term export and import routines

This commit is contained in:
Vitor Santos Costa 2010-07-15 17:19:37 +01:00
parent e9c83142ad
commit b2184ecb00
2 changed files with 514 additions and 0 deletions

View File

@ -540,6 +540,514 @@ p_copy_term_no_delays(void) /* copy term t to a new instance */
return(Yap_unify(ARG2,t));
}
static inline
CELL *CellDifH(CELL *hptr, CELL *hlow)
{
return (CELL *)((char *)hptr-(char *)hlow);
}
#define AdjustSizeAtom(X) ((char *)(((CELL)X+7) & (CELL)(-8)))
static inline
Atom export_atom(Atom at, char **hpp, size_t len)
{
char *ptr, *p0;
size_t sz;
ptr = *hpp;
ptr = AdjustSizeAtom(ptr);
p0 = ptr;
sz = strlen(RepAtom(at)->StrOfAE);
if (sz +1 >= len)
return (Atom)NULL;
strcpy(ptr, RepAtom(at)->StrOfAE);
*hpp = ptr+(sz+1);
ptr += sz;
return (Atom)p0;
}
static inline
Functor export_functor(Functor f, char **hpp, size_t len)
{
CELL *hptr = (UInt *)AdjustSizeAtom(*hpp);
fprintf(stderr,"hptr=%p\n",hptr);
UInt arity = ArityOfFunctor(f);
if (2*sizeof(CELL) >= len)
return (Functor)NULL;
hptr[0] = arity;
*hpp = (char *)(hptr+1);
if (!export_atom(NameOfFunctor(f), hpp, len))
return 0L;
return (Functor)hptr;
}
#define export_derefa_body(D,A,LabelUnk,LabelNonVar) \
do { \
if ((D) < CellDifH(H,HLow)) { (A) = (CELL *)(D); break; } \
(A) = (CELL *)(D); \
(D) = *(CELL *)(D); \
if(!IsVarTerm(D)) goto LabelNonVar; \
LabelUnk: ; \
} while (Unsigned(A) != (D))
static int
export_term_to_buffer(Term inpt, char *buf, char *bptr, CELL *t0 , CELL *tf, size_t len)
{
char *td = bptr;
CELL *bf = (CELL *)buf;
if (buf + len < (char *)(td + (tf-t0)))
return FALSE;
printf("t0=%p tf=%p len=%d\n",t0,tf,len);
printf("t0.0=%lx t0.1=%lx t0.2=%lx t0.3=%lx\n",t0[0],t0[1],t0[2],t0[3]);
memcpy((void *)td, (void *)t0, (tf-t0)* sizeof(CELL));
bf[0] = (td-buf);
bf[1] = (tf-t0);
bf[2] = inpt;
return TRUE;
}
static int
export_complex_term(Term tf, CELL *pt0, CELL *pt0_end, char * buf, size_t len0, int newattvs, CELL *ptf, CELL *HLow)
{
struct cp_frame *to_visit0, *to_visit = (struct cp_frame *)Yap_PreAllocCodeSpace();
CELL *HB0 = HB;
tr_fr_ptr TR0 = TR;
int ground = TRUE;
#ifdef COROUTINING
CELL *dvarsmin = NULL, *dvarsmax=NULL;
#endif
char *bptr = buf+ 3*sizeof(CELL);
size_t len = len0;
HB = HLow;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++ pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, export_term_unk);
export_term_nvar:
{
if (IsPairTerm(d0)) {
CELL *ap2 = RepPair(d0);
if (ap2 < CellDifH(H,HLow)) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
*ptf = AbsPair(CellDifH(H,HLow));
ptf++;
#ifdef RATIONAL_TREES
if (to_visit+1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsPair(CellDifH(H,HLow));
to_visit ++;
#else
if (pt0 < pt0_end) {
if (to_visit+1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit ++;
}
#endif
pt0 = ap2 - 1;
pt0_end = ap2 + 1;
ptf = H;
H += 2;
if (H > ASP - 2048) {
goto overflow;
}
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
if (ap2 < CellDifH(H,HLow)) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
f = (Functor)(*ap2);
*ptf++ = AbsAppl(CellDifH(H,HLow));
if (IsExtensionFunctor(f)) {
UInt sz;
/* make sure to export floats */
if (f== FunctorDouble) {
sz = sizeof(Float)/sizeof(CELL)+2;
} else if (f== FunctorLongInt) {
sz = 3;
} else {
CELL *pt = ap2+1;
sz = 2+sizeof(MP_INT)+(((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t));
}
if (H+sz > ASP - 2048) {
goto overflow;
}
memcpy((void *)H, (void *)ap2, sz*sizeof(CELL));
H += sz;
continue;
}
/* store the terms to visit */
#ifdef RATIONAL_TREES
if (to_visit+1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsAppl(H);
to_visit ++;
#else
if (pt0 < pt0_end) {
if (to_visit+1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit ++;
}
#endif
ground = (f != FunctorMutable);
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
/* store the functor for the new term */
ptf = H+1;
H += 1+d0;
if (H > ASP - 2048) {
goto overflow;
}
ptf[-1] = (CELL)export_functor(f, &bptr, len);
jmp_deb(1);
len = len0 - (bptr-buf);
if (H > ASP - 2048) {
goto overflow;
}
} else {
if (IsAtomTerm(d0)) {
*ptf = MkAtomTerm(export_atom(AtomOfTerm(d0), &bptr, len));
ptf++;
len = len0 - (bptr-buf);
} else {
*ptf++ = d0;
}
}
continue;
}
export_derefa_body(d0, ptd0, export_term_unk, export_term_nvar);
fprintf(stderr,"2 ptf=%p HLow=%p\n",ptf,HLow);
ground = FALSE;
if (ptd0 < CellDifH(H,HLow)) {
/* we have already found this cell */
*ptf++ = (CELL) ptd0;
} else {
#if COROUTINING
if (newattvs && IsAttachedTerm((CELL)ptd0) && FALSE) {
/* if unbound, call the standard export term routine */
struct cp_frame *bp;
if (IN_BETWEEN(dvarsmin, ptd0, dvarsmax)) {
*ptf++ = (CELL) ptd0;
} else {
CELL new;
bp = to_visit;
if (!attas[ExtFromCell(ptd0)].copy_term_op(ptd0, &bp, ptf)) {
goto overflow;
}
to_visit = bp;
new = *ptf;
Bind(ptd0, new);
if (dvarsmin == NULL) {
dvarsmin = CellPtr(new);
} else {
*dvarsmax = (CELL)(CellPtr(new)+1);
}
dvarsmax = CellPtr(new)+1;
ptf++;
}
} else {
#endif
/* first time we met this term */
*ptf = (CELL)CellDifH(ptf,HLow);
fprintf(stderr,"3 ptf=%p %x HLow=%p\n",ptf,*ptf,HLow);
if (TR > (tr_fr_ptr)Yap_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
Bind(ptd0, (CELL)ptf);
ptf++;
#ifdef COROUTINING
}
#endif
}
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit --;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
#ifdef RATIONAL_TREES
*pt0 = to_visit->oldv;
#endif
ground = (ground && to_visit->ground);
goto loop;
}
/* restore our nice, friendly, term to its original state */
clean_dirty_tr(TR0);
close_attvar_chain(dvarsmin, dvarsmax);
HB = HB0;
return export_term_to_buffer(tf, buf, bptr, HLow, H, len0);
overflow:
/* oops, we're in trouble */
H = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit --;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
/* follow chain of multi-assigned variables */
reset_attvars(dvarsmin, dvarsmax);
return -1;
trail_overflow:
/* oops, we're in trouble */
H = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit --;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
{
tr_fr_ptr oTR = TR;
reset_trail(TR0);
reset_attvars(dvarsmin, dvarsmax);
if (!Yap_growtrail((oTR-TR0)*sizeof(tr_fr_ptr *), TRUE)) {
return -4;
}
return -2;
}
heap_overflow:
/* oops, we're in trouble */
H = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit --;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
reset_attvars(dvarsmin, dvarsmax);
Yap_Error_Size = (ADDR)AuxSp-(ADDR)to_visit0;
return -3;
}
static int
ExportTerm(Term inp, char * buf, size_t len, UInt arity, int newattvs) {
Term t = Deref(inp);
tr_fr_ptr TR0 = TR;
int res;
CELL *Hi;
restart:
Hi = H;
if ((res = export_complex_term(inp, &t-1, &t, buf, len, newattvs, Hi, Hi)) < 0) {
H = Hi;
if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L)
return FALSE;
goto restart;
}
return res;
}
int
Yap_ExportTerm(Term inp, char * buf, size_t len) {
return ExportTerm(inp, buf, len, 0, TRUE);
}
static CELL *
ShiftPtr(CELL t, char *base)
{
return (CELL *)(base+t);
}
static Atom
AddAtom(Atom t)
{
return Yap_LookupAtom((char *)t);
}
static UInt
FetchFunctor(CELL *pt)
{
CELL *ptr = (CELL *)(*pt);
// do arity first
UInt arity = *ptr;
char *name;
// and then an atom
++ptr;
name = (char *)ptr;
name = (CELL *)AdjustSizeAtom(name);
*pt = (CELL)Yap_MkFunctor(AddAtom((Atom)name), arity);
return arity;
}
static CELL *import_compound(CELL *hp, char *abase, CELL *amax);
static CELL *import_pair(CELL *hp, char *abase, CELL *amax);
static CELL *
import_arg(CELL *hp, char *abase, CELL *amax)
{
Term t = *hp;
if (IsVarTerm(t)) {
hp[0] = (CELL)ShiftPtr(t, abase);
} else if (IsAtomTerm(t)) {
hp[0] = MkAtomTerm(AddAtom(AtomOfTerm(t)));
} else if (IsPairTerm(t)) {
CELL *newp = ShiftPtr((CELL)RepPair(t), abase);
hp[0] = AbsPair(newp);
if (newp > amax) {
amax = import_pair(newp, abase, newp);
}
} else {
CELL *newp = ShiftPtr((CELL)RepAppl(t), abase);
hp[0] = AbsAppl(newp);
if (newp > amax) {
amax = import_compound(newp, abase, newp);
}
}
return amax;
}
static CELL *
import_compound(CELL *hp, char *abase, CELL *amax)
{
Functor f = (Functor)*hp;
UInt ar, i;
if (IsExtensionFunctor(f))
return amax;
ar = FetchFunctor(hp);
fprintf(stderr,"arity %d\n",ar);
for (i=1; i<=ar; i++) {
amax = import_arg(hp+i, abase, amax);
}
return amax;
}
static CELL *
import_pair(CELL *hp, char *abase, CELL *amax)
{
amax = import_arg(hp, abase, amax);
amax = import_arg(hp+1, abase, amax);
return amax;
}
Term
Yap_ImportTerm(char * buf) {
CELL *bc = (CELL *)buf;
size_t sz = bc[1];
Term tinp, tret;
tinp = bc[2];
if (IsVarTerm(tinp))
return MkVarTerm();
if (IsAtomOrIntTerm(tinp)) {
if (IsAtomTerm(tinp)) {
char *pt = AdjustSizeAtom((char *)(bc+3));
return MkAtomTerm(Yap_LookupAtom(pt));
} else
return tinp;
}
if (H + sz > ASP)
return (Term)0;
memcpy(H, buf+bc[0], sizeof(CELL)*sz);
fprintf(stderr,"*hp=%lx hp[1]=%lx hp[2]=%lx\n",*H, H[1], H[2]);
if (IsApplTerm(tinp)) {
tret = AbsAppl(H);
import_compound(H, (char *)H, H);
} else {
tret = AbsPair(H);
import_pair(H, (char *)H, H);
}
fprintf(stderr,"*hp=%lx hp[1]=%lx hp[2]=%lx hp[3]=%lx hp[4]=%lx\n",*H, H[1], H[2], H[3], H[4]);
H += sz;
return tret;
}
#if DEBUG
static char export_debug_buf[2048];
static Int
p_export_term(void)
{
Yap_ExportTerm(ARG1, export_debug_buf, 2048);
return TRUE;
}
static Int
p_import_term(void)
{
return Yap_unify(ARG1,Yap_ImportTerm(export_debug_buf));
}
#endif
static Term vars_in_complex_term(register CELL *pt0, register CELL *pt0_end, Term inp)
{
@ -3074,6 +3582,10 @@ void Yap_InitUtilCPreds(void)
Yap_InitCPred("term_attvars", 2, p_term_attvars, 0);
Yap_InitCPred("is_list", 1, p_is_list, SafePredFlag);
Yap_InitCPred("=@=", 2, p_variant, 0);
#ifdef DEBUG
Yap_InitCPred("import_term", 1, p_import_term, 0);
Yap_InitCPred("export_term", 1, p_export_term, 0);
#endif
CurrentModule = TERMS_MODULE;
Yap_InitCPred("variable_in_term", 2, p_var_in_term, SafePredFlag);
Yap_InitCPred("term_hash", 4, p_term_hash, SafePredFlag);

View File

@ -371,6 +371,8 @@ void STD_PROTO(Yap_InitUserBacks,(void));
/* utilpreds.c */
Term STD_PROTO(Yap_CopyTerm,(Term));
int STD_PROTO(Yap_ExportTerm,(Term, char *, size_t));
Term STD_PROTO(Yap_ImportTerm,(char *));
int STD_PROTO(Yap_IsListTerm,(Term));
Term STD_PROTO(Yap_CopyTermNoShare,(Term));
int STD_PROTO(Yap_SizeGroundTerm,(Term, int));