trying to fix current_predicate

This commit is contained in:
Vítor Santos Costa 2015-04-21 16:06:24 -06:00
parent e963c59649
commit d1ec94c4c0

View File

@ -877,19 +877,45 @@ static Int
return TRUE;
}
static bool
valid_prop(Prop p)
{
if ( (RepPredProp(p)->PredFlags & HiddenPredFlag) )
return false;
if (RepPredProp(p)->OpcodeOfPred == UNDEF_OPCODE)
return false;
return true;
}
static PropEntry *
fetchPredFromListOfProps (PropEntry *p)
followLinkedListOfProps (PropEntry *p)
{
while (p) {
if (p->KindOfPE == PEProp) {
if (p->KindOfPE == PEProp &&
valid_prop(p) ) {
// found our baby..
return p;
}
p = p->NextOfPE;
}
return NIL;
}
static PropEntry *
getPredProp (PropEntry *p)
{
PredEntry *pe;
if (p == NIL)
return NIL;
pe = RepPredProp(p);
while (p != NIL) {
if (p->KindOfPE == PEProp && valid_prop(p)) {
return p;
} else if (p->KindOfPE == FunctorProperty) {
// go to list of properties in functor..
PropEntry *q;
FunctorEntry *f = RepFunctorProp(p);
if ((q = fetchPredFromListOfProps( f->PropsOfFE ))) {
return q;
// first search remainder of functor list
Prop pf;
if ((pf = followLinkedListOfProps(RepFunctorProp(p)->PropsOfFE))) {
return pf;
}
}
p = p->NextOfPE;
@ -906,74 +932,205 @@ nextPredForAtom (PropEntry *p)
pe = RepPredProp(p);
if (pe->ArityOfPE == 0) {
// if atom prop, search atom list
return fetchPredFromListOfProps(p->NextOfPE);
return followLinkedListOfProps(p->NextOfPE);
} else {
FunctorEntry *f = pe->FunctorOfPred;
// first search remainder of functor list
if ((p = fetchPredFromListOfProps(p->NextOfPE))) {
return p;
PropEntry *pf;
if ((pf = followLinkedListOfProps(p->NextOfPE))) {
return pf;
}
// if that fails, follow the functor
return fetchPredFromListOfProps( f->NextOfPE );
return getPredProp( f->NextOfPE );
}
}
static Prop
initFunctorSearch(Term t3, Term t2)
{
if (IsAtomTerm(t3)) {
Atom at = AtomOfTerm(t3);
// access the entry at key address.
return ( followLinkedListOfProps( RepAtom( at )->PropsOfAE ) );
} else if (IsIntTerm(t3)) {
if (IsNonVarTerm(t2) && t2 != IDB_MODULE) {
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
return NULL;
} else {
// access the entry at key address.
// a single property (this will be deterministic
return AbsPredProp( Yap_FindLUIntKey( IntOfTerm( t3 ) ) );
}
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
return NULL;
} else {
Functor f;
if (IsPairTerm(t3)) {
f = FunctorDot;
} else {
f = FunctorOfTerm(t3);
if (IsExtensionFunctor(f)) {
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
return NULL;
}
}
return ( followLinkedListOfProps( f->PropsOfFE ) );
}
}
static PredEntry *
firstModulePred( PredEntry * npp)
{
if (!npp)
return NULL;
do {
npp = npp->NextPredOfModule;
} while (npp &&
!valid_prop(AbsPredProp(npp)) );
return npp;
}
static PredEntry *
firstModulesPred( PredEntry *npp )
{
ModEntry *m;
if (npp) {
m = Yap_GetModuleEntry( npp-> ModuleOfPred );
npp = npp->NextPredOfModule;
} else {
m = CurrentModules;
npp = m->PredForME;
}
do {
while (npp && !valid_prop(AbsPredProp(npp) ) )
npp = npp->NextPredOfModule;
if (npp)
return npp;
m = m->NextME;
if (m) {
npp = m->PredForME;
}
} while (npp || m);
return npp;
}
static Int cont_current_predicate(USES_REGS1) {
PredEntry *pp = NULL;
PropEntry *n;
UInt Arity;
Term name;
Term t1 = Deref(ARG1), t2 = Deref(ARG2), t3;
bool rc;
Term t1 = ARG1, t2 = ARG2, t3 = ARG3;
bool rc, will_cut = false;
Functor f;
PredEntry *pp;
t1 = Yap_YapStripModule(t1, &t2);
t3 = Yap_YapStripModule(t3, &t2);
if (IsNonVarTerm(t1)) {
// current_pred(A, M, P)
PropEntry *p = AddressOfTerm(EXTRA_CBACK_ARG(4, 1));
// restart inner loop
pp = AddressOfTerm(EXTRA_CBACK_ARG(4, 1));
if (IsNonVarTerm(t3)) {
PropEntry *np, *p;
// t3 is a functor, or compound term,
// just follow the functor chain
p = AbsPredProp( pp );
if (!p) {
// initial search, tracks down what is the first call with
// that name, functor..
p = initFunctorSearch( t3, t2 );
// now, we can do lookahead.
pp = RepPredProp(p);
n = nextPredForAtom (p);
if (n == NIL) {
YAP_cut_up();
if (!IsVarTerm(t2)) {
do {
if (t2 == TermProlog)
t2 = PROLOG_MODULE;
if (pp->ModuleOfPred == t2) {
will_cut = true;
break;
} else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(n);
pp = RepPredProp(p = followLinkedListOfProps( p->NextOfPE ));
}
} while (!will_cut && p);
}
if (!p)
cut_fail();
}
do {
np = followLinkedListOfProps( p->NextOfPE );
if (!np) {
will_cut = true;
} else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(RepPredProp(np));
B->cp_h = HR;
}
} while (p == NULL);
} else if (IsNonVarTerm(t1)) {
PropEntry *np, *p;
// run over the same atomany predicate defined for that atom
// may be fair bait, depends on whether we know the module.
p = AbsPredProp( pp );
if (!p) {
// initialization time
if (IsIntTerm( t1 )) {
// or this or nothing....
p = AbsPredProp( Yap_FindLUIntKey( IntOfTerm( t3 ) ) );
} else if (IsAtomTerm( t1 )) {
// should be the usual situation.
Atom at = AtomOfTerm(t1);
p = getPredProp( RepAtom(at)->PropsOfAE );
} else {
Yap_Error(TYPE_ERROR_CALLABLE, t1, "current_predicate/2");
}
if (!p)
cut_fail();
pp = RepPredProp(p);
}
// now, we can do lookahead.
np = nextPredForAtom(p);
if (!np)
will_cut = true;
else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(RepPredProp(np));
B->cp_h = HR;
}
} else if (IsNonVarTerm(t2)) {
// operating within the same module.
PredEntry *npp;
pp = AddressOfTerm(EXTRA_CBACK_ARG(4, 1));
if (!pp) {
if (!IsAtomTerm( t2 )) {
Yap_Error(TYPE_ERROR_ATOM, t2, "current_predicate/2");
}
ModEntry *m = Yap_GetModuleEntry(t2);
pp = firstModulePred( m->PredForME );
if (!pp)
cut_fail();
}
npp = firstModulePred( pp );
if (!npp)
will_cut = true;
// just try next one
npp = pp->NextPredOfModule;
if (npp) {
else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(npp);
B->cp_h = HR;
} else {
YAP_cut_up();
}
} else {
pp = AddressOfTerm(EXTRA_CBACK_ARG(4, 1));
// operating across all modules.
PredEntry *npp;
while (!pp) {
ModEntry *m = AddressOfTerm(EXTRA_CBACK_ARG(4, 2));
m = m->NextME;
if (!m)
cut_fail();
else {
pp = m->PredForME;
EXTRA_CBACK_ARG(4, 2) = MkAddressTerm(m);
B->cp_h = HR;
}
} // we found a new answer
if (!pp) {
pp = firstModulesPred( CurrentModules->PredForME );
if (!pp)
cut_fail();
}
npp = firstModulesPred( pp );
if (!npp)
will_cut = true;
// just try next one
else {
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(pp->NextPredOfModule);
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(npp);
B->cp_h = HR;
}
}
@ -994,125 +1151,33 @@ static Int cont_current_predicate(USES_REGS1) {
name = MkAtomTerm((Atom)f);
Arity = 0;
} else {
f = pp->FunctorOfPred;
f = pp->FunctorOfPred;
name = MkAtomTerm(NameOfFunctor(f));
Arity = ArityOfFunctor(pp->FunctorOfPred);
}
}
if (Arity) {
t3 = Yap_MkNewApplTerm(f, Arity);
rc = Yap_unify(t3,Yap_MkNewApplTerm(f, Arity));
} else {
t3 = name;
rc = Yap_unify(t3,name);
}
rc = (rc &&
Yap_unify(t2, ModToTerm(pp->ModuleOfPred)) &&
Yap_unify(t1, name) &&
Yap_unify(ARG4, MkIntegerTerm(pp->PredFlags)) );
if (will_cut) {
if (rc) cut_succeed();
cut_fail();
}
rc = (!(pp->PredFlags & HiddenPredFlag)) &&
Yap_unify(ARG2, ModToTerm(pp->ModuleOfPred)) &&
Yap_unify(ARG1, name) &&
Yap_unify(ARG3, t3) &&
Yap_unify(ARG4, MkIntegerTerm(pp->PredFlags));
return rc;
}
static Int init_current_predicate(USES_REGS1) {
Term t1 = Deref(ARG1), t2 = Deref(ARG2), t3 = Deref(ARG3);
unsigned int arity;
Functor f = NIL;
Atom at;
PredEntry *pp = NULL;
ModEntry *m = NULL;
t1 = Yap_StripModule(t1, &t2);
t3 = Yap_StripModule(t3, &t2);
// check term
if (!IsVarTerm(t3)) {
t3 = Yap_StripModule(t3, &t2);
if (IsAtomTerm(t3)) {
at = AtomOfTerm(t3);
arity = 0;
} else if (IsIntTerm(t3)) {
if (IsNonVarTerm(t2) && t2 != IDB_MODULE) {
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
cut_fail();
} else if (IsVarTerm(t2)) {
Yap_unify(t2, IDB_MODULE); // should always succeed
if (Yap_unify(ARG1, t3))
cut_succeed();
else
cut_fail();
}
return FALSE;
} else if (IsPairTerm(t3)) {
f = FunctorDot;
at = AtomDot;
arity = 2;
} else {
f = FunctorOfTerm(t3);
if (IsExtensionFunctor(f)) {
Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2");
cut_fail();
return FALSE;
}
at = NameOfFunctor(f);
arity = ArityOfFunctor(f);
}
if (IsAtomTerm(t2)) { // we know the module and the main predicate
// so that we are deterministic
if (arity == 0) {
if (Yap_GetPredPropByAtom(at, t2) != NIL &&
Yap_unify(ARG1, MkAtomTerm(at))) {
cut_succeed();
}
} else {
if (Yap_GetPredPropByFunc(f, t2) != NIL &&
Yap_unify(ARG1, MkAtomTerm(at))) {
cut_succeed();
}
}
cut_fail();
}
}
// check name
if (IsNonVarTerm(t1)) {
if (IsIntTerm(t1) && (IsVarTerm(t2) || t2 == IDB_MODULE)) {
// idb allows numeric keys.
if (Yap_FindLUIntKey(IntOfTerm(t2))) {
if (Yap_unify(ARG2, IDB_MODULE))
cut_succeed();
cut_fail();
}
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1, "current_predicate/2");
cut_fail();
} else {
PropEntry *p = fetchPredFromListOfProps(RepAtom(AtomOfTerm(t1))->PropsOfAE);
if (!p)
cut_fail();
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(p);
B->cp_h = HR;
}
}
// check module
else {
if (IsNonVarTerm(t2)) {
if (!IsAtomTerm(t2)) {
Yap_Error(TYPE_ERROR_ATOM, t2, "current_predicate/2");
cut_fail();
}
m = Yap_GetModuleEntry(t2);
} else {
m = CurrentModules;
}
if (!m)
cut_fail();
pp = m->PredForME;
if (IsNonVarTerm(t2) && !pp) {
cut_fail();
}
EXTRA_CBACK_ARG(4, 2) = MkAddressTerm(m);
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(pp);
B->cp_h = HR;
}
t1 = Yap_YapStripModule(t1, &t2);
t3 = Yap_YapStripModule(t3, &t2);
EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(NULL);
// ensure deref access to choice-point fields.
return cont_current_predicate(PASS_REGS1);
}
@ -2003,7 +2068,7 @@ static Int p_break(USES_REGS1) {
}
void Yap_InitBackCPreds(void) {
Yap_InitCPredBack("$current_predicate", 4, 2, init_current_predicate,
Yap_InitCPredBack("$current_predicate", 4, 1, init_current_predicate,
cont_current_predicate, SafePredFlag | SyncPredFlag);
Yap_InitCPredBack("$current_op", 5, 1, init_current_op, cont_current_op,
SafePredFlag | SyncPredFlag);