debugger
yap4r
This commit is contained in:
@@ -269,16 +269,25 @@ solver_iteration(0).
|
||||
%= store the facts with the learned probabilities to a file
|
||||
%========================================================================
|
||||
|
||||
save_model:-
|
||||
save_model(X):-
|
||||
problog_flag(sigmoid_slope,Slope),
|
||||
current_iteration(Iteration),
|
||||
solver_iteration(LBFGSIteration),
|
||||
Id is Iteration*100+LBFGSIteration,
|
||||
create_factprobs_file_name(Id,Filename),
|
||||
retractall( query_probability_intern(_,_)),
|
||||
forall(
|
||||
user:example(QueryID,_Query,_QueryProb),
|
||||
(recorded(QueryID,BDD,_),
|
||||
BDD = bdd(_,_,MapList),
|
||||
bind_maplist(MapList, Slope, X),
|
||||
query_probabilities( BDD, BDDProb),
|
||||
assert( query_probability_intern(QueryID,BDDProb)))
|
||||
),
|
||||
export_facts(Filename).
|
||||
|
||||
|
||||
|
||||
|
||||
%========================================================================
|
||||
%= find out whether some example IDs are used more than once
|
||||
%= if so, complain and stop
|
||||
@@ -423,8 +432,6 @@ do_learning_intern(Iterations,Epsilon) :-
|
||||
%leash(0),trace,
|
||||
gradient_descent,
|
||||
|
||||
once(save_model),
|
||||
update_values,
|
||||
mse_trainingset,
|
||||
(
|
||||
last_mse(Last_MSE)
|
||||
@@ -669,7 +676,6 @@ mse_trainingset :-
|
||||
create_training_predictions_file_name(Iteration,File_Name),
|
||||
open(File_Name, write,Handle),
|
||||
format_learning(2,'MSE_Training ',[]),
|
||||
update_values,
|
||||
findall(t(LogCurrentProb,SquaredError),
|
||||
(user:example(QueryID,Query,TrueQueryProb,_Type),
|
||||
query_probability(QueryID,CurrentProb),
|
||||
@@ -714,7 +720,6 @@ mse_testset :-
|
||||
create_test_predictions_file_name(Iteration,File_Name),
|
||||
open(File_Name, write,Handle),
|
||||
format_learning(2,'MSE_Test ',[]),
|
||||
update_values,
|
||||
bb_put(llh_test_queries,0.0),
|
||||
findall(SquaredError,
|
||||
(user:test_example(QueryID,Query,TrueQueryProb,Type),
|
||||
@@ -902,7 +907,7 @@ user:progress(FX,X,_G,X_Norm,G_Norm,Step,_N, LBFGSIteration,Ls,0) :-
|
||||
logger_set_variable(mse_trainingset, FX),
|
||||
retractall(solver_iterations(_)),
|
||||
assert(solver_iterations(LBFGSIteration)),
|
||||
save_model,
|
||||
save_model(X),
|
||||
X0 <== X[0], sigmoid(X0,Slope,P0),
|
||||
X1 <== X[1], sigmoid(X1,Slope,P1),
|
||||
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[LBFGSIteration,P0,P1,FX,X_Norm,G_Norm,Step,Ls]).
|
||||
|
Reference in New Issue
Block a user