Missing Logtalk 2.19.0 files.
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1108 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
This commit is contained in:
parent
70e112a311
commit
a5e32cd594
35
Logtalk/examples/logic/NOTES
Normal file
35
Logtalk/examples/logic/NOTES
Normal file
@ -0,0 +1,35 @@
|
||||
=================================================================
|
||||
Logtalk - Object oriented extension to Prolog
|
||||
Release 2.17.2
|
||||
|
||||
Copyright (c) 1998-2004 Paulo Moura. All Rights Reserved.
|
||||
=================================================================
|
||||
|
||||
|
||||
To load all entities in this example compile and load the loader file:
|
||||
|
||||
| ?- logtalk_load(loader).
|
||||
|
||||
This folder contains an object which implements a translator from
|
||||
logic propositions to a set of clauses in conjunctive normal form.
|
||||
The translator code is partially based on code published in the
|
||||
book "Programming in Prolog" by W. F. Clocksin and C. S. Mellish.
|
||||
|
||||
The following operators are used for representing logic connectives:
|
||||
|
||||
negation: ~
|
||||
disjunction: v
|
||||
conjunction: &
|
||||
implication: =>
|
||||
equivalence: <=>
|
||||
|
||||
Quantifiers are represented using the following notation:
|
||||
|
||||
universal: all(X, P)
|
||||
existential: exists(X, P)
|
||||
|
||||
The two main object predicates are translate/2 and step_by_step/2.
|
||||
The first predicate, translate/2, translate a logic proposition to
|
||||
a list of clauses. The second predicate, step_by_step/2, performs
|
||||
the same translations as translate/2 but also prints the results
|
||||
of each conversion step.
|
98
Logtalk/examples/logic/SCRIPT
Normal file
98
Logtalk/examples/logic/SCRIPT
Normal file
@ -0,0 +1,98 @@
|
||||
=================================================================
|
||||
Logtalk - Object oriented extension to Prolog
|
||||
Release 2.17.2
|
||||
|
||||
Copyright (c) 1998-2004 Paulo Moura. All Rights Reserved.
|
||||
=================================================================
|
||||
|
||||
|
||||
% start by loading the example:
|
||||
|
||||
| ?- logtalk_load(loader).
|
||||
...
|
||||
|
||||
|
||||
% translate a single logic proposition:
|
||||
|
||||
| ?- translator::translate((p v ~q) => (r & k), Cs).
|
||||
r :- p.
|
||||
k :- p.
|
||||
q; r :- .
|
||||
q; k :- .
|
||||
|
||||
|
||||
Cs = [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])]
|
||||
yes
|
||||
|
||||
|
||||
% translate a single logic proposition printing each translation step:
|
||||
|
||||
| ?- translator::step_by_step((p v ~q) => (r & k), Cs).
|
||||
|
||||
Processing proposition: p v ~q=>r&k
|
||||
|
||||
1. Remove implications: ~ (p v ~q) v r&k
|
||||
2. Distribute negation: ~p&q v r&k
|
||||
3. Remove existential quantifiers: ~p&q v r&k
|
||||
4. Convert to prenex normal form: ~p&q v r&k
|
||||
5. Remove universal quantifiers: ~p&q v r&k
|
||||
6. Convert to conjunctive normal form: (~p v r)&(~p v k)&((q v r)&(q v k))
|
||||
7. Convert to clauses: [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])]
|
||||
|
||||
Clauses in Prolog-like notation:
|
||||
r :- p.
|
||||
k :- p.
|
||||
q; r :- .
|
||||
q; k :- .
|
||||
|
||||
|
||||
Cs = [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])]
|
||||
yes
|
||||
|
||||
|
||||
% translate a single logic proposition printing each translation step:
|
||||
|
||||
| ?- translator::step_by_step(all(X, exists(Y, p(X) v ~q(X) => r(X, Y))), Cs).
|
||||
|
||||
Processing proposition: all(X, exists(Y, p(X)v~q(X)=>r(X, Y)))
|
||||
|
||||
1. Remove implications: all(X, exists(Y, ~ (p(X)v~q(X))v r(X, Y)))
|
||||
2. Distribute negation: all(X, exists(Y, ~p(X)&q(X)v r(X, Y)))
|
||||
3. Remove existential quantifiers: all(X, ~p(X)&q(X)v r(X, f1(X)))
|
||||
4. Convert to prenex normal form: all(X, ~p(X)&q(X)v r(X, f1(X)))
|
||||
5. Remove universal quantifiers: ~p(X)&q(X)v r(X, f1(X))
|
||||
6. Convert to conjunctive normal form: (~p(X)v r(X, f1(X)))& (q(X)v r(X, f1(X)))
|
||||
7. Convert to clauses: [cl([r(X, f1(X))], [p(X)]), cl([q(X), r(X, f1(X))], [])]
|
||||
|
||||
Clauses in Prolog-like notation:
|
||||
r(X, f1(X)) :- p(X).
|
||||
q(X); r(X, f1(X)) :- .
|
||||
|
||||
|
||||
X = X
|
||||
Y = f1(X)
|
||||
Cs = [cl([r(X, f1(X))], [p(X)]), cl([q(X), r(X, f1(X))], [])]
|
||||
yes
|
||||
|
||||
|
||||
% translate a single logic proposition printing each translation step:
|
||||
|
||||
| ?- translator::step_by_step(all(X, men(X) => mortal(X)), Cs).
|
||||
|
||||
Processing proposition: all(X, men(X)=>mortal(X))
|
||||
|
||||
1. Remove implications: all(X, ~men(X)v mortal(X))
|
||||
2. Distribute negation: all(X, ~men(X)v mortal(X))
|
||||
3. Remove existential quantifiers: all(X, ~men(X)v mortal(X))
|
||||
4. Convert to prenex normal form: all(X, ~men(X)v mortal(X))
|
||||
5. Remove universal quantifiers: ~men(X)v mortal(X)
|
||||
6. Convert to conjunctive normal form: ~men(X)v mortal(X)
|
||||
7. Convert to clauses: [cl([mortal(X)], [men(X)])]
|
||||
|
||||
Clauses in Prolog-like notation:
|
||||
mortal(X) :- men(X).
|
||||
|
||||
|
||||
X = X
|
||||
Cs = [cl([mortal(X)], [men(X)])]
|
||||
yes
|
Reference in New Issue
Block a user