update package locations to a subdir packages
This commit is contained in:
229
packages/CLPBN/learning/em.yap
Normal file
229
packages/CLPBN/learning/em.yap
Normal file
@@ -0,0 +1,229 @@
|
||||
%
|
||||
% The world famous EM algorithm, in a nutshell
|
||||
%
|
||||
|
||||
:- module(clpbn_em, [em/5]).
|
||||
|
||||
:- use_module(library(lists),
|
||||
[append/3]).
|
||||
|
||||
:- use_module(library(clpbn),
|
||||
[clpbn_init_solver/5,
|
||||
clpbn_run_solver/4,
|
||||
clpbn_flag/2]).
|
||||
|
||||
:- use_module(library('clpbn/dists'),
|
||||
[get_dist_domain_size/2,
|
||||
empty_dist/2,
|
||||
dist_new_table/2,
|
||||
get_dist_key/2,
|
||||
randomise_all_dists/0,
|
||||
uniformise_all_dists/0]).
|
||||
|
||||
:- use_module(library('clpbn/connected'),
|
||||
[clpbn_subgraphs/2]).
|
||||
|
||||
:- use_module(library('clpbn/learning/learn_utils'),
|
||||
[run_all/1,
|
||||
clpbn_vars/2,
|
||||
normalise_counts/2,
|
||||
compute_likelihood/3,
|
||||
soften_sample/2]).
|
||||
|
||||
:- use_module(library(lists),
|
||||
[member/2]).
|
||||
|
||||
:- use_module(library(matrix),
|
||||
[matrix_add/3,
|
||||
matrix_to_list/2]).
|
||||
|
||||
:- use_module(library(rbtrees),
|
||||
[rb_new/1,
|
||||
rb_insert/4,
|
||||
rb_lookup/3]).
|
||||
|
||||
:- use_module(library('clpbn/utils'),
|
||||
[
|
||||
check_for_hidden_vars/3,
|
||||
sort_vars_by_key/3]).
|
||||
|
||||
:- meta_predicate em(:,+,+,-,-), init_em(:,-).
|
||||
|
||||
em(Items, MaxError, MaxIts, Tables, Likelihood) :-
|
||||
catch(init_em(Items, State),Error,handle_em(Error)),
|
||||
em_loop(0, 0.0, State, MaxError, MaxIts, Likelihood, Tables),
|
||||
assert(em_found(Tables, Likelihood)),
|
||||
fail.
|
||||
% get rid of new random variables the easy way :)
|
||||
em(_, _, _, Tables, Likelihood) :-
|
||||
retract(em_found(Tables, Likelihood)).
|
||||
|
||||
|
||||
handle_em(error(repeated_parents)) :-
|
||||
assert(em_found(_, -inf)),
|
||||
fail.
|
||||
|
||||
|
||||
|
||||
% This gets you an initial configuration. If there is a lot of evidence
|
||||
% tables may be filled in close to optimal, otherwise they may be
|
||||
% close to uniform.
|
||||
% it also gets you a run for random variables
|
||||
|
||||
% state collects all Info we need for the EM algorithm
|
||||
% it includes the list of variables without evidence,
|
||||
% the list of distributions for which we want to compute parameters,
|
||||
% and more detailed info on distributions, namely with a list of all instances for the distribution.
|
||||
init_em(Items, state( AllDists, AllDistInstances, MargVars, SolverVars)) :-
|
||||
run_all(Items),
|
||||
% randomise_all_dists,
|
||||
uniformise_all_dists,
|
||||
attributes:all_attvars(AllVars0),
|
||||
sort_vars_by_key(AllVars0,AllVars,[]),
|
||||
% remove variables that do not have to do with this query.
|
||||
% check_for_hidden_vars(AllVars1, AllVars1, AllVars),
|
||||
different_dists(AllVars, AllDists, AllDistInstances, MargVars),
|
||||
clpbn_flag(em_solver, Solver),
|
||||
clpbn_init_solver(Solver, MargVars, AllVars, _, SolverVars).
|
||||
|
||||
% loop for as long as you want.
|
||||
em_loop(Its, Likelihood0, State, MaxError, MaxIts, LikelihoodF, FTables) :-
|
||||
estimate(State, LPs),
|
||||
maximise(State, Tables, LPs, Likelihood),
|
||||
% writeln(Likelihood:Its:Likelihood0:Tables),
|
||||
(
|
||||
(
|
||||
abs((Likelihood - Likelihood0)/Likelihood) < MaxError
|
||||
;
|
||||
Its == MaxIts
|
||||
)
|
||||
->
|
||||
ltables(Tables, FTables),
|
||||
LikelihoodF = Likelihood
|
||||
;
|
||||
Its1 is Its+1,
|
||||
em_loop(Its1, Likelihood, State, MaxError, MaxIts, LikelihoodF, FTables)
|
||||
).
|
||||
|
||||
ltables([], []).
|
||||
ltables([Id-T|Tables], [Key-LTable|FTables]) :-
|
||||
matrix_to_list(T,LTable),
|
||||
get_dist_key(Id, Key),
|
||||
ltables(Tables, FTables).
|
||||
|
||||
|
||||
|
||||
% collect the different dists we are going to learn next.
|
||||
different_dists(AllVars, AllDists, AllInfo, MargVars) :-
|
||||
all_dists(AllVars, Dists0),
|
||||
sort(Dists0, Dists1),
|
||||
group(Dists1, AllDists, AllInfo, MargVars0, []),
|
||||
sort(MargVars0, MargVars).
|
||||
|
||||
all_dists([], []).
|
||||
all_dists([V|AllVars], [i(Id, [V|Parents], Cases, Hiddens)|Dists]) :-
|
||||
clpbn:get_atts(V, [dist(Id,Parents)]),
|
||||
sort([V|Parents], Sorted),
|
||||
length(Sorted, LengSorted),
|
||||
length(Parents, LengParents),
|
||||
(
|
||||
LengParents+1 =:= LengSorted
|
||||
->
|
||||
true
|
||||
;
|
||||
throw(error(repeated_parents))
|
||||
),
|
||||
generate_hidden_cases([V|Parents], CompactCases, Hiddens),
|
||||
uncompact_cases(CompactCases, Cases),
|
||||
all_dists(AllVars, Dists).
|
||||
|
||||
generate_hidden_cases([], [], []).
|
||||
generate_hidden_cases([V|Parents], [P|Cases], Hiddens) :-
|
||||
clpbn:get_atts(V, [evidence(P)]), !,
|
||||
generate_hidden_cases(Parents, Cases, Hiddens).
|
||||
generate_hidden_cases([V|Parents], [Cases|MoreCases], [V|Hiddens]) :-
|
||||
clpbn:get_atts(V, [dist(Id,_)]),
|
||||
get_dist_domain_size(Id, Sz),
|
||||
gen_cases(0, Sz, Cases),
|
||||
generate_hidden_cases(Parents, MoreCases, Hiddens).
|
||||
|
||||
gen_cases(Sz, Sz, []) :- !.
|
||||
gen_cases(I, Sz, [I|Cases]) :-
|
||||
I1 is I+1,
|
||||
gen_cases(I1, Sz, Cases).
|
||||
|
||||
uncompact_cases(CompactCases, Cases) :-
|
||||
findall(Case, is_case(CompactCases, Case), Cases).
|
||||
|
||||
is_case([], []).
|
||||
is_case([A|CompactCases], [A|Case]) :-
|
||||
integer(A), !,
|
||||
is_case(CompactCases, Case).
|
||||
is_case([L|CompactCases], [C|Case]) :-
|
||||
member(C, L),
|
||||
is_case(CompactCases, Case).
|
||||
|
||||
group([], [], []) --> [].
|
||||
group([i(Id,Ps,Cs,[])|Dists1], [Id|Ids], [Id-[i(Id,Ps,Cs,[])|Extra]|AllInfo]) --> !,
|
||||
same_id(Dists1, Id, Extra, Rest),
|
||||
group(Rest, Ids, AllInfo).
|
||||
group([i(Id,Ps,Cs,Hs)|Dists1], [Id|Ids], [Id-[i(Id,Ps,Cs,Hs)|Extra]|AllInfo]) -->
|
||||
[Hs],
|
||||
same_id(Dists1, Id, Extra, Rest),
|
||||
group(Rest, Ids, AllInfo).
|
||||
|
||||
same_id([i(Id,Vs,Cases,[])|Dists1], Id, [i(Id, Vs, Cases, [])|Extra], Rest) --> !,
|
||||
same_id(Dists1, Id, Extra, Rest).
|
||||
same_id([i(Id,Vs,Cases,Hs)|Dists1], Id, [i(Id, Vs, Cases, Hs)|Extra], Rest) --> !,
|
||||
[Hs],
|
||||
same_id(Dists1, Id, Extra, Rest).
|
||||
same_id(Dists, _, [], Dists) --> [].
|
||||
|
||||
|
||||
compact_mvars([], []).
|
||||
compact_mvars([X1,X2|MargVars], CMVars) :- X1 == X2, !,
|
||||
compact_mvars([X2|MargVars], CMVars).
|
||||
compact_mvars([X|MargVars], [X|CMVars]) :- !,
|
||||
compact_mvars(MargVars, CMVars).
|
||||
|
||||
estimate(state(_, _, Margs, SolverState), LPs) :-
|
||||
clpbn_flag(em_solver, Solver),
|
||||
clpbn_run_solver(Solver, Margs, LPs, SolverState).
|
||||
|
||||
maximise(state(_,DistInstances,MargVars,_), Tables, LPs, Likelihood) :-
|
||||
rb_new(MDistTable0),
|
||||
create_mdist_table(MargVars, LPs, MDistTable0, MDistTable),
|
||||
compute_parameters(DistInstances, Tables, MDistTable, 0.0, Likelihood, LPs:MargVars).
|
||||
|
||||
create_mdist_table([],[],MDistTable,MDistTable).
|
||||
create_mdist_table([Vs|MargVars],[Ps|LPs],MDistTable0,MDistTable) :-
|
||||
rb_insert(MDistTable0, Vs, Ps, MDistTableI),
|
||||
create_mdist_table(MargVars, LPs, MDistTableI ,MDistTable).
|
||||
|
||||
compute_parameters([], [], _, Lik, Lik, _).
|
||||
compute_parameters([Id-Samples|Dists], [Id-NewTable|Tables], MDistTable, Lik0, Lik, LPs:MargVars) :-
|
||||
empty_dist(Id, Table0),
|
||||
add_samples(Samples, Table0, MDistTable),
|
||||
soften_sample(Table0, SoftenedTable),
|
||||
matrix:matrix_sum(Table0,TotM),
|
||||
normalise_counts(SoftenedTable, NewTable),
|
||||
compute_likelihood(Table0, NewTable, DeltaLik),
|
||||
dist_new_table(Id, NewTable),
|
||||
NewLik is Lik0+DeltaLik,
|
||||
compute_parameters(Dists, Tables, MDistTable, NewLik, Lik, LPs:MargVars).
|
||||
|
||||
add_samples([], _, _).
|
||||
add_samples([i(_,_,[Case],[])|Samples], Table, MDistTable) :- !,
|
||||
matrix_add(Table,Case,1.0),
|
||||
add_samples(Samples, Table, MDistTable).
|
||||
add_samples([i(_,_,Cases,Hiddens)|Samples], Table, MDistTable) :-
|
||||
rb_lookup(Hiddens, Ps, MDistTable),
|
||||
run_sample(Cases, Ps, Table),
|
||||
add_samples(Samples, Table, MDistTable).
|
||||
|
||||
run_sample([], [], _).
|
||||
run_sample([C|Cases], [P|Ps], Table) :-
|
||||
matrix_add(Table, C, P),
|
||||
run_sample(Cases, Ps, Table).
|
||||
|
||||
|
Reference in New Issue
Block a user