use new matrix functionality
This commit is contained in:
parent
b64965f22c
commit
e19b58cf53
129
library/gecode/clp_examples/3jugs.yap
Normal file
129
library/gecode/clp_examples/3jugs.yap
Normal file
@ -0,0 +1,129 @@
|
||||
% Example with matrices,based on:
|
||||
%
|
||||
% Three jugs problem in Minzinc modelled as a shortest path problem.
|
||||
%
|
||||
% Problem from Taha "Introduction to Operations Research", page 245
|
||||
%
|
||||
% Model created by Hakan Kjellerstrand, hakank@bonetmail.com
|
||||
% See also my MiniZinc page: http://www.hakank.org/minizinc
|
||||
|
||||
%
|
||||
% VSC: had to transpose the matrix, and change the constraints....
|
||||
%
|
||||
|
||||
:- style_check( all ).
|
||||
|
||||
:- use_module(library(gecode/clpfd)).
|
||||
:- use_module(library(maplist)).
|
||||
:- use_module(library(lists)).
|
||||
|
||||
main :-
|
||||
problem(Z, X, InFlow, OutFlow, N),
|
||||
out(Z, X, InFlow, OutFlow, N),
|
||||
fail.
|
||||
main.
|
||||
|
||||
problem(Z, X, InFlow, OutFlow, N) :-
|
||||
N = 15,
|
||||
Start = 1,
|
||||
End = 15,
|
||||
M = 999,
|
||||
d( M, DD ),
|
||||
D = array[1..N,1..N] of DD, % distance
|
||||
RHS = array[1..N] of _, % requirements (right hand statement)
|
||||
X = array[1..N, 1..N] of 0..1, % the resulting matrix, 1 if connected, 0 else
|
||||
OutFlow = array[1..N] of 0..1,
|
||||
InFlow = array[1..N] of 0..1,
|
||||
|
||||
% objective to minimize
|
||||
Z in 0..M,
|
||||
Z #= sum( [I in 1..N, J in 1..N] where D[I,J]<M,
|
||||
D[I,J]*X[I,J]),
|
||||
|
||||
% solve minimize z;
|
||||
% alternative solve statements which may give faster solution
|
||||
%solve :: int_search([ x[i,j] | i,j in 1..n], first_fail, indomain_min, complete) minimize z;
|
||||
% solve minimize z;
|
||||
minimize(Z),
|
||||
|
||||
|
||||
% constraint
|
||||
for(I in 1..N,
|
||||
( I == Start ->
|
||||
RHS[I] <== 1 ;
|
||||
I == End ->
|
||||
RHS[I] <== -1 ;
|
||||
RHS[I] <== 0 )
|
||||
),
|
||||
|
||||
|
||||
% must be larger than 0??
|
||||
for( [I in 1..N, J in 1..N],
|
||||
( D[J,I] = M ->
|
||||
X[J,I] #= 0 ;
|
||||
true )
|
||||
),
|
||||
% outflow constraint
|
||||
for(I in 1..N,
|
||||
OutFlow[I] #= sum(J in 1..N where D[J,I]<M, X[J,I])
|
||||
),
|
||||
% inflow constraint
|
||||
for(J in 1..N,
|
||||
InFlow[J] #= sum(I in 1..N where D[J,I]<M, X[J,I])
|
||||
),
|
||||
% inflow = outflow
|
||||
for(I in 1..N, OutFlow[I]-InFlow[I]#=RHS[I]),
|
||||
|
||||
% labeling
|
||||
labeling( [], X).
|
||||
|
||||
% data
|
||||
d(M, [
|
||||
M, 1, M, M, M, M, M, M, 1, M, M, M, M, M, M,
|
||||
M, M, 1, M, M, M, M, M, M, M, M, M, M, M, M,
|
||||
M, M, M, 1, M, M, M, M, 1, M, M, M, M, M, M,
|
||||
M, M, M, M, 1, M, M, M, M, M, M, M, M, M, M,
|
||||
M, M, M, M, M, 1, M, M, 1, M, M, M, M, M, M,
|
||||
M, M, M, M, M, M, 1, M, M, M, M, M, M, M, M,
|
||||
M, M, M, M, M, M, M, 1, 1, M, M, M, M, M, M,
|
||||
M, M, M, M, M, M, M, M, M, M, M, M, M, M, 1,
|
||||
M, M, M, M, M, M, M, M, M, 1, M, M, M, M, M,
|
||||
M, 1, M, M, M, M, M, M, M, M, 1, M, M, M, M,
|
||||
M, M, M, M, M, M, M, M, M, M, M, 1, M, M, M,
|
||||
M, 1, M, M, M, M, M, M, M, M, M, M, 1, M, M,
|
||||
M, M, M, M, M, M, M, M, M, M, M, M, M, 1, M,
|
||||
M, 1, M, M, M, M, M, M, M, M, M, M, M, M, 1,
|
||||
M, M, M, M, M, M, M, M, M, M, M, M, M, M, M
|
||||
]).
|
||||
|
||||
/*
|
||||
% shows the result matrix
|
||||
output [
|
||||
if i = 1 /\ j = 1 then
|
||||
"z: " ++ show(z) ++ "\n" ++
|
||||
"inFlow: " ++ show(inFlow) ++ "\n" ++ "outFlow: " ++ show(outFlow) ++ "\n" ++
|
||||
" 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5\n"
|
||||
else "" endif ++
|
||||
if j = 1 then show(i) ++ " : " else "" endif ++
|
||||
show(x[i,j]) ++ if j = n then "\n" else " " endif
|
||||
| i in 1..n, j in 1..n
|
||||
];
|
||||
|
||||
*/
|
||||
|
||||
out(Cost, Ts, Ins, Out, N) :-
|
||||
format('cost = ~d~n', [Cost]),
|
||||
InsL <== list(Ins),
|
||||
OutL <== list(Out),
|
||||
format('Inputs =', []), maplist(out, InsL), nl,
|
||||
format('Outputs =', []), maplist(out, OutL), nl,
|
||||
format('transitions =~n', []),
|
||||
for(I in 1..N, outl(Ts[_,I]) ).
|
||||
|
||||
outl( X ) :-
|
||||
L <== X, % evaluate matrix notation to Prolog lists.
|
||||
format(' ', []),
|
||||
maplist(out, L), nl.
|
||||
|
||||
out(0) :- format(' .', []).
|
||||
out(1) :- format(' 1', []).
|
Binary file not shown.
@ -7,6 +7,7 @@
|
||||
op(730, yfx, #\),
|
||||
op(720, yfx, #/\),
|
||||
op(710, fy, #\),
|
||||
op(705, xfx, where),
|
||||
op(700, xfx, #>),
|
||||
op(700, xfx, #<),
|
||||
op(700, xfx, #>=),
|
||||
@ -34,6 +35,7 @@
|
||||
all_distinct/1,
|
||||
all_distinct/2,
|
||||
maximize/1,
|
||||
minimize/1,
|
||||
sum/3,
|
||||
lex_chain/1,
|
||||
minimum/2,
|
||||
@ -69,7 +71,17 @@
|
||||
|
||||
:- use_module(library(gecode)).
|
||||
:- use_module(library(maplist)).
|
||||
:- reexport(library(matrix), [(<==)/2, for/2, for/4]).
|
||||
:- reexport(library(matrix), [(<==)/2, for/2, for/4, of/2]).
|
||||
|
||||
% build array of constraints
|
||||
%
|
||||
matrix:array_extension(_.._ , clpfd:build).
|
||||
|
||||
build( I..J, _, Size, L) :-
|
||||
length( L, Size ),
|
||||
L ins I..J.
|
||||
|
||||
matrix:rhs_opaque(X) :- constraint(X).
|
||||
|
||||
constraint( (_ #> _) ).
|
||||
constraint( (_ #< _) ).
|
||||
@ -119,7 +131,6 @@ constraint( fd_size(_, _) ). %2,
|
||||
constraint( fd_dom(_, _) ). %2
|
||||
|
||||
|
||||
|
||||
process_constraints((B0,B1), (NB0, NB1), Env) :-
|
||||
process_constraints(B0, NB0, Env),
|
||||
process_constraints(B1, NB1, Env).
|
||||
@ -284,14 +295,21 @@ in_dfa( Xs, S0, Ts, Fs ) :-
|
||||
|
||||
labeling(_Opts, Xs) :-
|
||||
get_home(Space-Map),
|
||||
maplist(ll(Map), Xs, NXs),
|
||||
Space += branch(NXs, 'INT_VAR_SIZE_MIN', 'INT_VAL_MIN').
|
||||
check( Xs, X1s ),
|
||||
( X1s == [] -> true ;
|
||||
maplist(ll(Map), X1s, NXs),
|
||||
Space += branch(NXs, 'INT_VAR_SIZE_MIN', 'INT_VAL_MIN') ).
|
||||
|
||||
maximize(V) :-
|
||||
get_home(Space-Map),
|
||||
l(V, I, Map),
|
||||
Space += maximize(I).
|
||||
|
||||
minimize(V) :-
|
||||
get_home(Space-Map),
|
||||
l(V, I, Map),
|
||||
Space += minimize(I).
|
||||
|
||||
extensional_constraint( Tuples, TupleSet) :-
|
||||
TupleSet := tupleset( Tuples ).
|
||||
|
||||
@ -303,7 +321,11 @@ check(V, NV) :-
|
||||
( var(V) -> V = NV ;
|
||||
number(V) -> V = NV ;
|
||||
is_list(V) -> maplist(check, V, NV) ;
|
||||
V = sum(_,_) -> V = NV ;
|
||||
V = '[]'(Indx, Mat) -> NV <== '[]'(Indx, Mat) ;
|
||||
V = '$matrix'(_, _, _, _, C) -> C =.. [_|L], maplist(check, L, NV) ;
|
||||
V = A+B -> check(A,NA), check(B, NB), NV = NB+NA ;
|
||||
V = A-B -> check(A,NA), check(B, NB), NV = NB-NA ;
|
||||
arith(V, _) -> V =.. [C|L], maplist(check, L, NL), NV =.. [C|NL] ).
|
||||
|
||||
post( ( A #= B), Env, Reify) :-
|
||||
@ -318,6 +340,12 @@ post( ( A #>= B), Env, Reify) :-
|
||||
post( rel( A, (#>=), B), Env, Reify).
|
||||
post( ( A #=< B), Env, Reify) :-
|
||||
post( rel( A, (#=<), B), Env, Reify).
|
||||
% [X,Y,Z] #<
|
||||
post( rel( A, Op), Space-Map, Reify):-
|
||||
( var( A ) -> l(A, IA, Map) ; checklist( var, A ) -> maplist(ll(Map), A, IA ) ),
|
||||
gecode_arith_op( Op, GOP ),
|
||||
(var(Reify) -> Space += rel(IA, GOP) ;
|
||||
Space += rel(IA, GOP, Reify) ).
|
||||
% X #< Y
|
||||
% X #< 2
|
||||
post( rel( A, Op, B), Space-Map, Reify):-
|
||||
@ -328,11 +356,6 @@ post( rel( A, Op, B), Space-Map, Reify):-
|
||||
(var(Reify) -> Space += rel(IA, GOP, IB) ;
|
||||
Space += rel(IA, GOP, IB, Reify) ).
|
||||
|
||||
post( rel( A, Op), Space-Map, Reify):-
|
||||
( var( A ) -> l(A, IA, Map) ; checklist( var, A ) -> maplist(ll(Map), A, IA ) ),
|
||||
gecode_arith_op( Op, GOP ),
|
||||
(var(Reify) -> Space += rel(IA, GOP) ;
|
||||
Space += rel(IA, GOP, Reify) ).
|
||||
% 2 #\= B
|
||||
post( rel( A, Op, B), Space-Map, Reify):-
|
||||
var(B), integer(A), !,
|
||||
@ -340,6 +363,7 @@ post( rel( A, Op, B), Space-Map, Reify):-
|
||||
gecode_arith_op( Op, GOP ),
|
||||
(var(Reify) -> Space += rel(A, GOP, IB) ;
|
||||
Space += rel(A, GOP, IB, Reify) ).
|
||||
|
||||
% sum([A,B,C]) #= X
|
||||
post( rel( sum(L), Op, Out), Space-Map, Reify):-
|
||||
checklist( var, L ),
|
||||
@ -351,6 +375,40 @@ post( rel( sum(L), Op, Out), Space-Map, Reify):-
|
||||
Space += linear(IL, GOP, IOut);
|
||||
Space += linear(IL, GOP, IOut, Reify)
|
||||
).
|
||||
% X #= sum([A,B,C])
|
||||
post( rel( Out, Op, sum(L)), Space-Map, Reify):-
|
||||
checklist( var, L ),
|
||||
( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ), !,
|
||||
var(Out), !,
|
||||
maplist(ll(Map), [Out|L], [IOut|IL] ),
|
||||
gecode_arith_op( Op, GOP ),
|
||||
(var(Reify) ->
|
||||
Space += linear(IL, GOP, IOut);
|
||||
Space += linear(IL, GOP, IOut, Reify)
|
||||
).
|
||||
|
||||
|
||||
% sum([I in 0..N-1, M[I]]) #= X
|
||||
post( rel( sum(For, Cond), Op, Out), Space-Map, Reify):-
|
||||
( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ), !,
|
||||
cond2list( For, Cond, Cs, L),
|
||||
maplist(ll(Map), [Out|L], [IOut|IL] ),
|
||||
gecode_arith_op( Op, GOP ),
|
||||
(L = [] -> true ;
|
||||
var(Reify) ->
|
||||
Space += linear(Cs, IL, GOP, IOut);
|
||||
Space += linear(Cs, IL, GOP, IOut, Reify)
|
||||
).
|
||||
post( rel( Out, Op, sum(For, Cond)), Space-Map, Reify):-
|
||||
( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ), !,
|
||||
cond2list( For, Cond, Cs, L),
|
||||
maplist(ll(Map), [Out|L], [IOut|IL] ),
|
||||
gecode_arith_op( Op, GOP ),
|
||||
(L = [] -> true ;
|
||||
var(Reify) ->
|
||||
Space += linear(Cs, IL, GOP, IOut);
|
||||
Space += linear(Cs, IL, GOP, IOut, Reify)
|
||||
).
|
||||
% [A,B,C,D] #< 3
|
||||
post( rel( A, Op, B ), Space-Map, Reify):-
|
||||
checklist( var, A ), !,
|
||||
@ -532,7 +590,6 @@ arith(min(_,_), min).
|
||||
arith(max(_,_), max).
|
||||
arith((_ * _), times).
|
||||
arith((_ / _), div).
|
||||
arith((_ mod _), mod).
|
||||
|
||||
% replace abs(min(A,B)-max(A,B)) by
|
||||
% min(A,B,A1), max(A,B,A2), linear([1,-1],[A1,B1],=,A3), abs(A3,AN)
|
||||
@ -809,6 +866,17 @@ intvar(Map, V) :-
|
||||
get_home(Home) :-
|
||||
b_getval(gecode_space, Home).
|
||||
|
||||
cond2list((List where Goal), El, Cs, Vs) :- !,
|
||||
for( List, add_el(Goal, El), ([])-([]), Cs-Vs ).
|
||||
cond2list(List, El, Cs, Vs) :- !,
|
||||
for( List, add_el(true, El), ([])-([]), Cs-Vs ).
|
||||
|
||||
add_el(G0, El, Cs-Vs, [C|Cs]-[V|Vs]) :-
|
||||
call(G0), !,
|
||||
E <== El,
|
||||
( var(E) -> C = 1, E = V ; E = C*V, integer(C), var(V) -> true ; E = V*C, integer(C), var(V) ).
|
||||
add_el(_G0, _El, Cs-Vs, Cs-Vs).
|
||||
|
||||
m(NV, OV, NA, NB, Vs) :-
|
||||
var(Vs), !,
|
||||
Vs = [v(NV,OV,NA,NB)|_].
|
||||
|
Reference in New Issue
Block a user