This commit is contained in:
Vitor Santos Costa 2019-04-22 12:17:00 +01:00
parent 16015bd8e6
commit b1b6afe801
23 changed files with 2 additions and 3150 deletions

View File

@ -1,5 +1,5 @@
PKG_LIBS=-Wl,-rpath=${YAP_LIBDIR} -Wl,-rpath=${YAP_DLLDIR} \ PKG_LIBS=${CMAKE_SHARED_LINKER_FLAGS} #-Wl,-rpath=${YAP_LIBDIR} -Wl,-rpath=${YAP_DLLDIR} \
-L${YAP_LIBDIR} -L${YAP_DLLDIR} -lreal -lYAP++ -lYap #-L${YAP_LIBDIR} -L${YAP_DLLDIR} -lreal -lYAP++ -lYap
PKG_CXXFLAGS=-I${YAP_SOURCE_DIR}/CXX -I${YAP_BINARY_DIR}\ PKG_CXXFLAGS=-I${YAP_SOURCE_DIR}/CXX -I${YAP_BINARY_DIR}\
-I${YAP_SOURCE_DIR}/include -I${YAP_SOURCE_DIR}/H\ -I${YAP_SOURCE_DIR}/include -I${YAP_SOURCE_DIR}/H\
-I${YAP_SOURCE_DIR}/OPTYap -I${YAP_SOURCE_DIR}/os\ -I${YAP_SOURCE_DIR}/OPTYap -I${YAP_SOURCE_DIR}/os\

View File

@ -1,57 +0,0 @@
/*******************************************************************************************[Alg.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Alg_h
#define Alg_h
//=================================================================================================
// Useful functions on vectors
#if 1
template<class V, class T>
static inline void remove(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
assert(j < ts.size());
for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
ts.pop();
}
#else
template<class V, class T>
static inline void remove(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
assert(j < ts.size());
ts[j] = ts.last();
ts.pop();
}
#endif
template<class V, class T>
static inline bool find(V& ts, const T& t)
{
int j = 0;
for (; j < ts.size() && ts[j] != t; j++);
return j < ts.size();
}
#endif

View File

@ -1,98 +0,0 @@
/******************************************************************************************[Heap.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef BasicHeap_h
#define BasicHeap_h
#include "Vec.h"
//=================================================================================================
// A heap implementation with support for decrease/increase key.
template<class Comp>
class BasicHeap {
Comp lt;
vec<int> heap; // heap of ints
// Index "traversal" functions
static inline int left (int i) { return i*2+1; }
static inline int right (int i) { return (i+1)*2; }
static inline int parent(int i) { return (i-1) >> 1; }
inline void percolateUp(int i)
{
int x = heap[i];
while (i != 0 && lt(x, heap[parent(i)])){
heap[i] = heap[parent(i)];
i = parent(i);
}
heap [i] = x;
}
inline void percolateDown(int i)
{
int x = heap[i];
while (left(i) < heap.size()){
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
if (!lt(heap[child], x)) break;
heap[i] = heap[child];
i = child;
}
heap[i] = x;
}
bool heapProperty(int i) {
return i >= heap.size()
|| ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
public:
BasicHeap(const C& c) : comp(c) { }
int size () const { return heap.size(); }
bool empty () const { return heap.size() == 0; }
int operator[](int index) const { return heap[index+1]; }
void clear (bool dealloc = false) { heap.clear(dealloc); }
void insert (int n) { heap.push(n); percolateUp(heap.size()-1); }
int removeMin() {
int r = heap[0];
heap[0] = heap.last();
heap.pop();
if (heap.size() > 1) percolateDown(0);
return r;
}
// DEBUG: consistency checking
bool heapProperty() {
return heapProperty(1); }
// COMPAT: should be removed
int getmin () { return removeMin(); }
};
//=================================================================================================
#endif

View File

@ -1,147 +0,0 @@
/*******************************************************************************************[Vec.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef BoxedVec_h
#define BoxedVec_h
#include <cstdlib>
#include <cassert>
#include <new>
//=================================================================================================
// Automatically resizable arrays
//
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
template<class T>
class bvec {
static inline int imin(int x, int y) {
int mask = (x-y) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
static inline int imax(int x, int y) {
int mask = (y-x) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
struct Vec_t {
int sz;
int cap;
T data[0];
static Vec_t* alloc(Vec_t* x, int size){
x = (Vec_t*)realloc((void*)x, sizeof(Vec_t) + sizeof(T)*size);
x->cap = size;
return x;
}
};
Vec_t* ref;
static const int init_size = 2;
static int nextSize (int current) { return (current * 3 + 1) >> 1; }
static int fitSize (int needed) { int x; for (x = init_size; needed > x; x = nextSize(x)); return x; }
void fill (int size) {
assert(ref != NULL);
for (T* i = ref->data; i < ref->data + size; i++)
new (i) T();
}
void fill (int size, const T& pad) {
assert(ref != NULL);
for (T* i = ref->data; i < ref->data + size; i++)
new (i) T(pad);
}
// Don't allow copying (error prone):
altvec<T>& operator = (altvec<T>& other) { assert(0); }
altvec (altvec<T>& other) { assert(0); }
public:
void clear (bool dealloc = false) {
if (ref != NULL){
for (int i = 0; i < ref->sz; i++)
(*ref).data[i].~T();
if (dealloc) {
free(ref); ref = NULL;
}else
ref->sz = 0;
}
}
// Constructors:
altvec(void) : ref (NULL) { }
altvec(int size) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size); ref->sz = size; }
altvec(int size, const T& pad) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size, pad); ref->sz = size; }
~altvec(void) { clear(true); }
// Ownership of underlying array:
operator T* (void) { return ref->data; } // (unsafe but convenient)
operator const T* (void) const { return ref->data; }
// Size operations:
int size (void) const { return ref != NULL ? ref->sz : 0; }
void pop (void) { assert(ref != NULL && ref->sz > 0); int last = --ref->sz; ref->data[last].~T(); }
void push (const T& elem) {
int size = ref != NULL ? ref->sz : 0;
int cap = ref != NULL ? ref->cap : 0;
if (size == cap){
cap = cap != 0 ? nextSize(cap) : init_size;
ref = Vec_t::alloc(ref, cap);
}
//new (&ref->data[size]) T(elem);
ref->data[size] = elem;
ref->sz = size+1;
}
void push () {
int size = ref != NULL ? ref->sz : 0;
int cap = ref != NULL ? ref->cap : 0;
if (size == cap){
cap = cap != 0 ? nextSize(cap) : init_size;
ref = Vec_t::alloc(ref, cap);
}
new (&ref->data[size]) T();
ref->sz = size+1;
}
void shrink (int nelems) { for (int i = 0; i < nelems; i++) pop(); }
void shrink_(int nelems) { for (int i = 0; i < nelems; i++) pop(); }
void growTo (int size) { while (this->size() < size) push(); }
void growTo (int size, const T& pad) { while (this->size() < size) push(pad); }
void capacity (int size) { growTo(size); }
const T& last (void) const { return ref->data[ref->sz-1]; }
T& last (void) { return ref->data[ref->sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return ref->data[index]; }
T& operator [] (int index) { return ref->data[index]; }
void copyTo(altvec<T>& copy) const { copy.clear(); for (int i = 0; i < size(); i++) copy.push(ref->data[i]); }
void moveTo(altvec<T>& dest) { dest.clear(true); dest.ref = ref; ref = NULL; }
};
#endif

View File

@ -1,51 +0,0 @@
#cmake_minimum_required(VERSION 3.1.0 FATAL_ERROR)
set ( MINISAT2_HEADERS
Alg.h
BasicHeap.h
BoxedVec.h
Heap.h
Map.h
Queue.h
Solver.h
SolverTypes.h
Sort.h
Vec.h
)
set ( MINISAT2_SOURCES
Solver.C
pl-minisat.C
)
INCLUDE_DIRECTORIES(
${CMAKE_CURRENT_SOURCE_DIR}
)
add_library(minisat2 ${MINISAT2_SOURCES} ${MINISAT2_HEADERS} )
set_target_properties (minisat2 PROPERTIES OUTPUT_NAME pl-minisat)
set_target_properties (minisat2 PROPERTIES PREFIX "")
if(DEFINED YAP_MAJOR_VERSION)
TARGET_LINK_LIBRARIES(minisat2
libYap
)
else()
ADD_LIBRARY(minisat2 SHARED ${MINISAT2_SOURCES} )
endif()
#set_property(TARGET minisat2 PROPERTY CXX_STANDARD 11)
#set_property(TARGET minisat2 PROPERTY CXX_STANDARD_REQUIRED ON)
install (
TARGETS minisat2
RUNTIME DESTINATION ${CMAKE_INSTALL_BIINDIR}
ARCHIVE DESTINATION ${YAP_INSTALL_LIBDIR}
LIBRARY DESTINATION ${YAP_INSTALL_LIBDIR}
)

View File

@ -1,169 +0,0 @@
/******************************************************************************************[Heap.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Heap_h
#define Heap_h
#include "Vec.h"
//=================================================================================================
// A heap implementation with support for decrease/increase key.
template<class Comp>
class Heap {
Comp lt;
vec<int> heap; // heap of ints
vec<int> indices; // int -> index in heap
// Index "traversal" functions
static inline int left (int i) { return i*2+1; }
static inline int right (int i) { return (i+1)*2; }
static inline int parent(int i) { return (i-1) >> 1; }
inline void percolateUp(int i)
{
int x = heap[i];
while (i != 0 && lt(x, heap[parent(i)])){
heap[i] = heap[parent(i)];
indices[heap[i]] = i;
i = parent(i);
}
heap [i] = x;
indices[x] = i;
}
inline void percolateDown(int i)
{
int x = heap[i];
while (left(i) < heap.size()){
int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
if (!lt(heap[child], x)) break;
heap[i] = heap[child];
indices[heap[i]] = i;
i = child;
}
heap [i] = x;
indices[x] = i;
}
bool heapProperty (int i) const {
return i >= heap.size()
|| ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
public:
Heap(const Comp& c) : lt(c) { }
int size () const { return heap.size(); }
bool empty () const { return heap.size() == 0; }
bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; }
int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
void decrease (int n) { assert(inHeap(n)); percolateUp(indices[n]); }
// RENAME WHEN THE DEPRECATED INCREASE IS REMOVED.
void increase_ (int n) { assert(inHeap(n)); percolateDown(indices[n]); }
void insert(int n)
{
indices.growTo(n+1, -1);
assert(!inHeap(n));
indices[n] = heap.size();
heap.push(n);
percolateUp(indices[n]);
}
int removeMin()
{
int x = heap[0];
heap[0] = heap.last();
indices[heap[0]] = 0;
indices[x] = -1;
heap.pop();
if (heap.size() > 1) percolateDown(0);
return x;
}
void clear(bool dealloc = false)
{
for (int i = 0; i < heap.size(); i++)
indices[heap[i]] = -1;
#ifdef NDEBUG
for (int i = 0; i < indices.size(); i++)
assert(indices[i] == -1);
#endif
heap.clear(dealloc);
}
// Fool proof variant of insert/decrease/increase
void update (int n)
{
if (!inHeap(n))
insert(n);
else {
percolateUp(indices[n]);
percolateDown(indices[n]);
}
}
// Delete elements from the heap using a given filter function (-object).
// *** this could probaly be replaced with a more general "buildHeap(vec<int>&)" method ***
template <class F>
void filter(const F& filt) {
int i,j;
for (i = j = 0; i < heap.size(); i++)
if (filt(heap[i])){
heap[j] = heap[i];
indices[heap[i]] = j++;
}else
indices[heap[i]] = -1;
heap.shrink(i - j);
for (int i = heap.size() / 2 - 1; i >= 0; i--)
percolateDown(i);
assert(heapProperty());
}
// DEBUG: consistency checking
bool heapProperty() const {
return heapProperty(1); }
// COMPAT: should be removed
void setBounds (int n) { }
void increase (int n) { decrease(n); }
int getmin () { return removeMin(); }
};
//=================================================================================================
#endif

View File

@ -1,96 +0,0 @@
#
# default base directory for YAP installation
# (EROOT for architecture-dependent files)
#
GCC=@GCC@
prefix = @prefix@
exec_prefix = @exec_prefix@
ROOTDIR = $(prefix)
EROOTDIR = @exec_prefix@
abs_top_builddir = @abs_top_builddir@
#
# where the binary should be
#
BINDIR = $(EROOTDIR)/bin
#
# where YAP should look for libraries
#
LIBDIR=@libdir@
YAPLIBDIR=@libdir@/Yap
#
#
DEFS=@DEFS@ -D_YAP_NOT_INSTALLED_=1
CC=@CC@
CXX=@CXX@
CXXFLAGS= @SHLIB_CXXFLAGS@ $(YAP_EXTRAS) $(DEFS) -I$(srcdir) -I../../.. -I$(srcdir)/../../../os -I$(srcdir)/../../../include @CPPFLAGS@
LDFLAGS=@LDFLAGS@
#
#
# You shouldn't need to change what follows.
#
INSTALL=@INSTALL@
INSTALL_DATA=@INSTALL_DATA@
INSTALL_PROGRAM=@INSTALL_PROGRAM@
SHELL=/bin/sh
RANLIB=@RANLIB@
srcdir=@srcdir@
SO=@SO@
#4.1VPATH=@srcdir@:@srcdir@/OPTYap
CWD=$(PWD)
#
HEADERS= \
$(srcdir)/Alg.h \
$(srcdir)/BasicHeap.h \
$(srcdir)/BoxedVec.h \
$(srcdir)/Heap.h \
$(srcdir)/Map.h \
$(srcdir)/Queue.h \
$(srcdir)/Solver.h \
$(srcdir)/SolverTypes.h \
$(srcdir)/Sort.h \
$(srcdir)/Vec.h
C_SOURCES=$(srcdir)/pl-minisat.C $(srcdir)/Solver.C
OBJS = \
Solver.o \
pl-minisat.o
SOBJS=pl-minisat.@SO@
#in some systems we just create a single object, in others we need to
# create a libray
all: $(SOBJS)
# default rule
Solver.o : $(srcdir)/Solver.C
$(CXX) -c $(CXXFLAGS) $(srcdir)/Solver.C -o Solver.o
pl-minisat.o : $(srcdir)/pl-minisat.C
$(CXX) -c $(CXXFLAGS) $(srcdir)/pl-minisat.C -o pl-minisat.o
@DO_SECOND_LD@pl-minisat.@SO@: $(OBJS)
@DO_SECOND_LD@ @SHLIB_CXX_LD@ $(LDFLAGS) -o pl-minisat.@SO@ $(OBJS) @EXTRA_LIBS_FOR_SWIDLLS@
install: all
$(INSTALL_PROGRAM) $(SOBJS) $(DESTDIR)$(YAPLIBDIR)
install-examples:
clean:
rm -f *.o *~ $(OBJS) $(SOBJS) *.BAK
distclean:
rm -f Makefile $(OBJS)
depend: $(HEADERS) $(C_SOURCES)
-@if test "$(GCC)" = yes; then\
$(CC) -MM -MG $(CFLAGS) -I$(srcdir) -I$(srcdir)/../../../include -I$(srcdir)/../../../H $(C_SOURCES) >> Makefile;\
else\
makedepend -f - -- $(CFLAGS) -I$(srcdir)/../../../H -I$(srcdir)/../../../include -- $(C_SOURCES) |\
sed 's|.*/\([^:]*\):|\1:|' >> Makefile ;\
fi
# DO NOT DELETE THIS LINE -- make depend depends on it.

View File

@ -1,118 +0,0 @@
/*******************************************************************************************[Map.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Map_h
#define Map_h
#include <stdint.h>
#include "Vec.h"
//=================================================================================================
// Default hash/equals functions
//
template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
//=================================================================================================
// Some primes
//
static const int nprimes = 25;
static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
//=================================================================================================
// Hash table implementation of Maps
//
template<class K, class D, class H = Hash<K>, class E = Equal<K> >
class Map {
struct Pair { K key; D data; };
H hash;
E equals;
vec<Pair>* table;
int cap;
int size;
// Don't allow copying (error prone):
Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); }
Map (Map<K,D,H,E>& other) { assert(0); }
int32_t index (const K& k) const { return hash(k) % cap; }
void _insert (const K& k, const D& d) { table[index(k)].push(); table[index(k)].last().key = k; table[index(k)].last().data = d; }
void rehash () {
const vec<Pair>* old = table;
int newsize = primes[0];
for (int i = 1; newsize <= cap && i < nprimes; i++)
newsize = primes[i];
table = new vec<Pair>[newsize];
for (int i = 0; i < cap; i++){
for (int j = 0; j < old[i].size(); j++){
_insert(old[i][j].key, old[i][j].data); }}
delete [] old;
cap = newsize;
}
public:
Map () : table(NULL), cap(0), size(0) {}
Map (const H& h, const E& e) : Map(), hash(h), equals(e) {}
~Map () { delete [] table; }
void insert (const K& k, const D& d) { if (size+1 > cap / 2) rehash(); _insert(k, d); size++; }
bool peek (const K& k, D& d) {
if (size == 0) return false;
const vec<Pair>& ps = table[index(k)];
for (int i = 0; i < ps.size(); i++)
if (equals(ps[i].key, k)){
d = ps[i].data;
return true; }
return false;
}
void remove (const K& k) {
assert(table != NULL);
vec<Pair>& ps = table[index(k)];
int j = 0;
for (; j < ps.size() && !equals(ps[j].key, k); j++);
assert(j < ps.size());
ps[j] = ps.last();
ps.pop();
}
void clear () {
cap = size = 0;
delete [] table;
table = NULL;
}
};
#endif

View File

@ -1,82 +0,0 @@
/*****************************************************************************************[Queue.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Queue_h
#define Queue_h
#include "Vec.h"
//=================================================================================================
template <class T>
class Queue {
vec<T> elems;
int first;
public:
Queue(void) : first(0) { }
void insert(T x) { elems.push(x); }
T peek () const { return elems[first]; }
void pop () { first++; }
void clear(bool dealloc = false) { elems.clear(dealloc); first = 0; }
int size(void) { return elems.size() - first; }
//bool has(T x) { for (int i = first; i < elems.size(); i++) if (elems[i] == x) return true; return false; }
const T& operator [] (int index) const { return elems[first + index]; }
};
//template<class T>
//class Queue {
// vec<T> buf;
// int first;
// int end;
//
//public:
// typedef T Key;
//
// Queue() : buf(1), first(0), end(0) {}
//
// void clear () { buf.shrinkTo(1); first = end = 0; }
// int size () { return (end >= first) ? end - first : end - first + buf.size(); }
//
// T peek () { assert(first != end); return buf[first]; }
// void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
// void insert(T elem) { // INVARIANT: buf[end] is always unused
// buf[end++] = elem;
// if (end == buf.size()) end = 0;
// if (first == end){ // Resize:
// vec<T> tmp((buf.size()*3 + 1) >> 1);
// //**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
// int i = 0;
// for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j];
// for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j];
// first = 0;
// end = buf.size();
// tmp.moveTo(buf);
// }
// }
//};
//=================================================================================================
#endif

View File

@ -1,791 +0,0 @@
/****************************************************************************************[Solver.C]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#include "Solver.h"
#include "Sort.h"
#include <cmath>
#include <iostream>
//=================================================================================================
// Constructor/Destructor:
Solver::Solver() :
// Parameters: (formerly in 'SearchParams')
var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
, restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
// More parameters:
//
, expensive_ccmin (true)
, polarity_mode (polarity_false)
, verbosity (0)
// Statistics: (formerly in 'SolverStats')
//
, starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
, clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
//***************
, allMinVarsAssigned(false)
//***************
, ok (true)
, cla_inc (1)
, var_inc (1)
, qhead (0)
, simpDB_assigns (-1)
, simpDB_props (0)
, order_heap (VarOrderLt(activity))
, random_seed (91648253)
, progress_estimate(0)
, remove_satisfied (true)
{}
Solver::~Solver()
{
for (int i = 0; i < learnts.size(); i++) std::free(learnts[i]);
for (int i = 0; i < clauses.size(); i++) std::free(clauses[i]);
}
//=================================================================================================
// Minor methods:
// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
//
Var Solver::newVar(bool sign, bool dvar)
{
int v = nVars();
watches .push(); // (list for positive literal)
watches .push(); // (list for negative literal)
reason .push(NULL);
assigns .push(toInt(l_Undef));
level .push(-1);
activity .push(0);
seen .push(0);
polarity .push((char)sign);
decision_var.push((char)dvar);
insertVarOrder(v);
return v;
}
bool Solver::addClause(vec<Lit>& ps)
{
assert(decisionLevel() == 0);
if (!ok)
return false;
else{
// Check if clause is satisfied and remove false/duplicate literals:
sort(ps);
Lit p; int i, j;
for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
if (value(ps[i]) == l_True || ps[i] == ~p)
return true;
else if (value(ps[i]) != l_False && ps[i] != p)
ps[j++] = p = ps[i];
ps.shrink(i - j);
}
if (ps.size() == 0)
return ok = false;
else if (ps.size() == 1){
assert(value(ps[0]) == l_Undef);
uncheckedEnqueue(ps[0]);
return ok = (propagate() == NULL);
}else{
Clause* c = Clause_new(ps, false);
clauses.push(c);
attachClause(*c);
}
return true;
}
//****************
bool Solver::setminVars(vec<Lit>& ps)
{
minVars.clear();
for (int i=0; i < ps.size(); i++){
minVars.push(ps[i]);
}
allMinVarsAssigned = false;
return true;
}
//****************
void Solver::attachClause(Clause& c) {
assert(c.size() > 1);
watches[toInt(~c[0])].push(&c);
watches[toInt(~c[1])].push(&c);
if (c.learnt()) learnts_literals += c.size();
else clauses_literals += c.size(); }
void Solver::detachClause(Clause& c) {
assert(c.size() > 1);
assert(find(watches[toInt(~c[0])], &c));
assert(find(watches[toInt(~c[1])], &c));
remove(watches[toInt(~c[0])], &c);
remove(watches[toInt(~c[1])], &c);
if (c.learnt()) learnts_literals -= c.size();
else clauses_literals -= c.size(); }
void Solver::removeClause(Clause& c) {
detachClause(c);
std::free(&c); }
bool Solver::satisfied(const Clause& c) const {
for (int i = 0; i < c.size(); i++)
if (value(c[i]) == l_True)
return true;
return false; }
// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
//
void Solver::cancelUntil(int level) {
if (decisionLevel() > level){
for (int c = trail.size()-1; c >= trail_lim[level]; c--){
Var x = var(trail[c]);
assigns[x] = toInt(l_Undef);
insertVarOrder(x); }
qhead = trail_lim[level];
trail.shrink(trail.size() - trail_lim[level]);
trail_lim.shrink(trail_lim.size() - level);
}
//**************************
if (lastMinVarDL > level){
allMinVarsAssigned = false;
}
//**************************
}
//=================================================================================================
// Major methods:
Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq)
{
Var next = var_Undef;
// Random decision:
if (drand(random_seed) < random_var_freq && !order_heap.empty()){
next = order_heap[irand(random_seed,order_heap.size())];
if (toLbool(assigns[next]) == l_Undef && decision_var[next])
rnd_decisions++; }
// Activity based decision:
while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next])
if (order_heap.empty()){
next = var_Undef;
break;
}else
next = order_heap.removeMin();
bool sign = false;
switch (polarity_mode){
case polarity_true: sign = false; break;
case polarity_false: sign = true; break;
case polarity_user: sign = polarity[next]; break;
case polarity_rnd: sign = irand(random_seed, 2); break;
default: assert(false); }
return next == var_Undef ? lit_Undef : Lit(next, sign);
}
/*_________________________________________________________________________________________________
|
| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
|
| Description:
| Analyze conflict and produce a reason clause.
|
| Pre-conditions:
| * 'out_learnt' is assumed to be cleared.
| * Current decision level must be greater than root level.
|
| Post-conditions:
| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
|
| Effect:
| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
|________________________________________________________________________________________________@*/
void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
{
int pathC = 0;
Lit p = lit_Undef;
// Generate conflict clause:
//
out_learnt.push(); // (leave room for the asserting literal)
int index = trail.size() - 1;
out_btlevel = 0;
do{
assert(confl != NULL); // (otherwise should be UIP)
Clause& c = *confl;
if (c.learnt())
claBumpActivity(c);
for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
Lit q = c[j];
if (!seen[var(q)] && level[var(q)] > 0){
varBumpActivity(var(q));
seen[var(q)] = 1;
if (level[var(q)] >= decisionLevel())
pathC++;
else{
out_learnt.push(q);
if (level[var(q)] > out_btlevel)
out_btlevel = level[var(q)];
}
}
}
// Select next clause to look at:
while (!seen[var(trail[index--])]);
p = trail[index+1];
confl = reason[var(p)];
seen[var(p)] = 0;
pathC--;
}while (pathC > 0);
out_learnt[0] = ~p;
// Simplify conflict clause:
//
int i, j;
if (expensive_ccmin){
uint32_t abstract_level = 0;
for (i = 1; i < out_learnt.size(); i++)
abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
out_learnt.copyTo(analyze_toclear);
for (i = j = 1; i < out_learnt.size(); i++)
if (reason[var(out_learnt[i])] == NULL || !litRedundant(out_learnt[i], abstract_level))
out_learnt[j++] = out_learnt[i];
}else{
out_learnt.copyTo(analyze_toclear);
for (i = j = 1; i < out_learnt.size(); i++){
Clause& c = *reason[var(out_learnt[i])];
for (int k = 1; k < c.size(); k++)
if (!seen[var(c[k])] && level[var(c[k])] > 0){
out_learnt[j++] = out_learnt[i];
break; }
}
}
max_literals += out_learnt.size();
out_learnt.shrink(i - j);
tot_literals += out_learnt.size();
// Find correct backtrack level:
//
if (out_learnt.size() == 1)
out_btlevel = 0;
else{
int max_i = 1;
for (int i = 2; i < out_learnt.size(); i++)
if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])])
max_i = i;
Lit p = out_learnt[max_i];
out_learnt[max_i] = out_learnt[1];
out_learnt[1] = p;
out_btlevel = level[var(p)];
}
for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
}
// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
// visiting literals at levels that cannot be removed later.
bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
{
analyze_stack.clear(); analyze_stack.push(p);
int top = analyze_toclear.size();
while (analyze_stack.size() > 0){
assert(reason[var(analyze_stack.last())] != NULL);
Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
for (int i = 1; i < c.size(); i++){
Lit p = c[i];
if (!seen[var(p)] && level[var(p)] > 0){
if (reason[var(p)] != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){
seen[var(p)] = 1;
analyze_stack.push(p);
analyze_toclear.push(p);
}else{
for (int j = top; j < analyze_toclear.size(); j++)
seen[var(analyze_toclear[j])] = 0;
analyze_toclear.shrink(analyze_toclear.size() - top);
return false;
}
}
}
}
return true;
}
/*_________________________________________________________________________________________________
|
| analyzeFinal : (p : Lit) -> [void]
|
| Description:
| Specialized analysis procedure to express the final conflict in terms of assumptions.
| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
| stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
{
out_conflict.clear();
out_conflict.push(p);
if (decisionLevel() == 0)
return;
seen[var(p)] = 1;
for (int i = trail.size()-1; i >= trail_lim[0]; i--){
Var x = var(trail[i]);
if (seen[x]){
if (reason[x] == NULL){
assert(level[x] > 0);
out_conflict.push(~trail[i]);
}else{
Clause& c = *reason[x];
for (int j = 1; j < c.size(); j++)
if (level[var(c[j])] > 0)
seen[var(c[j])] = 1;
}
seen[x] = 0;
}
}
seen[var(p)] = 0;
}
void Solver::uncheckedEnqueue(Lit p, Clause* from)
{
assert(value(p) == l_Undef);
assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost effecient
level [var(p)] = decisionLevel();
reason [var(p)] = from;
trail.push(p);
}
/*_________________________________________________________________________________________________
|
| propagate : [void] -> [Clause*]
|
| Description:
| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
| otherwise NULL.
|
| Post-conditions:
| * the propagation queue is empty, even if there was a conflict.
|________________________________________________________________________________________________@*/
Clause* Solver::propagate()
{
Clause* confl = NULL;
int num_props = 0;
while (qhead < trail.size()){
Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
vec<Clause*>& ws = watches[toInt(p)];
Clause **i, **j, **end;
num_props++;
for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
Clause& c = **i++;
// Make sure the false literal is data[1]:
Lit false_lit = ~p;
if (c[0] == false_lit)
c[0] = c[1], c[1] = false_lit;
assert(c[1] == false_lit);
// If 0th watch is true, then clause is already satisfied.
Lit first = c[0];
if (value(first) == l_True){
*j++ = &c;
}else{
// Look for new watch:
for (int k = 2; k < c.size(); k++)
if (value(c[k]) != l_False){
c[1] = c[k]; c[k] = false_lit;
watches[toInt(~c[1])].push(&c);
goto FoundWatch; }
// Did not find watch -- clause is unit under assignment:
*j++ = &c;
if (value(first) == l_False){
confl = &c;
qhead = trail.size();
// Copy the remaining watches:
while (i < end)
*j++ = *i++;
}else
uncheckedEnqueue(first, &c);
}
FoundWatch:;
}
ws.shrink(i - j);
}
propagations += num_props;
simpDB_props -= num_props;
return confl;
}
/*_________________________________________________________________________________________________
|
| reduceDB : () -> [void]
|
| Description:
| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
|________________________________________________________________________________________________@*/
struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
void Solver::reduceDB()
{
int i, j;
double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
sort(learnts, reduceDB_lt());
for (i = j = 0; i < learnts.size() / 2; i++){
if (learnts[i]->size() > 2 && !locked(*learnts[i]))
removeClause(*learnts[i]);
else
learnts[j++] = learnts[i];
}
for (; i < learnts.size(); i++){
if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
removeClause(*learnts[i]);
else
learnts[j++] = learnts[i];
}
learnts.shrink(i - j);
}
void Solver::removeSatisfied(vec<Clause*>& cs)
{
int i,j;
for (i = j = 0; i < cs.size(); i++){
if (satisfied(*cs[i]))
removeClause(*cs[i]);
else
cs[j++] = cs[i];
}
cs.shrink(i - j);
}
/*_________________________________________________________________________________________________
|
| simplify : [void] -> [bool]
|
| Description:
| Simplify the clause database according to the current top-level assigment. Currently, the only
| thing done here is the removal of satisfied clauses, but more things can be put here.
|________________________________________________________________________________________________@*/
bool Solver::simplify()
{
assert(decisionLevel() == 0);
if (!ok || propagate() != NULL)
return ok = false;
if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
return true;
// Remove satisfied clauses:
removeSatisfied(learnts);
if (remove_satisfied) // Can be turned off.
removeSatisfied(clauses);
// Remove fixed variables from the variable heap:
order_heap.filter(VarFilter(*this));
simpDB_assigns = nAssigns();
simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
return true;
}
/*_________________________________________________________________________________________________
|
| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
|
| Description:
| Search for a model the specified number of conflicts, keeping the number of learnt clauses
| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
| indicate infinity.
|
| Output:
| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
|________________________________________________________________________________________________@*/
lbool Solver::search(int nof_conflicts, int nof_learnts)
{
assert(ok);
int backtrack_level;
int conflictC = 0;
vec<Lit> learnt_clause;
starts++;
// bool first = true;
for (;;){
Clause* confl = propagate();
if (confl != NULL){
// CONFLICT
conflicts++; conflictC++;
if (decisionLevel() == 0) return l_False;
// first = false;
learnt_clause.clear();
analyze(confl, learnt_clause, backtrack_level);
cancelUntil(backtrack_level);
assert(value(learnt_clause[0]) == l_Undef);
if (learnt_clause.size() == 1){
uncheckedEnqueue(learnt_clause[0]);
}else{
Clause* c = Clause_new(learnt_clause, true);
learnts.push(c);
attachClause(*c);
claBumpActivity(*c);
uncheckedEnqueue(learnt_clause[0], c);
}
varDecayActivity();
claDecayActivity();
}else{
// NO CONFLICT
if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
// Reached bound on number of conflicts:
progress_estimate = progressEstimate();
cancelUntil(0);
return l_Undef; }
// Simplify the set of problem clauses:
if (decisionLevel() == 0 && !simplify())
return l_False;
if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
// Reduce the set of learnt clauses:
reduceDB();
Lit next = lit_Undef;
while (decisionLevel() < assumptions.size()){
// Perform user provided assumption:
Lit p = assumptions[decisionLevel()];
if (value(p) == l_True){
// Dummy decision level:
newDecisionLevel();
}else if (value(p) == l_False){
analyzeFinal(~p, conflict);
return l_False;
}else{
next = p;
break;
}
}
//**************************
if (next == lit_Undef){
// New variable decision:
decisions++;
if (!allMinVarsAssigned){
for (int i=0; i<minVars.size(); i++){
if (value(minVars[i])==l_Undef){
next = minVars[i];
break;
}
}
if (next == lit_Undef){
allMinVarsAssigned = true;
lastMinVarDL = decisionLevel();
}
}
}
//***************************
if (next == lit_Undef){
// New variable decision:
decisions++;
next = pickBranchLit(polarity_mode, random_var_freq);
if (next == lit_Undef)
// Model found:
return l_True;
}
// Increase decision level and enqueue 'next'
assert(value(next) == l_Undef);
newDecisionLevel();
uncheckedEnqueue(next);
}
}
}
double Solver::progressEstimate() const
{
double progress = 0;
double F = 1.0 / nVars();
for (int i = 0; i <= decisionLevel(); i++){
int beg = i == 0 ? 0 : trail_lim[i - 1];
int end = i == decisionLevel() ? trail.size() : trail_lim[i];
progress += pow(F, i) * (end - beg);
}
return progress / nVars();
}
bool Solver::solve(const vec<Lit>& assumps)
{
model.clear();
conflict.clear();
allMinVarsAssigned = false;
if (!ok) return false;
assumps.copyTo(assumptions);
double nof_conflicts = restart_first;
double nof_learnts = nClauses() * learntsize_factor;
lbool status = l_Undef;
if (verbosity >= 1){
reportf("============================[ Search Statistics ]==============================\n");
reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
reportf("===============================================================================\n");
}
// Search:
while (status == l_Undef){
if (verbosity >= 1)
reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
status = search((int)nof_conflicts, (int)nof_learnts);
nof_conflicts *= restart_inc;
nof_learnts *= learntsize_inc;
}
if (verbosity >= 1)
reportf("===============================================================================\n");
if (status == l_True){
// Extend & copy model:
model.growTo(nVars());
for (int i = 0; i < nVars(); i++) model[i] = value(i);
#ifndef NDEBUG
verifyModel();
#endif
}else{
assert(status == l_False);
if (conflict.size() == 0)
ok = false;
}
cancelUntil(0);
return status == l_True;
}
void Solver::verifyModel()
{
bool failed = false;
for (int i = 0; i < clauses.size(); i++){
assert(clauses[i]->mark() == 0);
Clause& c = *clauses[i];
for (int j = 0; j < c.size(); j++)
if (modelValue(c[j]) == l_True)
goto next;
reportf("unsatisfied clause: ");
printClause(*clauses[i]);
reportf("\n");
failed = true;
next:;
}
assert(!failed);
// reportf("Verified %d original clauses.\n", clauses.size());
}
void Solver::checkLiteralCount()
{
// Check that sizes are calculated correctly:
int cnt = 0;
for (int i = 0; i < clauses.size(); i++)
if (clauses[i]->mark() == 0)
cnt += clauses[i]->size();
if ((int)clauses_literals != cnt){
fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
assert((int)clauses_literals == cnt);
}
}

View File

@ -1,311 +0,0 @@
/****************************************************************************************[Solver.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Solver_h
#define Solver_h
#include <cstdio>
#include "Vec.h"
#include "Heap.h"
#include "Alg.h"
#include "SolverTypes.h"
//=================================================================================================
// Solver -- the main class:
class Solver {
public:
// Constructor/Destructor:
//
Solver();
~Solver();
// Problem specification:
//
Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
bool addClause (vec<Lit>& ps); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
bool setminVars(vec<Lit>& ps);
// Solving:
//
bool simplify (); // Removes already satisfied clauses.
bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
bool solve (); // Search without assumptions.
bool okay () const; // FALSE means solver is in a conflicting state
// Variable mode:
//
void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
// Read state:
//
lbool value (Var x) const; // The current value of a variable.
lbool value (Lit p) const; // The current value of a literal.
lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
int nAssigns () const; // The current number of assigned literals.
int nClauses () const; // The current number of original clauses.
int nLearnts () const; // The current number of learnt clauses.
int nVars () const; // The current number of variables.
// Extra results: (read-only member variable)
//
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
// this vector represent the final conflict clause expressed in the assumptions.
// Mode of operation:
//
double var_decay; // Inverse of the variable activity decay factor. (default 1 / 0.95)
double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
int restart_first; // The initial restart limit. (default 100)
double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
// Statistics: (read-only member variable)
//
uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
protected:
// Helper structures:
//
struct VarOrderLt {
const vec<double>& activity;
bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
VarOrderLt(const vec<double>& act) : activity(act) { }
};
friend class VarFilter;
struct VarFilter {
const Solver& s;
VarFilter(const Solver& _s) : s(_s) {}
bool operator()(Var v) const { return toLbool(s.assigns[v]) == l_Undef && s.decision_var[v]; }
};
// Solver state:
//
//****************
bool allMinVarsAssigned;
int lastMinVarDL;
vec<Lit> minVars;
//****************
bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
vec<Clause*> clauses; // List of problem clauses.
vec<Clause*> learnts; // List of learnt clauses.
double cla_inc; // Amount to bump next clause with.
vec<double> activity; // A heuristic measurement of the activity of a variable.
double var_inc; // Amount to bump next variable with.
vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
vec<char> assigns; // The current assignments (lbool:s stored as char:s).
vec<char> polarity; // The preferred polarity of each variable.
vec<char> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
vec<int> level; // 'level[var]' contains the level at which the assignment was made.
int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
double random_seed; // Used by the random variable selection.
double progress_estimate;// Set by 'search()'.
bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
// used, exept 'seen' wich is used in several places.
//
vec<char> seen;
vec<Lit> analyze_stack;
vec<Lit> analyze_toclear;
vec<Lit> add_tmp;
// Main internal methods:
//
void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
Lit pickBranchLit (int polarity_mode, double random_var_freq); // Return the next decision variable.
void newDecisionLevel (); // Begins a new decision level.
void uncheckedEnqueue (Lit p, Clause* from = NULL); // Enqueue a literal. Assumes value of literal is undefined.
bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
Clause* propagate (); // Perform unit propagation. Returns possibly conflicting clause.
void cancelUntil (int level); // Backtrack until a certain level.
void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
lbool search (int nof_conflicts, int nof_learnts); // Search for a given number of conflicts.
void reduceDB (); // Reduce the set of learnt clauses.
void removeSatisfied (vec<Clause*>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
// Maintaining Variable/Clause activity:
//
void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
// Operations on clauses:
//
void attachClause (Clause& c); // Attach a clause to watcher lists.
void detachClause (Clause& c); // Detach a clause to watcher lists.
void removeClause (Clause& c); // Detach and free a clause.
bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
// Misc:
//
int decisionLevel () const; // Gives the current decisionlevel.
uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels.
double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
// Debug:
void printLit (Lit l);
template<class C>
void printClause (const C& c);
void verifyModel ();
void checkLiteralCount();
// Static helpers:
//
// Returns a random float 0 <= x < 1. Seed must never be 0.
static inline double drand(double& seed) {
seed *= 1389796;
int q = (int)(seed / 2147483647);
seed -= (double)q * 2147483647;
return seed / 2147483647; }
// Returns a random integer 0 <= x < size. Seed must never be 0.
static inline int irand(double& seed, int size) {
return (int)(drand(seed) * size); }
};
//=================================================================================================
// Implementation of inline methods:
inline void Solver::insertVarOrder(Var x) {
if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x); }
inline void Solver::varDecayActivity() { var_inc *= var_decay; }
inline void Solver::varBumpActivity(Var v) {
if ( (activity[v] += var_inc) > 1e100 ) {
// Rescale:
for (int i = 0; i < nVars(); i++)
activity[i] *= 1e-100;
var_inc *= 1e-100; }
// Update order_heap with respect to new activity:
if (order_heap.inHeap(v))
order_heap.decrease(v); }
inline void Solver::claDecayActivity() { cla_inc *= clause_decay; }
inline void Solver::claBumpActivity (Clause& c) {
if ( (c.activity() += cla_inc) > 1e20 ) {
// Rescale:
for (int i = 0; i < learnts.size(); i++)
learnts[i]->activity() *= 1e-20;
cla_inc *= 1e-20; } }
inline bool Solver::enqueue (Lit p, Clause* from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
inline bool Solver::locked (const Clause& c) const { return reason[var(c[0])] == &c && value(c[0]) == l_True; }
inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); }
inline int Solver::decisionLevel () const { return trail_lim.size(); }
inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level[x] & 31); }
inline lbool Solver::value (Var x) const { return toLbool(assigns[x]); }
inline lbool Solver::value (Lit p) const { return toLbool(assigns[var(p)]) ^ sign(p); }
inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); }
inline int Solver::nAssigns () const { return trail.size(); }
inline int Solver::nClauses () const { return clauses.size(); }
inline int Solver::nLearnts () const { return learnts.size(); }
inline int Solver::nVars () const { return assigns.size(); }
inline void Solver::setPolarity (Var v, bool b) { polarity [v] = (char)b; }
inline void Solver::setDecisionVar(Var v, bool b) { decision_var[v] = (char)b; if (b) { insertVarOrder(v); } }
inline bool Solver::solve () { vec<Lit> tmp; return solve(tmp); }
inline bool Solver::okay () const { return ok; }
//=================================================================================================
// Debug + etc:
#define reportf(...) ( fflush(stdout), fprintf(stderr, __VA_ARGS__), fflush(stderr) )
static inline void logLit(FILE* f, Lit l)
{
fprintf(f, "%sx%d", sign(l) ? "~" : "", var(l)+1);
}
static inline void logLits(FILE* f, const vec<Lit>& ls)
{
fprintf(f, "[ ");
if (ls.size() > 0){
logLit(f, ls[0]);
for (int i = 1; i < ls.size(); i++){
fprintf(f, ", ");
logLit(f, ls[i]);
}
}
fprintf(f, "] ");
}
static inline const char* showBool(bool b) { return b ? "true" : "false"; }
// Just like 'assert()' but expression will be evaluated in the release version as well.
static inline void check(bool expr) { assert(expr); }
inline void Solver::printLit(Lit l)
{
reportf("%s%d:%c", sign(l) ? "-" : "", var(l)+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
}
template<class C>
inline void Solver::printClause(const C& c)
{
for (int i = 0; i < c.size(); i++){
printLit(c[i]);
fprintf(stderr, " ");
}
}
//=================================================================================================
#endif

View File

@ -1,199 +0,0 @@
/***********************************************************************************[SolverTypes.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef SolverTypes_h
#define SolverTypes_h
#include <cassert>
#include <stdint.h>
//=================================================================================================
// Variables, literals, lifted booleans, clauses:
// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
// so that they can be used as array indices.
typedef int Var;
#define var_Undef (-1)
class Lit {
int x;
public:
Lit() : x(2*var_Undef) { } // (lit_Undef)
explicit Lit(Var var, bool sign = false) : x((var+var) + (int)sign) { }
// Don't use these for constructing/deconstructing literals. Use the normal constructors instead.
friend int toInt (Lit p); // Guarantees small, positive integers suitable for array indexing.
friend Lit toLit (int i); // Inverse of 'toInt()'
friend Lit operator ~(Lit p);
friend bool sign (Lit p);
friend int var (Lit p);
friend Lit unsign (Lit p);
friend Lit id (Lit p, bool sgn);
bool operator == (Lit p) const { return x == p.x; }
bool operator != (Lit p) const { return x != p.x; }
bool operator < (Lit p) const { return x < p.x; } // '<' guarantees that p, ~p are adjacent in the ordering.
};
inline int toInt (Lit p) { return p.x; }
inline Lit toLit (int i) { Lit p; p.x = i; return p; }
inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; }
inline bool sign (Lit p) { return p.x & 1; }
inline int var (Lit p) { return p.x >> 1; }
inline Lit unsign (Lit p) { Lit q; q.x = p.x & ~1; return q; }
inline Lit id (Lit p, bool sgn) { Lit q; q.x = p.x ^ (int)sgn; return q; }
const Lit lit_Undef(var_Undef, false); // }- Useful special constants.
const Lit lit_Error(var_Undef, true ); // }
//=================================================================================================
// Lifted booleans:
class lbool {
char value;
explicit lbool(int v) : value(v) { }
public:
lbool() : value(0) { }
lbool(bool x) : value((int)x*2-1) { }
int toInt(void) const { return value; }
bool operator == (lbool b) const { return value == b.value; }
bool operator != (lbool b) const { return value != b.value; }
lbool operator ^ (bool b) const { return b ? lbool(-value) : lbool(value); }
friend int toInt (lbool l);
friend lbool toLbool(int v);
};
inline int toInt (lbool l) { return l.toInt(); }
inline lbool toLbool(int v) { return lbool(v); }
const lbool l_True = toLbool( 1);
const lbool l_False = toLbool(-1);
const lbool l_Undef = toLbool( 0);
//=================================================================================================
// Clause -- a simple class for representing a clause:
class Clause {
uint32_t size_etc;
union { float act; uint32_t abst; } extra;
Lit data[0];
public:
void calcAbstraction() {
uint32_t abstraction = 0;
for (int i = 0; i < size(); i++)
abstraction |= 1 << (var(data[i]) & 31);
extra.abst = abstraction; }
// NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
template<class V>
Clause(const V& ps, bool learnt) {
size_etc = (ps.size() << 3) | (uint32_t)learnt;
for (int i = 0; i < ps.size(); i++) data[i] = ps[i];
if (learnt) extra.act = 0; else calcAbstraction(); }
// -- use this function instead:
template<class V>
friend Clause* Clause_new(const V& ps, bool learnt);
int size () const { return size_etc >> 3; }
void shrink (int i) { assert(i <= size()); size_etc = (((size_etc >> 3) - i) << 3) | (size_etc & 7); }
void pop () { shrink(1); }
bool learnt () const { return size_etc & 1; }
uint32_t mark () const { return (size_etc >> 1) & 3; }
void mark (uint32_t m) { size_etc = (size_etc & ~6) | ((m & 3) << 1); }
const Lit& last () const { return data[size()-1]; }
// NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
// subsumption operations to behave correctly.
Lit& operator [] (int i) { return data[i]; }
Lit operator [] (int i) const { return data[i]; }
operator const Lit* (void) const { return data; }
float& activity () { return extra.act; }
uint32_t abstraction () const { return extra.abst; }
Lit subsumes (const Clause& other) const;
void strengthen (Lit p);
};
template<class V>
Clause* Clause_new(const V& ps, bool learnt) {
assert(sizeof(Lit) == sizeof(uint32_t));
assert(sizeof(float) == sizeof(uint32_t));
void* mem = std::malloc(sizeof(Clause) + sizeof(uint32_t)*(ps.size()));
return new (mem) Clause(ps, learnt); }
/*_________________________________________________________________________________________________
|
| subsumes : (other : const Clause&) -> Lit
|
| Description:
| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
| by subsumption resolution.
|
| Result:
| lit_Error - No subsumption or simplification
| lit_Undef - Clause subsumes 'other'
| p - The literal p can be deleted from 'other'
|________________________________________________________________________________________________@*/
inline Lit Clause::subsumes(const Clause& other) const
{
if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
return lit_Error;
Lit ret = lit_Undef;
const Lit* c = (const Lit*)(*this);
const Lit* d = (const Lit*)other;
for (int i = 0; i < size(); i++) {
// search for c[i] or ~c[i]
for (int j = 0; j < other.size(); j++)
if (c[i] == d[j])
goto ok;
else if (ret == lit_Undef && c[i] == ~d[j]){
ret = c[i];
goto ok;
}
// did not find it
return lit_Error;
ok:;
}
return ret;
}
inline void Clause::strengthen(Lit p)
{
remove(*this, p);
calcAbstraction();
}
#endif

View File

@ -1,93 +0,0 @@
/******************************************************************************************[Sort.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Sort_h
#define Sort_h
#include "Vec.h"
//=================================================================================================
// Some sorting algorithms for vec's
template<class T>
struct LessThan_default {
bool operator () (T x, T y) { return x < y; }
};
template <class T, class LessThan>
void selectionSort(T* array, int size, LessThan lt)
{
int i, j, best_i;
T tmp;
for (i = 0; i < size-1; i++){
best_i = i;
for (j = i+1; j < size; j++){
if (lt(array[j], array[best_i]))
best_i = j;
}
tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
}
}
template <class T> static inline void selectionSort(T* array, int size) {
selectionSort(array, size, LessThan_default<T>()); }
template <class T, class LessThan>
void sort(T* array, int size, LessThan lt)
{
if (size <= 15)
selectionSort(array, size, lt);
else{
T pivot = array[size / 2];
T tmp;
int i = -1;
int j = size;
for(;;){
do i++; while(lt(array[i], pivot));
do j--; while(lt(pivot, array[j]));
if (i >= j) break;
tmp = array[i]; array[i] = array[j]; array[j] = tmp;
}
sort(array , i , lt);
sort(&array[i], size-i, lt);
}
}
template <class T> static inline void sort(T* array, int size) {
sort(array, size, LessThan_default<T>()); }
//=================================================================================================
// For 'vec's:
template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
sort((T*)v, v.size(), lt); }
template <class T> void sort(vec<T>& v) {
sort(v, LessThan_default<T>()); }
//=================================================================================================
#endif

View File

@ -1,133 +0,0 @@
/*******************************************************************************************[Vec.h]
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Vec_h
#define Vec_h
#include <cstdlib>
#include <cassert>
#include <new>
//=================================================================================================
// Automatically resizable arrays
//
// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with std::realloc)
template<class T>
class vec {
T* data;
int sz;
int cap;
void init(int size, const T& pad);
void grow(int min_cap);
// Don't allow copying (error prone):
vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
vec (vec<T>& other) { assert(0); }
static inline int imin(int x, int y) {
int mask = (x-y) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
static inline int imax(int x, int y) {
int mask = (y-x) >> (sizeof(int)*8-1);
return (x&mask) + (y&(~mask)); }
public:
// Types:
typedef int Key;
typedef T Datum;
// Constructors:
vec(void) : data(NULL) , sz(0) , cap(0) { }
vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'free()')
~vec(void) { clear(true); }
// Ownership of underlying array:
T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
operator T* (void) { return data; } // (unsafe but convenient)
operator const T* (void) const { return data; }
// Size operations:
int size (void) const { return sz; }
void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
void shrink_(int nelems) { assert(nelems <= sz); sz -= nelems; }
void pop (void) { sz--, data[sz].~T(); }
void growTo (int size);
void growTo (int size, const T& pad);
void clear (bool dealloc = false);
void capacity (int size) { grow(size); }
// Stack interface:
#if 1
void push (void) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)std::realloc(data, cap * sizeof(T)); } new (&data[sz]) T(); sz++; }
//void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)std::realloc(data, cap * sizeof(T)); } new (&data[sz]) T(elem); sz++; }
void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)std::realloc(data, cap * sizeof(T)); } data[sz++] = elem; }
void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
#else
void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
#endif
const T& last (void) const { return data[sz-1]; }
T& last (void) { return data[sz-1]; }
// Vector interface:
const T& operator [] (int index) const { return data[index]; }
T& operator [] (int index) { return data[index]; }
// Duplicatation (preferred instead):
void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (&copy[i]) T(data[i]); }
void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
};
template<class T>
void vec<T>::grow(int min_cap) {
if (min_cap <= cap) return;
if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
else do cap = (cap*3+1) >> 1; while (cap < min_cap);
data = (T*)std::realloc(data, cap * sizeof(T)); }
template<class T>
void vec<T>::growTo(int size, const T& pad) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T(pad);
sz = size; }
template<class T>
void vec<T>::growTo(int size) {
if (sz >= size) return;
grow(size);
for (int i = sz; i < size; i++) new (&data[i]) T();
sz = size; }
template<class T>
void vec<T>::clear(bool dealloc) {
if (data != NULL){
for (int i = 0; i < sz; i++) data[i].~T();
sz = 0;
if (dealloc) std::free(data), data = NULL, cap = 0; } }
#endif

View File

@ -1,175 +0,0 @@
//#include <SWI-Stream.h>
#include <SWI-Prolog.h>
#include <stdio.h>
#include <assert.h>
#include "Solver.h"
#define val(i) ((s->model[i] != l_Undef) ? ((s->model[i]==l_True)? i+1:-1*(i+1)):0)
Solver *s = NULL;
extern "C" foreign_t minisat_new_solver()
{
s = new Solver;
PL_succeed;
}
extern "C" foreign_t minisat_delete_solver()
{
if (s) {
delete s;
s = NULL;
}
PL_succeed;
}
static inline Lit pl2lit(term_t pl_literal)
{
int pl_lit_int, var;
PL_get_integer(pl_literal,&pl_lit_int);
var = abs(pl_lit_int)-1;
while (var >= s->nVars()) s->newVar();
return (pl_lit_int > 0) ? Lit(var) : ~Lit(var);
}
extern "C" foreign_t minisat_set_minvars(term_t l)
{
term_t head = PL_new_term_ref(); /* variable for the elements */
term_t list = PL_copy_term_ref(l); /* copy as we need to write */
vec<Lit> lits;
while( PL_get_list(list, head, list) ) {
lits.push( pl2lit(head) );
}
assert(PL_get_nil(list));
if (s->setminVars(lits)) PL_succeed; else PL_fail;
}
extern "C" foreign_t minisat_add_clause(term_t l)
{
term_t head = PL_new_term_ref(); /* variable for the elements */
term_t list = PL_copy_term_ref(l); /* copy as we need to write */
vec<Lit> lits;
while( PL_get_list(list, head, list) ) {
lits.push( pl2lit(head) );
}
assert(PL_get_nil(list));
if (s->addClause(lits)) PL_succeed; else PL_fail;
}
extern "C" foreign_t minisat_solve(term_t assum) {
term_t head = PL_new_term_ref(); /* variable for the elements */
term_t list = PL_copy_term_ref(assum); /* copy as we need to write */
vec<Lit> assumptions;
while( PL_get_list(list, head, list) ) {
assumptions.push( pl2lit(head) );
}
if (s->solve(assumptions)) PL_succeed; else PL_fail;
}
extern "C" foreign_t minisat_get_var_assignment(term_t var, term_t res)
{
int i;
PL_get_integer(var,&i);
i--;
if (i < s->nVars()) {
term_t a = PL_new_term_ref(); /* variable for the elements */
PL_put_integer(a, val(i));
return PL_unify(a,res);
} else {
PL_fail;
}
}
extern "C" foreign_t minisat_nvars(term_t res)
{
term_t a = PL_new_term_ref(); /* variable for the elements */
PL_put_integer(a, s->nVars());
return PL_unify(a,res);
}
//=============================================================================
static const PL_extension predicates[] =
{
//
// { "name", arity, function, PL_FA_<flags> },
//
{ "minisat_new_solver", 0, (void*)minisat_new_solver, 0 },
{ "minisat_delete_solver", 0, (void*)minisat_delete_solver, 0 },
{ "minisat_add_clause", 1, (void*)minisat_add_clause, 0 },
{ "minisat_solve", 1, (void*)minisat_solve, 0 },
{ "minisat_get_var_assignment", 2, (void*)minisat_get_var_assignment, 0 },
{ "minisat_nvars", 1, (void*)minisat_nvars, 0 },
{ NULL, 0, NULL, 0 } // terminating line
};
//-----------------------------------------------------------------------------
extern "C" install_t install()
{
//Sdprintf("%% SWI-Prolog interface to MiniSat");
//Sdprintf(" - built on ");
//Sdprintf(__DATE__);
//Sdprintf(", ");
//Sdprintf(__TIME__);
//Sdprintf(" ... ");
PL_register_extensions(predicates); /* This is the only PL_ call allowed */
/* before PL_initialise(). It */
/* ensures the foreign predicates */
/* are available before loading */
/* Prolog code */
//Sdprintf("OK\n");
}
//-----------------------------------------------------------------------------
// This part is for compiling into a standalone executable
#ifdef READLINE
static void install_readline(int argc, char**argv)
{
PL_install_readline();
}
#endif
int main(int argc, char **argv)
{
#ifdef READLINE
PL_initialise_hook(install_readline);
#endif
install();
if ( !PL_initialise(argc, argv) )
PL_halt(1);
PL_halt(PL_toplevel() ? 0 : 1);
return 0;
}

View File

@ -1,18 +0,0 @@
set (PROGRAMS
cnf.pl
minisat.pl
)
set (EXAMPLE_PROGRAMS
examples/adder.pl
examples/pearl_examples.pl
)
install(FILES
${PROGRAMS}
DESTINATION ${YAP_INSTALL_DATADIR}
)
add_subDIRECTORY (C)

View File

@ -1,51 +0,0 @@
#
# default base directory for YAP installation
#
#
ROOTDIR = @prefix@
#
# where the binary should be
#
BINDIR = $(ROOTDIR)/bin
#
# where YAP should look for binary libraries
#
LIBDIR=@libdir@
YAPLIBDIR=@libdir@/Yap
#
# where YAP should look for architecture-independent Prolog libraries
#
SHAREDIR=$(ROOTDIR)/share
#
#
# You shouldn't need to change what follows.
#
INSTALL=@INSTALL@
INSTALL_DATA=@INSTALL_DATA@
INSTALL_PROGRAM=@INSTALL_PROGRAM@
srcdir=@srcdir@
YAP_EXTRAS=@YAP_EXTRAS@
PROGRAMS= \
$(srcdir)/cnf.pl \
$(srcdir)/minisat.pl
EXAMPLE_PROGRAMS= \
$(srcdir)/examples/adder.pl \
$(srcdir)/examples/pearl_examples.pl
all:
install: $(PROGRAMS) install-examples
mkdir -p $(DESTDIR)$(SHAREDIR)/Yap
mkdir -p $(DESTDIR)$(SHAREDIR)/doc/Yap/packages/examples/minisat
for p in $(PROGRAMS); do $(INSTALL_DATA) $$p $(DESTDIR)$(SHAREDIR)/Yap; done
for p in $(EXAMPLE_PROGRAMS); do $(INSTALL_DATA) $$p $(DESTDIR)$(SHAREDIR)/doc/Yap/packages/examples/minisat; done
install-examples:
clean:
distclean:
rm Makefile

View File

@ -1,8 +0,0 @@
You need to put the file swi-minisat2.tgz in a directory where you want
the solver and the interface and then do:
% tar zxvf swi-minisat2.tgz
% ./configure.sh
% make
% make clean

View File

@ -1,13 +0,0 @@
This is the minisat package as described in
Michael Codish, Vitaly Lagoon, Peter J. Stuckey: Logic programming
with satisfiability. TPLP 8(1): 121-128 (2008)
We thank the authors for kindly allowing us to use this package in YAP.
Please check the examples in $install/share/Yap/minisat/examples and
the TPLP paper to understand how the system can be used.
Last, please contact yap-users AT sf.net for any bugs first, as they
may have been caused by the YAP port.

View File

@ -1,100 +0,0 @@
%%============================================================================
%% CNF.pl
%% Convertor of Boolean formulae to CNF
%% Copyright (c) 2006, Michael Codish, Vitaly Lagoon, and Peter J. Stuckey
%%
%% Permission is hereby granted, free of charge, to any person obtaining a
%% copy of this software and associated documentation files (the
%% "Software"), to deal in the Software without restriction, including
%% without limitation the rights to use, copy, modify, merge, publish,
%% distribute, sublicense, and/or sell copies of the Software, and to
%% permit persons to whom the Software is furnished to do so, subject to
%% the following conditions:
%%
%% The above copyright notice and this permission notice shall be included
%% in all copies or substantial portions of the Software.
%%
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
%% OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
%% MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
%% NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
%% LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
%% OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
%% WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
:- module(cnf,[cnf/2,cnf_dl/2]).
cnf(F,Cnf) :- cnf_dl(F,Cnf-[]).
cnf_dl(F,[[B]|Cnf1]-Cnf2) :- iff(F,+,B,Cnf2,Cnf1).
iff(V,_,B,Acc,Cnf) :- var(V), !, V=B, Cnf=Acc.
iff(1,_,B,Acc,Cnf) :- !, B=1, Cnf=Acc.
iff(0,_,B,Acc,Cnf) :- !, B=0, Cnf=Acc.
iff(-X,+,B,Acc,Cnf) :- !, iff(X,-,BX,Acc,Cnf), neglit(BX,B).
iff(-X,-,B,Acc,Cnf) :- !, iff(X,+,BX,Acc,Cnf), neglit(BX,B).
iff(-X,*,B,Acc,Cnf) :- !, iff(X,*,BX,Acc,Cnf), neglit(BX,B).
iff((X+Y),Polarity,B,Acc,Cnf) :- !,
iff(X,Polarity,BX,Acc,AccX),
iff(Y,Polarity,BY,AccX,AccXY),
(
Polarity == + -> Cnf = [[-B,BX,BY]|AccXY]
;
Polarity == - -> Cnf = [[B,-BX],[B,-BY]|AccXY]
;
Cnf = [[-B,BX,BY], [B,-BX], [B,-BY] | AccXY]
).
iff((X*Y),Polarity,B,Acc,Cnf) :- !,
iff(X,Polarity,BX,Acc,AccX),
iff(Y,Polarity,BY,AccX,AccXY),
(
Polarity == + -> Cnf = [[-B,BX],[-B,BY]|AccXY]
;
Polarity == - -> Cnf = [[B,-BX,-BY]|AccXY]
;
Cnf = [[B,-BX,-BY], [-B,BX], [-B,BY] | AccXY]
).
iff((X==Y),Polarity,B,Acc,Cnf) :- !,
iff(X,*,BX,Acc,AccX),
iff(Y,*,BY,AccX,AccXY),
(
Polarity == + -> Cnf = [[-BX,BY,-B],[BX,-BY,-B] | AccXY]
;
Polarity == - -> Cnf = [[-BX,-BY,B],[BX,BY,B] | AccXY]
;
Cnf = [[-BX,BY,-B],[BX,-BY,-B],[-BX,-BY,B],[BX,BY,B] | AccXY]
).
iff((xor(X, Y)),Polarity,B,Acc,Cnf) :- !,
iff(X,*,BX,Acc,AccX),
iff(Y,*,BY,AccX,AccXY),
(
Polarity == + -> Cnf = [[-BX,-BY,-B],[BX,BY,-B] | AccXY]
;
Polarity == - -> Cnf = [[-BX,BY,B],[BX,-BY,B] | AccXY]
;
Cnf = [[-BX,BY,B],[BX,-BY,B],[-BX,-BY,-B],[BX,BY,-B] | AccXY]
).
iff((X->Y;Z),Polarity,B,Acc,Cnf) :- !,
iff(X,*,BX,Acc,AccX),
iff(Y,Polarity,BY,AccX,AccXY),
iff(Z,Polarity,BZ,AccXY,AccXYZ),
(
Polarity == + -> Cnf = [[-BX,BY,-B],[BX,BZ,-B],[BY,BZ,-B]|AccXYZ]
;
Polarity == - -> Cnf = [[-BX,-BY,B],[BX,-BZ,B],[-BY,-BZ,B]|AccXYZ]
;
Cnf = [[-BX,BY,-B], [BX,BZ,-B], [BY,BZ,-B],
[-BX,-BY,B], [BX,-BZ,B], [-BY,-BZ,B] | AccXYZ]
).
neglit(V,-V) :- var(V), !.
neglit(-V,V).
neglit(0,1).
neglit(1,0).

View File

@ -1,23 +0,0 @@
:- module(adder,[sum/3]).
sum([B],[S],(S==B)).
sum([B1,B2|Bs],Sum,F1*F2*F3) :-
split([B1,B2|Bs],Xs,Ys),
sum(Xs,S1,F1), sum(Ys,S2,F2),add(S1,S2,Sum,F3).
split([],[],[]).
split([X],[X],[0]).
split([X,Y|XYs],[X|Xs],[Y|Ys]) :- split(XYs,Xs,Ys).
add([X|Xs],[Y|Ys],[Z|Zs],(Z==SumXY)*Sum) :-
halfadder(X,Y,SumXY,CarryXY),
adder(Xs,Ys,CarryXY,Zs,Sum).
adder([],[],Carry,[Z],Z==Carry).
adder([X|Xs],[Y|Ys],Carry,[Z|Zs],(Z==SumXY)*Rest) :-
fulladder(X,Y,Carry,SumXY,CarryXY),
adder(Xs,Ys,CarryXY,Zs,Rest).
fulladder(X, Y, C, (X xor Y xor C), (C->(X+Y);(X*Y)) ).
halfadder(X, Y, (X xor Y), X*Y ).

View File

@ -1,54 +0,0 @@
:- use_module(library(cnf)).
:- use_module(library(minisat)).
:- use_module(adder).
%% Example, pg3
%%
%% ?- cnf(X==Y,Cnf).
%% Cnf = [[T], [-X, Y, -T], [X, -Y, -T]]
%% ?- cnf((X*Y)+(-X*Z),Cnf).
%% Cnf = [[T], [-T, T1, T2], [-T2, -X],
%% [-T2, Z], [-T1, X], [-T1, Y]]
%% Example, pg4
%%
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],[S1,S2,S3],Psi).
%% Psi = (T1==X+Y)*(T2==(X==Y))*(T3==T1 xor T2)*(T4==T1*T2)*(T5==X*Y)*
%% (T6==X xor Y)*(T7==T5 xor T6)* (T8==T5*T6)*(S1==T3 xor T7)*
%% (S2==T4 xor T8 xor (T3*T7))* (S3==(T3*T7->T4+T8;T4*T8))
%% Examples, pg6
%%
%% ?- cnf(X==Y,Cnf), solve(Cnf).
%% X=0, Y=0
%%
%% ?- cnf(X==Y,Cnf), sat(Cnf).
%% Yes
%%
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],Sum,F), cnf(F,Cnf), solve(Cnf).
%% X = 0, Y = 0
%% Sum = [1, 0, 0]
%%
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],[0,1,0],F), cnf(F,Cnf), solve(Cnf).
%% X = 0, Y = 1
%%
%% ?- sum([X+Y,X*Y,X==Y,X xor Y],Sum,F), cnf(F,Cnf),
%% maximize(Sum,Cnf), solve(Cnf).
%% Sum=[1,1,0]
%% X=1, Y=1
%% Figure 3, pg 6
%%
%% partialMaxSat(+,+).
partialMaxSat(Phi,Psi) :-
sum(Psi,Max,SumPsi), cnf(Phi*SumPsi,Cnf),
maximize(Max,Cnf), solve(Cnf).
%% Example, pg 7
%%
%% ?- partialMaxSat(X+Y,[X*Y,X==Y,X xor Y,-X+Y, -X, -Y, X]).
%% X = 1, Y = 1

View File

@ -1,361 +0,0 @@
%%============================================================================
%% The SWI-Prolog interface to MiniSat SAT solver
%% http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
%%
%% Copyright (c) 2006, Michael Codish, Vitaly Lagoon, and Peter J. Stuckey
%%
%% Permission is hereby granted, free of charge, to any person obtaining a
%% copy of this software and associated documentation files (the
%% "Software"), to deal in the Software without restriction, including
%% without limitation the rights to use, copy, modify, merge, publish,
%% distribute, sublicense, and/or sell copies of the Software, and to
%% permit persons to whom the Software is furnished to do so, subject to
%% the following conditions:
%%
%% The above copyright notice and this permission notice shall be included
%% in all copies or substantial portions of the Software.
%%
%% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
%% OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
%% MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
%% NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
%% LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
%% OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
%% WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
:- module(minisat,[
solve/1,
sat/1,
sat_init/0,
sat_deinit/0,
sat_add_clauses/3,
sat_solve/1,
minimize/2,
maximize/2,
minimize_v1/2,
maximize_v1/2,
minimize_v2/2,
maximize_v2/2,
minimize_v3/2,
maximize_v3/2
]).
:- use_module(library(shlib)).
:- use_module(library(lists)).
:- load_foreign_library('pl-minisat',install).
:- dynamic tmp/1.
%%
%%
sat_init :-
minisat_new_solver, % - create the new solve
minisat_add_clause([-1]), % - add zero
minisat_add_clause([2]). % - add one
%%
%%
sat_deinit :-
minisat_delete_solver.
%%
%%
sat_add_clauses(Cs, Vs, MiniSat_Vs) :-
term_variables(Cs,CsVars),
\+ \+ (
bind2index(CsVars),
add_cnf_clauses(Cs),
asserta(tmp(Vs))
),
retract(tmp(MiniSat_Vs)).
add_cnf_clauses([]).
add_cnf_clauses([Cl|Cls]) :-
to_minisat(Cl,MiniSatCl),
minisat_add_clause(MiniSatCl),
add_cnf_clauses(Cls).
to_minisat([],[]).
to_minisat([L|Ls],[N|Ns]) :-
minisat_aux(L,N),
to_minisat(Ls,Ns).
minisat_aux(0,1) :- !.
minisat_aux(1,2) :- !.
minisat_aux(-(1),1) :- !.
minisat_aux(-(0),2) :- !.
minisat_aux(N,NN) :- NN is N.
bind2index(Vs) :-
minisat_nvars(N),
N1 is N+1,
bind2index_aux(Vs,N1).
bind2index_aux([],_N).
bind2index_aux([V|Ns],N) :-
var(V),
!,
V=N,
N1 is N+1, bind2index_aux(Ns,N1).
bind2index_aux([V|Ns],N) :-
integer(V),
bind2index_aux(Ns,N).
%%
%%
sat_solve(As) :-
to_minisat(As,MINISAT_As),
minisat_solve(MINISAT_As).
%%
%%
sat_get_values([],[]).
sat_get_values([SAT_V|SVs],[PL_V|PL_Vs]) :-
minisat_get_var_assignment(SAT_V,N),
( N<0 -> PL_V=0 ; PL_V=1),
sat_get_values(SVs,PL_Vs).
%%
%% sat(+CNF): succeds if CNF is satisfaiable, it does not bind the variables in CNF
%%
sat(CNF) :-
sat_init,
sat_add_clauses(CNF,_,_),
sat_solve([]),
sat_deinit,
!.
sat(_CNF) :-
sat_deinit,
!,
fail.
%%
%% solve(+CNF): like CNF/1 but bind the variables of CNF to the solution
%%
solve(CNF) :-
sat_init,
term_variables(CNF,CNF_Vs),
sat_add_clauses(CNF,CNF_Vs,SAT_Vs),
sat_solve([]),
sat_get_values(SAT_Vs,CNF_Vs),
sat_deinit,
!.
solve(_) :-
sat_deinit,
!,
fail.
%%
%%
%%
minimize(Vec,CNF) :- minimize_v1(Vec,CNF).
maximize(Vec,CNF) :- maximize_v1(Vec,CNF).
%%
%%
minimize_v1(Vec,CNF) :-
minimize_v1_aux(Vec,CNF),
sat(CNF).
minimize_v1_aux([],_CNF).
minimize_v1_aux([B|Bs],CNF) :-
minimize_v1_aux(Bs,CNF),
( (B=0, sat(CNF)) -> true ; B=1 ).
%%
%%
maximize_v1(Vec,CNF) :-
maximize_v1_aux(Vec,CNF),
sat(CNF).
maximize_v1_aux([],_CNF).
maximize_v1_aux([B|Bs],CNF) :-
maximize_v1_aux(Bs,CNF),
( (B=1, sat(CNF)) -> true ; B=0 ).
%%
%%
minimize_v2(Vec,CNF) :-
retractall(tmp(_)),
reverse(Vec,Vec_MSB),
term_variables(CNF,CNF_Vars),
sat_init,
sat_add_clauses(CNF,[Vec_MSB,CNF_Vars],[Vec_MSB_SVars,CNF_SVars]),
minimize_v2_loop(Vec_MSB_SVars),
sat_get_values(CNF_SVars,CNF_Vars),
sat_deinit,
!.
minimize_v2_loop([]) :-
sat_solve([]).
minimize_v2_loop([V|Vs]) :-
( sat_solve([-V]) ->
eliminate_prefix(Vs,0,New_Vs)
;
sat_add_clauses([[V]],_,_),
New_Vs=Vs
),
minimize_v2_loop(New_Vs).
%%
%%
maximize_v2(Vec,CNF) :-
reverse(Vec,Vec_MSB),
term_variables(CNF,CNF_Vars),
sat_init,
sat_add_clauses(CNF,[Vec_MSB,CNF_Vars],[Vec_MSB_SVars,CNF_SVars]),
maximize_v2_loop(Vec_MSB_SVars),
sat_get_values(CNF_SVars,CNF_Vars),
sat_deinit,
!.
maximize_v2_loop([]) :-
sat_solve([]).
maximize_v2_loop([V|Vs]) :-
( sat_solve([V]) ->
eliminate_prefix(Vs,1,New_Vs)
;
sat_add_clauses([[V]],_,_),
New_Vs=Vs
),
maximize_v2_loop(New_Vs).
%%
%%
minimize_v3(Vec,CNF) :-
retractall(tmp(_)),
term_variables(CNF,CNF_Vars),
sat_init,
sat_add_clauses(CNF,[Vec,CNF_Vars],[Vec_SVars,CNF_SVars]),
sat_solve([]),
sat_get_values(Vec_SVars,Curr_Min),
sat_get_values(CNF_SVars,Curr_Sol),
minimize_v3_loop(Vec_SVars,CNF_SVars,Curr_Min,Curr_Sol,Vec,CNF_Vars),
minisat_delete_solver,
!.
minimize_v3_loop(Vec,CNF_SVars,Last_Min,_Last_Sol,Final_Min,Final_Sol) :-
xs_gt_ys(Last_Min,Vec,CNF-[]),
sat_add_clauses(CNF,_,_),
sat_solve([]),
sat_get_values(Vec,Curr_Min),
sat_get_values(CNF_SVars,Curr_Sol),
!,
minimize_v3_loop(Vec,CNF_SVars,Curr_Min,Curr_Sol,Final_Min,Final_Sol).
minimize_v3_loop(_Vec,_CNF_SVars,Final_Min,Final_Sol,Final_Min,Final_Sol) :-
!.
%%
%%
maximize_v3(Vec,CNF) :-
retractall(tmp(_)),
term_variables(CNF,CNF_Vars),
sat_init,
sat_add_clauses(CNF,[Vec,CNF_Vars],[Vec_SVars,CNF_SVars]),
sat_solve([]),
sat_get_values(Vec_SVars,Curr_Max),
sat_get_values(CNF_SVars,Curr_Sol),
maximize_v3_loop(Vec_SVars,CNF_SVars,Curr_Max,Curr_Sol,Vec,CNF_Vars),
minisat_delete_solver,
!.
maximize_v3_loop(Vec,CNF_SVars,Last_Max,_Last_Sol,Final_Max,Final_Sol) :-
xs_gt_ys(Vec,Last_Max,CNF-[]),
sat_add_clauses(CNF,_,_),
sat_solve([]),
sat_get_values(Vec,Curr_Max),
sat_get_values(CNF_SVars,Curr_Sol),
!,
maximize_v3_loop(Vec,CNF_SVars,Curr_Max,Curr_Sol,Final_Max,Final_Sol).
maximize_v3_loop(_Vec,_CNF_SVars,Final_Max,Final_Sol,Final_Max,Final_Sol) :-
!.
%%
%%
eliminate_prefix([],_Bit,[]) :- !.
eliminate_prefix([V|Vs],Bit,New_Vs) :-
sat_get_values([V],[VVal]),
VVal = Bit,
( Bit = 0 -> sat_add_clauses([[-V]],_,_) ; sat_add_clauses([[V]],_,_) ),
!,
eliminate_prefix(Vs,Bit,New_Vs).
eliminate_prefix(Vs,Vs).
%%
%%
% B == (Xs = Ys)
xs_eq_ys([X],[Y],B,Cnf1-Cnf2) :-
!,
eq(X,Y,B,Cnf1-Cnf2).
xs_eq_ys([X|Xs],[Y|Ys],B,Cnf1-Cnf4) :-
eq(X,Y,B1,Cnf1-Cnf2),
xs_eq_ys(Xs,Ys,B2,Cnf2-Cnf3),
and(B1,B2,B,Cnf3-Cnf4).
%%
xs_gt_ys(Xs,Ys,[[B]|Cnf1]-Cnf2) :-
xs_gt_ys(Xs,Ys,B,Cnf1-Cnf2).
%%
%%
xs_gt_ys([X],[Y],B,Cnf1-Cnf2) :- !,
gt(X,Y,B,Cnf1-Cnf2).
xs_gt_ys(Xs,Ys,B, Cnf1-Cnf6) :-
split(Xs,LoXs,HiXs),
split(Ys,LoYs,HiYs),
xs_gt_ys(HiXs,HiYs,B1,Cnf1-Cnf2),
xs_eq_ys(HiXs,HiYs,B2,Cnf2-Cnf3),
xs_gt_ys(LoXs,LoYs,B3,Cnf3-Cnf4),
and(B2,B3,Tmp, Cnf4-Cnf5),
or(B1,Tmp,B,Cnf5-Cnf6).
% Z == X > Y (equivalently Z == X * -Y)
gt(X,Y,Z,[[Z,-X,Y],[-Z,X],[-Z,-Y]|Cnf]-Cnf).
% Z == (X == Y)
eq(X,Y,Z, [[-Z,-X,Y],[-Z,X,-Y],
[Z,X,Y],[Z,-X,-Y] | Cnf]-Cnf).
% Z == X or Y
or(X,Y,Z, [[Z,-X],[Z,-Y],[-Z,X,Y] | Cnf]-Cnf).
% Z == X and Y
and(X,Y,Z, [[Z,X,Y],[-Z,X],[-Z,Y] | Cnf]-Cnf).
%
split(Xs,As,Bs) :-
length(Xs,N), M is N // 2,
length(As,M), append(As,Bs,Xs).