||
db_import/3, or by db_view/3, this will generate a SQL
|
||||
`QUERY`. If we want to see that query, we must to this at a given
|
||||
point in our session on YAP.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_verbose(1).
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
If we want to
|
||||
disable this feature, we must call the `db_verbose/1` predicate with the value 0.
|
||||
\
|
||||
*/
|
||||
|
||||
/**
|
||||
@pred db_top_level(+,+,+,+).
|
||||
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_module(?).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
When we create a new database predicate, by using db_import/3,
|
||||
db_view/3 or db_insert/3, that predicate will be asserted
|
||||
by default on the `user` module. If we want to change this value, we can
|
||||
use the db_module/1 predicate to do so.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_module(lists).
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
By executing this predicate, all of the predicates asserted by the
|
||||
predicates enumerated earlier will created in the lists module.
|
||||
If we want to put back the value on default, we can manually put the
|
||||
value user. Example:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_module(user).
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
We can also see in what module the predicates are being asserted by doing:
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_module(X).
|
||||
X=user
|
||||
yes
|
||||
?-
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_my_result_set(?).
|
||||
|
||||
The MySQL C API permits two modes for transferring the data generated by
|
||||
a query to the client, in our case YAP. The first mode, and the default
|
||||
mode used by the MYDDAS-MySQL, is to store the result. This mode copies all the
|
||||
information generated to the client side.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_my_result_set(X).
|
||||
X=store_result
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The other mode that we can use is use result. This one uses the result
|
||||
set created directly from the server. If we want to use this mode, he
|
||||
simply do
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?- db_my_result_set(use_result).
|
||||
yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
After this command, all
|
||||
of the database predicates will use use result by default. We can change
|
||||
this by doing again `db_my_result_set(store_result)`.
|
||||
|
||||
*/
|
||||
|
||||
/** @pred db_my_sql_mode(+Conn,?SQL_Mode).
|
||||
|
||||
|
||||
|
||||
@pred db_my_sql_mode(?SQL_Mode).
|
||||
|
||||
|
||||
|
||||
|
||||
The MySQL server allows the user to change the SQL mode. This can be
|
||||
very useful for debugging proposes. For example, if we want MySQL server
|
||||
not to ignore the INSERT statement warnings and instead of taking
|
||||
action, report an error, we could use the following SQL mode.
|
||||
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
?-db_my_sql_mode(traditional). yes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
You can see the available SQL Modes at the MySQL homepage at
|
||||
<http://www.mysql.org>.
|
||||
|
||||
*/
|
||||
|
||||
%% @}
|
||||
|
||||
@@ -837,7 +158,7 @@
|
||||
c_sqlite3_query/5,
|
||||
sqlite3_result_set/1,
|
||||
c_sqlite3_number_of_fields/3
|
||||
|
||||
|
||||
]).
|
||||
#endif /* MYDDAS_MYSQL */
|
||||
|
||||
@@ -1089,7 +410,7 @@ db_open(odbc,Connection,ODBCEntry,User,Password) :-
|
||||
set_value(Connection,Con).
|
||||
#endif
|
||||
#ifdef MYDDAS_SQLITE3
|
||||
db_open(sqlite3,Connection,File,User,Password) :-
|
||||
db_open(sqlite3,Connection,File,User,Password) :-
|
||||
'$error_checks'(db_open(sqlite3,Connection,File,User,Password)),
|
||||
c_sqlite3_connect(File,User,Password,Con),
|
||||
set_value(Connection,Con).
|
||||
@@ -1456,7 +777,7 @@ db_update(Connection,WherePred-SetPred):-
|
||||
( ConType == mysql ->
|
||||
db_my_result_set(Mode),
|
||||
c_db_my_query(SQL,_,Conn,Mode,_)
|
||||
;
|
||||
;
|
||||
ConType == mysql ->
|
||||
postgres_result_set(Mode),
|
||||
c_postgres_query(SQL,_,Conn,Mode,_)
|
||||
|
@@ -1,7 +1,5 @@
|
||||
@defgroup YAPRaptor An RDF Reader for YAP.
|
||||
@ingroup YAPPackages
|
||||
|
||||
#YAP raptor Interface
|
||||
WWW Reader/Writers for YAP. (#YAPRaptor)
|
||||
###########################
|
||||
|
||||
This provides YAP a rdf reader using
|
||||
[raptor](http://librdf.org/raptor/). The library is available for
|
||||
@@ -21,3 +19,5 @@ Predicate = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
|
||||
Subject = 'http://www.example.org/law_and_order_ci' ?
|
||||
|
||||
~~~~{.prolog}
|
||||
|
||||
The code also includes a library under developent to connect Yap and libXML2.
|
||||
|
@@ -1,10 +1,228 @@
|
||||
The R Prolog Progrmming Interface (#real)
|
||||
===================================
|
||||
|
||||
Real
|
||||
---
|
||||
@file real.pl
|
||||
@author Nicos Angelopoulos
|
||||
@author Vitor Santos Costa
|
||||
@version 1:0:4, 2013/12/25, sinter_class
|
||||
@license Perl Artistic License
|
||||
@defgroup libReal An interface to the R statistical software.
|
||||
@ingroup packages
|
||||
|
||||
Real is a c-based interface for connecting R to Prolog.
|
||||
|
||||
YAP introduces a development version of real, developed to experiment
|
||||
This library enables the communication with an R process started as a shared library.
|
||||
It is the result of the efforts of two research groups that have worked in parallel.
|
||||
The syntactic emphasis on a minimalistic interface.
|
||||
|
||||
In the doc/ directory of the distribution there is user's guide, a published paper
|
||||
and html documentation from PlDoc (doc/html/real.html). There is large number
|
||||
of examples in `examples/for_real.pl`.
|
||||
|
||||
A single predicate (<-/2,<-/1) channels
|
||||
the bulk of the interactions. In addition to using R as a shared library, real uses
|
||||
the c-interfaces of SWI/Yap and R to pass objects in both directions.
|
||||
The usual mode of operation is to load Prolog values on to R variables and then call
|
||||
R functions on these values. The return value of the called function can be either placed
|
||||
on R variable or passed back to Prolog. It has been tested extensively on current
|
||||
SWI and YAP on Linux machines but it should also compile and work on MS operating systems and Macs.
|
||||
|
||||
The main modes for utilising the interface are
|
||||
~~~~
|
||||
<- +Rexpr
|
||||
<- +Rvar
|
||||
~~~~
|
||||
|
||||
Print Rvar or evaluate expression Rexpr in R
|
||||
~~~~
|
||||
+Rvar <- +PLdata
|
||||
+Rexpr <- +PLdata
|
||||
-PLvar <- +Rvar
|
||||
-PLvar <- +Rexpr
|
||||
+Rexpr1 <- +Rexpr2
|
||||
~~~~
|
||||
|
||||
Pass Prolog data to R, pass R data to Prolog or assign an R expression to
|
||||
an assignable R expression.
|
||||
|
||||
@defgroup TestingR Testing Real
|
||||
|
||||
There is a raft of examples packed in a singl```e file that test the library.
|
||||
|
||||
~~~~
|
||||
?- [pack(real/examples/for_real)].
|
||||
|
||||
?- for_real.
|
||||
|
||||
?- edit( pack(real/examples/for_real) ).
|
||||
~~~~
|
||||
|
||||
@defgroup RSyntax Prolog and R Syntax
|
||||
|
||||
There are syntactic conventions in R that make unparsable prolog code.
|
||||
Notably function and variable names are allowed to contain dots, square brackets are used
|
||||
to access parts of vectors and arrays and functions are allowed empty argument tuples.
|
||||
We have introduced relevant syntax which allows for easy transition between prolog and R.
|
||||
Prolog constructs are converted by the library as follows:
|
||||
|
||||
|
||||
* =|..|= within atoms -> =|.|= (ex. =| as..integer(c(1,2,3)) -> as.integer(c(1,2,3))|= )
|
||||
* =|^[]|= after atoms -> =|[]|= (ex. =|a^[2] -> a[2] |=)
|
||||
* =|(.)|= at the end of atoms that are known R functions -> =|()|= (ex. =|dev..off(.) -> dev.off()|= )
|
||||
* =|[]|= -> c() (which equal to R's NULL value)
|
||||
* ( f(x) :- (..)) -> f(x) (...)
|
||||
* Lists of lists are converted to matrices. All first level lists must have the same length.
|
||||
* Filenames must be given as Prolog strings.
|
||||
* R specific operators (eg. %*% should be quoted in Prolog.
|
||||
* + prepends strings, for (Prolog) atoms: +'String'
|
||||
* Expressions that pose difficulty in translation can always be passed as unquoted Prolog atoms or strings.
|
||||
]]* since 0:1:2 foo() is valid syntax: =|<- dev..off() |= works now (with no need for dev..off(.))
|
||||
* since 0:1:2 mat[1] is valid syntax: =|m[1] <- 4|= works now (with no need for m^[...])
|
||||
|
||||
@defgroup RDataTransfer Mapping Data betweenn Prolog and R
|
||||
|
||||
R vectors are mapped to prolog lists and matrices are mapped to nested lists.
|
||||
The convention works the other way around too.
|
||||
|
||||
There are two ways to pass prolog data to R. The more efficient one is by using
|
||||
~~~~
|
||||
Rvar <- PLdata
|
||||
~~~~
|
||||
|
||||
Where Pldata is one of the basic data types (number,boolean) a list or a c/n term.
|
||||
This transfers via C data between R and Prolog. In what follows atomic PLval data
|
||||
are simply considered as singleton lists.
|
||||
Flat Pldata lists are translated to R vectors and lists of one level of nesting to R matrices
|
||||
(which are 2 dimensional arrays in R parlance). The type of values of the vector or matrice is
|
||||
taken to be the type of the first data element of the Pldata according to the following :
|
||||
|
||||
* integer -> integer
|
||||
* float -> double
|
||||
* atom -> char
|
||||
* boolean -> logical
|
||||
|
||||
Booleans are represented in prolog as true/false atoms.
|
||||
Currently arrays of aribtrary dimensions are not supported in the low-level interface.
|
||||
Note that in R a scalar is just a one element vector. When passing non-scalars the
|
||||
interface will assume the type of the object is that of the first scalar until it encounters
|
||||
something different.
|
||||
Real will currently re-start and repopulate partial integers for floats as illustrated
|
||||
below:
|
||||
|
||||
~~~~
|
||||
r <- [1,2,3]. % pass 1,2,3 to an R vector r
|
||||
R <- r. % pass contents of R vector r to Prolog variable R
|
||||
R = [1, 2, 3].
|
||||
|
||||
i <- [1,2,3.1]. % r is now a vector of floats, rather than integers
|
||||
I <- i.
|
||||
I = [1.0, 2.0, 3.1].
|
||||
|
||||
|
||||
~~~~
|
||||
|
||||
However, not all possible "corrections" are currently supported. For instance,
|
||||
|
||||
~~~~
|
||||
?- c <- [a,b,c,1].
|
||||
ERROR: real:set_R_variable/2: Type error: `boolean' expected, found `a'
|
||||
~~~~
|
||||
|
||||
In the data passing mode we map Prolog atoms to R strings-
|
||||
|
||||
~~~~
|
||||
?- x <- [abc,def].
|
||||
true.
|
||||
|
||||
?- <- x.
|
||||
[1] "abc" "def"
|
||||
true.
|
||||
|
||||
?- X <- x.
|
||||
X = [abc, def].
|
||||
|
||||
~~~~
|
||||
|
||||
In addition, Prolog data can be passed through the expression mechanism.
|
||||
That is, data appearing in an arbitrary R expression will be parsed and be part of the long
|
||||
string that will be passed from Prolog to R for evaluation.
|
||||
This is only advisable for short data structures. For instance,
|
||||
|
||||
~~~~
|
||||
tut_4a :-
|
||||
state <- c(+"tas", +"sa", +"qld", +"nsw", +"nsw"),
|
||||
<- state.
|
||||
|
||||
tut_4b :-
|
||||
state <- c(+tas, +sa, +qld, +nsw, +nsw),
|
||||
<- state.
|
||||
~~~~
|
||||
|
||||
Through this interface it is more convenient to be explicit about R chars by Prolog prepending
|
||||
atoms or codes with + as in the above example.
|
||||
|
||||
@defgroup RealExamples Examples
|
||||
|
||||
~~~~
|
||||
|
||||
?- e <- numeric(.).
|
||||
yes
|
||||
?- e^[3] <- 17.
|
||||
yes
|
||||
?- e[3] <- 17.
|
||||
yes
|
||||
?- Z <- e.
|
||||
Z = ['$NaN','$NaN',17.0]
|
||||
?- e^[10] <- 12.
|
||||
yes
|
||||
?- Z <- e.
|
||||
Z = ['$NaN','$NaN',17.0,'$NaN','$NaN','$NaN','$NaN','$NaN','$NaN',12.0]
|
||||
|
||||
rtest :-
|
||||
y <- rnorm(50), % get 50 random samples from normal distribution
|
||||
<- y, % print the values via R
|
||||
x <- rnorm(y), % get an equal number of normal samples
|
||||
<- x11(width=5,height=3.5), % create a plotting window
|
||||
<- plot(x,y) % plot the two samples
|
||||
r_wait, % wait for user to hit Enter
|
||||
% <- dev..off(.). % old syntax, still supported
|
||||
<- dev.off(). % close the plotting window. foo() now acceptable in supported Prologs
|
||||
|
||||
tut6 :-
|
||||
d <- outer(0:9, 0:9),
|
||||
fr <- table(outer(d, d, "-")),
|
||||
<- plot(as..numeric(names(fr)), fr, type="h", xlab="Determinant", ylab="Frequency").
|
||||
|
||||
tut4b :-
|
||||
state <- [tas,sa,qld,nsw,nsw,nt,wa],
|
||||
statef <- factor(state),
|
||||
incmeans <- tapply( c(60, 49, 40, 61, 64, 60, 59), statef, mean ),
|
||||
<- incmeans.
|
||||
|
||||
logical :-
|
||||
t <- [1,2,3,4,5,1],
|
||||
s <- t~~~~1,
|
||||
<- s,
|
||||
S <- s,
|
||||
write( s(S) ), nl.
|
||||
|
||||
~~~~
|
||||
|
||||
#### Info
|
||||
|
||||
@see http://stoics.org.uk/~nicos/sware/real
|
||||
@see pack(real/examples/for_real)
|
||||
@see pack(real/doc/real.html)
|
||||
@see pack(real/doc/guide.pdf)
|
||||
@see pack(real/doc/padl2013-real.pdf)
|
||||
@see http://www.r-project.org/
|
||||
|
||||
Also @subpaage yap-real describes the YAP specfic details in real.
|
||||
|
||||
*/Development of real in YAP (#yap-real)
|
||||
---------------------------
|
||||
|
||||
|
||||
YAP includes a development version of real, designed to experiment
|
||||
with the internals of the implementation of R. It includes major
|
||||
changes and is likely to be much less stable than the version
|
||||
maintained by Nicos ANgelopoulos. We refer to the version herein as
|
||||
@@ -56,4 +274,3 @@ March, 2014
|
||||
|
||||
Updates: Vitor Santos Costa
|
||||
Dec. 2015
|
||||
|
||||
|
@@ -10,15 +10,6 @@
|
||||
%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
/**
|
||||
|
||||
@file real.pl
|
||||
@author Nicos Angelopoulos
|
||||
@author Vitor Santos Costa
|
||||
@version 1:0:4, 2013/12/25, sinter_class
|
||||
@license Perl Artistic License
|
||||
|
||||
*/
|
||||
|
||||
:- module(real, [
|
||||
start_r/0,
|
||||
@@ -76,220 +67,6 @@
|
||||
%:- set_prolog_flag(double_quotes, string ).
|
||||
|
||||
|
||||
/** @defgroup libReal An interface to the R statistical software.
|
||||
@ingroup packages
|
||||
|
||||
#### Introduction
|
||||
|
||||
This library enables the communication with an R process started as a shared library.
|
||||
It is the result of the efforts of two research groups that have worked in parallel.
|
||||
The syntactic emphasis on a minimalistic interface.
|
||||
|
||||
In the doc/ directory of the distribution there is user's guide, a published paper
|
||||
and html documentation from PlDoc (doc/html/real.html). There is large number
|
||||
of examples in `examples/for_real.pl`.
|
||||
|
||||
A single predicate (<-/2,<-/1) channels
|
||||
the bulk of the interactions. In addition to using R as a shared library, real uses
|
||||
the c-interfaces of SWI/Yap and R to pass objects in both directions.
|
||||
The usual mode of operation is to load Prolog values on to R variables and then call
|
||||
R functions on these values. The return value of the called function can be either placed
|
||||
on R variable or passed back to Prolog. It has been tested extensively on current
|
||||
SWI and YAP on Linux machines but it should also compile and work on MS operating systems and Macs.
|
||||
|
||||
The main modes for utilising the interface are
|
||||
~~~~
|
||||
<- +Rexpr
|
||||
<- +Rvar
|
||||
~~~~
|
||||
|
||||
Print Rvar or evaluate expression Rexpr in R
|
||||
~~~~
|
||||
+Rvar <- +PLdata
|
||||
+Rexpr <- +PLdata
|
||||
-PLvar <- +Rvar
|
||||
-PLvar <- +Rexpr
|
||||
+Rexpr1 <- +Rexpr2
|
||||
~~~~
|
||||
|
||||
Pass Prolog data to R, pass R data to Prolog or assign an R expression to
|
||||
an assignable R expression.
|
||||
|
||||
#### Testing
|
||||
|
||||
There is a raft of examples packed in a singl```e file that test the library.
|
||||
|
||||
~~~~
|
||||
?- [pack(real/examples/for_real)].
|
||||
|
||||
?- for_real.
|
||||
|
||||
?- edit( pack(real/examples/for_real) ).
|
||||
~~~~
|
||||
|
||||
#### Syntax
|
||||
|
||||
There are syntactic conventions in R that make unparsable prolog code.
|
||||
Notably function and variable names are allowed to contain dots, square brackets are used
|
||||
to access parts of vectors and arrays and functions are allowed empty argument tuples.
|
||||
We have introduced relevant syntax which allows for easy transition between prolog and R.
|
||||
Prolog constructs are converted by the library as follows:
|
||||
|
||||
|
||||
* =|..|= within atoms -> =|.|= (ex. =| as..integer(c(1,2,3)) -> as.integer(c(1,2,3))|= )
|
||||
* =|^[]|= after atoms -> =|[]|= (ex. =|a^[2] -> a[2] |=)
|
||||
* =|(.)|= at the end of atoms that are known R functions -> =|()|= (ex. =|dev..off(.) -> dev.off()|= )
|
||||
* =|[]|= -> c() (which equal to R's NULL value)
|
||||
* ( f(x) :- (..)) -> f(x) (...)
|
||||
* Lists of lists are converted to matrices. All first level lists must have the same length.
|
||||
* Filenames must be given as Prolog strings.
|
||||
* R specific operators (eg. %*% should be quoted in Prolog.
|
||||
* + prepends strings, for (Prolog) atoms: +'String'
|
||||
* Expressions that pose difficulty in translation can always be passed as unquoted Prolog atoms or strings.
|
||||
]]* since 0:1:2 foo() is valid syntax: =|<- dev..off() |= works now (with no need for dev..off(.))
|
||||
* since 0:1:2 mat[1] is valid syntax: =|m[1] <- 4|= works now (with no need for m^[...])
|
||||
|
||||
|
||||
#### Data transfers
|
||||
|
||||
R vectors are mapped to prolog lists and matrices are mapped to nested lists.
|
||||
The convention works the other way around too.
|
||||
|
||||
There are two ways to pass prolog data to R. The more efficient one is by using
|
||||
~~~~
|
||||
Rvar <- PLdata
|
||||
~~~~
|
||||
|
||||
Where Pldata is one of the basic data types (number,boolean) a list or a c/n term.
|
||||
This transfers via C data between R and Prolog. In what follows atomic PLval data
|
||||
are simply considered as singleton lists.
|
||||
Flat Pldata lists are translated to R vectors and lists of one level of nesting to R matrices
|
||||
(which are 2 dimensional arrays in R parlance). The type of values of the vector or matrice is
|
||||
taken to be the type of the first data element of the Pldata according to the following :
|
||||
|
||||
* integer -> integer
|
||||
* float -> double
|
||||
* atom -> char
|
||||
* boolean -> logical
|
||||
|
||||
Booleans are represented in prolog as true/false atoms.
|
||||
Currently arrays of aribtrary dimensions are not supported in the low-level interface.
|
||||
Note that in R a scalar is just a one element vector. When passing non-scalars the
|
||||
interface will assume the type of the object is that of the first scalar until it encounters
|
||||
something different.
|
||||
Real will currently re-start and repopulate partial integers for floats as illustrated
|
||||
below:
|
||||
|
||||
~~~~
|
||||
r <- [1,2,3]. % pass 1,2,3 to an R vector r
|
||||
R <- r. % pass contents of R vector r to Prolog variable R
|
||||
R = [1, 2, 3].
|
||||
|
||||
i <- [1,2,3.1]. % r is now a vector of floats, rather than integers
|
||||
I <- i.
|
||||
I = [1.0, 2.0, 3.1].
|
||||
|
||||
|
||||
~~~~
|
||||
|
||||
However, not all possible "corrections" are currently supported. For instance,
|
||||
|
||||
~~~~
|
||||
?- c <- [a,b,c,1].
|
||||
ERROR: real:set_R_variable/2: Type error: `boolean' expected, found `a'
|
||||
~~~~
|
||||
|
||||
In the data passing mode we map Prolog atoms to R strings-
|
||||
|
||||
~~~~
|
||||
?- x <- [abc,def].
|
||||
true.
|
||||
|
||||
?- <- x.
|
||||
[1] "abc" "def"
|
||||
true.
|
||||
|
||||
?- X <- x.
|
||||
X = [abc, def].
|
||||
|
||||
~~~~
|
||||
|
||||
In addition, Prolog data can be passed through the expression mechanism.
|
||||
That is, data appearing in an arbitrary R expression will be parsed and be part of the long
|
||||
string that will be passed from Prolog to R for evaluation.
|
||||
This is only advisable for short data structures. For instance,
|
||||
|
||||
~~~~
|
||||
tut_4a :-
|
||||
state <- c(+"tas", +"sa", +"qld", +"nsw", +"nsw"),
|
||||
<- state.
|
||||
|
||||
tut_4b :-
|
||||
state <- c(+tas, +sa, +qld, +nsw, +nsw),
|
||||
<- state.
|
||||
~~~~
|
||||
|
||||
Through this interface it is more convenient to be explicit about R chars by Prolog prepending
|
||||
atoms or codes with + as in the above example.
|
||||
|
||||
#### Examples
|
||||
|
||||
~~~~
|
||||
|
||||
?- e <- numeric(.).
|
||||
yes
|
||||
?- e^[3] <- 17.
|
||||
yes
|
||||
?- e[3] <- 17.
|
||||
yes
|
||||
?- Z <- e.
|
||||
Z = ['$NaN','$NaN',17.0]
|
||||
?- e^[10] <- 12.
|
||||
yes
|
||||
?- Z <- e.
|
||||
Z = ['$NaN','$NaN',17.0,'$NaN','$NaN','$NaN','$NaN','$NaN','$NaN',12.0]
|
||||
|
||||
rtest :-
|
||||
y <- rnorm(50), % get 50 random samples from normal distribution
|
||||
<- y, % print the values via R
|
||||
x <- rnorm(y), % get an equal number of normal samples
|
||||
<- x11(width=5,height=3.5), % create a plotting window
|
||||
<- plot(x,y) % plot the two samples
|
||||
r_wait, % wait for user to hit Enter
|
||||
% <- dev..off(.). % old syntax, still supported
|
||||
<- dev.off(). % close the plotting window. foo() now acceptable in supported Prologs
|
||||
|
||||
tut6 :-
|
||||
d <- outer(0:9, 0:9),
|
||||
fr <- table(outer(d, d, "-")),
|
||||
<- plot(as..numeric(names(fr)), fr, type="h", xlab="Determinant", ylab="Frequency").
|
||||
|
||||
tut4b :-
|
||||
state <- [tas,sa,qld,nsw,nsw,nt,wa],
|
||||
statef <- factor(state),
|
||||
incmeans <- tapply( c(60, 49, 40, 61, 64, 60, 59), statef, mean ),
|
||||
<- incmeans.
|
||||
|
||||
logical :-
|
||||
t <- [1,2,3,4,5,1],
|
||||
s <- t~~~~1,
|
||||
<- s,
|
||||
S <- s,
|
||||
write( s(S) ), nl.
|
||||
|
||||
~~~~
|
||||
|
||||
#### Info
|
||||
|
||||
@see http://stoics.org.uk/~nicos/sware/real
|
||||
@see pack(real/examples/for_real)
|
||||
@see pack(real/doc/real.html)
|
||||
@see pack(real/doc/guide.pdf)
|
||||
@see pack(real/doc/padl2013-real.pdf)
|
||||
@see http://www.r-project.org/
|
||||
|
||||
*/
|
||||
|
||||
%%%
|
||||
|
||||
init_r_env :-
|
||||
|
@@ -1,5 +1,4 @@
|
||||
User Defined Indexers.
|
||||
======================
|
||||
User-Defined Indexing (#yap-udi-indexers)
|
||||
=====================
|
||||
|
||||
YAP UDI indexers.
|
||||
|
||||
|
Reference in New Issue
Block a user