Added iterative deepening

Printing of Cudd information


git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@2271 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
This commit is contained in:
rzf 2008-06-08 18:11:41 +00:00
parent f26c4592bb
commit e835cfddc5
4 changed files with 471 additions and 4 deletions

View File

@ -134,11 +134,11 @@ static int compute_prob(void)
bVar2mVar=array_alloc(int,0);
create_dot=YAP_IntOfTerm(arg4);
createVars(variables,arg1,mgr,bVar2mVar,create_dot,inames);
Cudd_PrintInfo(mgr,stderr);
//Cudd_PrintInfo(mgr,stderr);
/* automatic variable reordering, default method CUDD_REORDER_SIFT used */
printf("status %d\n",Cudd_ReorderingStatus(mgr,&order));
printf("order %d\n",order);
//printf("status %d\n",Cudd_ReorderingStatus(mgr,&order));
//printf("order %d\n",order);
Cudd_AutodynEnable(mgr,CUDD_REORDER_SAME);
/* Cudd_AutodynEnable(mgr, CUDD_REORDER_RANDOM_PIVOT);

View File

@ -21,7 +21,8 @@ setting(ground_body,false).
if true, both the head and the body of each clause will be grounded, otherwise
only the head is grounded. In the case in which the body contains variables
not appearing in the head, the body represents an existential event */
setting(min_error,0.01).
setting(depth_bound,4).
/* end of list of parameters */
/* s(GoalsLIst,Prob) compute the probability of a list of goals
@ -98,6 +99,51 @@ solve(GoalsList,Prob,CPUTime1,CPUTime2,WallTime1,WallTime2):-
format(user_error,"~nMemory after inference~n",[]),
print_mem.
si(GoalsList,ProbL,ProbU,CPUTime):-
statistics(cputime,[_,_]),
setting(depth_bound,D),
solvei(GoalsList,D,ProbL,ProbU),
statistics(cputime,[_,CT]),
CPUTime is CT/1000.
solvei(GoalsList,D,ProbL0,ProbU0):-
(setof(Deriv,find_deriv(GoalsList,D,Deriv),LDup)->
rem_dup_lists(LDup,[],L),
% print_mem,
separate_ulb(L,[],LL,[],LU),
compute_prob_deriv(LL,ProbL),
compute_prob_deriv(LU,ProbU),
Err is ProbU-ProbL,
setting(min_error,ME),
(Err<ME->
ProbU0=ProbU,
ProbL0=ProbL
;
setting(depth_bound,DB),
D1 is D+DB,
solvei(GoalsList,D1,ProbL0,ProbU0)
)
;
% print_mem,
ProbL0=0.0,
ProbU0=0.0
).
compute_prob_deriv(LL,ProbL):-
build_formula(LL,FormulaL,[],VarL,0,ConjL),
length(LL,NDL),
length(VarL,NVL),
%format(user_error,"Disjunctions :~d~nConjunctions: ~d~nVariables ~d~n",[NDL,ConjL,NVL]),
var2numbers(VarL,0,NewVarL),
(setting(save_dot,true)->
% format("Variables: ~p~n",[VarL]),
compute_prob(NewVarL,FormulaL,ProbL,1)
;
compute_prob(NewVarL,FormulaL,ProbL,0)
).
print_mem:-
statistics(global_stack,[GS,GSF]),
statistics(local_stack,[LS,LSF]),
@ -111,6 +157,11 @@ print_mem:-
find_deriv(GoalsList,Deriv):-
solve(GoalsList,[],DerivDup),
remove_duplicates(DerivDup,Deriv).
find_deriv(GoalsList,DB,Deriv):-
solve(GoalsList,DB,[],DerivDup),
remove_duplicates(DerivDup,Deriv).
/* duplicate can appear in the C set because two different unistantiated clauses may become the
same clause when instantiated */
@ -146,6 +197,55 @@ solve_cond(Goals,Evidence,Prob):-
format(user_error,"~nMemory after inference~n",[]),
print_mem.
sci(Goals,Evidence,ProbL,ProbU,CPUTime):-
statistics(cputime,[_,_]),
setting(depth_bound,D),
solve_condi(Goals,Evidence,D,ProbL,ProbU),
statistics(cputime,[_,CT]),
CPUTime is CT/1000.
solve_condi(Goals,Evidence,D,ProbL0,ProbU0):-
(call_residue(setof(DerivE,find_deriv(Evidence,D,DerivE),LDupE),_R0)->
rem_dup_lists(LDupE,[],LE),
append(Evidence,Goals,EG),
(call_residue(setof(DerivGE,find_deriv(EG,D,DerivGE),LDupGE),_R1)->
rem_dup_lists(LDupGE,[],LGE),
separate_ulb(LGE,[],LLGE,[],LUGE),
compute_prob_deriv(LLGE,ProbLGE),
compute_prob_deriv(LUGE,ProbUGE),
separate_ulb(LE,[],LLE,[],LUE),
compute_prob_deriv(LLE,ProbLE),
compute_prob_deriv(LUE,ProbUE),
ProbL is ProbLGE/ProbUE,
(ProbLE=0.0->
ProbU1=1.0
;
ProbU1 is ProbUGE/ProbLE
),
(ProbU1>1.0->
ProbU=1.0
;
ProbU=ProbU1
),
Err is ProbU-ProbL,
setting(min_error,ME),
(Err<ME->
ProbU0=ProbU,
ProbL0=ProbL
;
setting(depth_bound,DB),
D1 is D+DB,
solve_condi(Goals,Evidence,D1,ProbL0,ProbU0)
)
;
ProbL0=0.0,
ProbU0=0.0
)
;
ProbL0=undefined,
ProbU0=undefined
).
/* sc(Goals,Evidence,Prob,Time1,Time2) compute the conditional probability of the list of goals
Goals given the list of goals Evidence
Goals and Evidence can have variables, sc returns in backtracking all the solutions with their
@ -216,6 +316,11 @@ find_deriv_GE(LD,GoalsList,Deriv):-
solve(GoalsList,D,DerivDup),
remove_duplicates(DerivDup,Deriv).
find_deriv_GE(LD,GoalsList,DB,Deriv):-
member(D,LD),
solve(GoalsList,DB,D,DerivDup),
remove_duplicates(DerivDup,Deriv).
/* solve(GoalsList,CIn,COut) takes a list of goals and an input C set
and returns an output C set
The C set is a list of triple (N,R,S) where
@ -295,6 +400,45 @@ solve([H|T],CIn,COut):-
find_rule(H,(R,S,N),B,CIn),
solve_pres(R,S,N,B,T,CIn,COut).
solve([],_DB,C,C):-!.
solve(_G,0,C,[(_,pruned,_)|C]):-!.
solve([\+ H |T],DB,CIn,COut):-!,
list2and(HL,H),
(setof(D,find_deriv(HL,DB,D),LDup)->
rem_dup_lists(LDup,[],L),
separate_ulb(L,[],LB,[],UB),
(\+ LB=UB->
choose_clauses(CIn,LB,C0),
C1=[(_,pruned,_)|C0]
;
choose_clauses(CIn,L,C1)
),
solve(T,DB,C1,COut)
;
solve(T,DB,CIn,COut)
).
solve([H|T],DB,CIn,COut):-
builtin(H),!,
call(H),
solve(T,DB,CIn,COut).
solve([H|T],DB,CIn,COut):-
def_rule(H,B),
append(B,T,NG),
DB1 is DB-1,
solve(NG,DB1,CIn,COut).
solve([H|T],DB,CIn,COut):-
find_rule(H,(R,S,N),B,CIn),
DB1 is DB-1,
solve_pres(R,S,N,B,T,DB1,CIn,COut).
solve_pres(R,S,N,B,T,CIn,COut):-
member_eq((N,R,S),CIn),!,
append(B,T,NG),
@ -305,6 +449,16 @@ solve_pres(R,S,N,B,T,CIn,COut):-
append(B,T,NG),
solve(NG,C1,COut).
solve_pres(R,S,N,B,T,DB,CIn,COut):-
member_eq((N,R,S),CIn),!,
append(B,T,NG),
solve(NG,DB,CIn,COut).
solve_pres(R,S,N,B,T,DB,CIn,COut):-
append(CIn,[(N,R,S)],C1),
append(B,T,NG),
solve(NG,DB,C1,COut).
build_initial_graph(N,G):-
listN(0,N,Vert),
add_vertices([],Vert,G).
@ -372,6 +526,7 @@ find_rule(H,(R,S,Number),Body,C):-
not_already_present_with_a_different_head(_N,_R,_S,[]).
not_already_present_with_a_different_head(N,R,S,[(N1,R,S1)|T]):-
not_different(N,N1,S,S1),!,
not_already_present_with_a_different_head(N,R,S,T).
@ -380,6 +535,7 @@ not_already_present_with_a_different_head(N,R,S,[(_N1,R1,_S1)|T]):-
R\==R1,
not_already_present_with_a_different_head(N,R,S,T).
not_different(_N,_N1,S,S1):-
S\=S1,!.
@ -415,6 +571,24 @@ choose_clauses(CIn,[D|T],COut):-
impose_dif_cons(R,S,CIn),
choose_clauses([(N1,R,S)|CIn],T,COut).
choose_clauses_DB(C,[],C).
choose_clauses_DB(CIn,[D|T],COut):-
member((N,R,S),D),
ground((N,R,S)),
already_present_with_a_different_head(N,R,S,CIn),!,
choose_a_head(N,R,S,CIn,C1),
choose_clauses_DB(C1,T,COut).
choose_clauses_DB(CIn,[D|T],COut):-
member((N,R,S),D),
ground((N,R,S)),!,
new_head(N,R,S,N1),
\+ already_present(N1,R,S,CIn),
impose_dif_cons(R,S,CIn),
choose_clauses_DB([(N1,R,S)|CIn],T,COut).
impose_dif_cons(_R,_S,[]):-!.
impose_dif_cons(R,S,[(_NH,R,SH)|T]):-!,
@ -511,6 +685,29 @@ member_subset(E,[_H|T]):-
member_subset(E,T).
separate_ulb([],L,L,U,U):-!.
/*
separate_ulb([H|T],L0,L1,U0,[H|U1]):-
member(pruned,H),!,
separate_ulb(T,L0,L1,U0,U1).
*/
separate_ulb([H|T],L0,[H|L1],U0,[H|U1]):-
ground(H),!,
separate_ulb(T,L0,L1,U0,U1).
separate_ulb([H|T],L0,L1,U0,[H1|U1]):-
get_ground(H,H1),
separate_ulb(T,L0,L1,U0,U1).
get_ground([],[]):-!.
get_ground([H|T],[H|T1]):-
ground(H),!,
get_ground(T,T1).
get_ground([H|T],T1):-
get_ground(T,T1).
/* predicates for building the formula to be converted into a BDD */
@ -536,8 +733,12 @@ build_formula([D|TD],[F|TF],VarIn,VarOut):-
build_term(D,F,VarIn,Var1),
build_formula(TD,TF,Var1,VarOut).
build_term([],[],Var,Var).
build_term([(_,pruned,_)|TC],TF,VarIn,VarOut):-!,
build_term(TC,TF,VarIn,VarOut).
build_term([(N,R,S)|TC],[[NVar,N]|TF],VarIn,VarOut):-
(nth0_eq(0,NVar,VarIn,(R,S))->
Var1=VarIn

View File

@ -21,6 +21,18 @@ close_to(V,T):-
TLow<V,
V<THigh.
ti:-
format("~nTesting iterative deepening lpadsld.yap~n~n",[]),
files(F),
statistics(runtime,[_,_]),
set(ground_body,true),
format("~nGround body~n~n",[]),
test_filesi(F,ground_body(true)),
statistics(runtime,[_,T]),
T1 is T /1000,
format("Test successful, time ~f secs.~n",[T1]).
ti:-
format("Test unsuccessful.~n",[]).
t:-
format("~nTesting lpadsld.yap~n~n",[]),
@ -46,6 +58,16 @@ test_files([H|T],GB):-
findall(A,test(A,H,GB),L),
test_all(H,L),
test_files(T,GB).
test_filesi([],_GB).
test_filesi([H|T],GB):-
library_directory(LD),
atom_concat(LD,'/cplint/examples/',ExDir),
atom_concat(ExDir,H,NH),
p(NH),!,
findall(A,test(A,H,GB),L),
test_alli(H,L),
test_filesi(T,GB).
test_all(_F,[]).
@ -56,6 +78,16 @@ test_all(F,[H|T]):-
call(H),!,
test_all(F,T).
test_alli(_F,[]).
test_alli(F,[H|T]):-
copy_term(H,NH),
NH=(s(Q,P),close_to('P',_Prob)),
format("~a ~p.~n",[F,NH]),
si(Q,PL,PU,T),!,
format("Lower bound ~f, Upper bound ~f~n",[PL,PU]),
test_all(F,T).
files([paper_ref_not,paper_ref,female,exapprox,exrange,threesideddice,
mendel,student,school_simple,school,coin2,ex,trigger,throws,light]).

234
cplint/testlpadsldit.pl Normal file
View File

@ -0,0 +1,234 @@
/*
LPAD and CP-Logic reasoning suite
Copyright (c) 2007, Fabrizio Riguzzi
Test file for lpadsld.pl, case where the body is grounded
Use
:-t.
to execute the test
*/
:-source.
:-use_module(library(lpadsld)).
epsilon(0.000001).
close_to(V,T):-
epsilon(E),
TLow is T-E,
THigh is T+E,
TLow<V,
V<THigh.
t:-
format("~nTesting iterative deepening lpadsld.yap~n~n",[]),
files(F),
statistics(runtime,[_,_]),
set(ground_body,true),
set(depth_bound,1),
set(min_error,0.05),
format("~nGround body~n~n",[]),
test_filesi(F,ground_body(true)),
statistics(runtime,[_,T]),
T1 is T /1000,
format("Test successful, time ~f secs.~n",[T1]).
t:-
format("Test unsuccessful.~n",[]).
test_filesi([],_GB).
test_filesi([H|T],GB):-
library_directory(LD),
atom_concat(LD,'/cplint/examples/',ExDir),
atom_concat(ExDir,H,NH),
p(NH),!,
findall(A,test(A,H,GB),L),
test_alli(H,L),
test_filesi(T,GB).
test_alli(_F,[]).
test_alli(F,[H|T]):-
copy_term(H,NH),
NH=(s(Q,_P),close_to('P',P)),!,
format("~a ~p.~n",[F,NH]),
si(Q,PL,PU,_Time),!,
format("Lower bound ~f, Upper bound ~f~n",[PL,PU]),
P>=PL-1e-7,P=<PU+1e-7,
test_alli(F,T).
test_alli(F,[H|T]):-
copy_term(H,NH),
NH=(sc(Q,E,_P),close_to('P',P)),
format("~a ~p.~n",[F,NH]),
sci(Q,E,PL,PU,_Time),!,
format("Lower bound ~f, Upper bound ~f~n",[PL,PU]),
P>=PL-1e-10,P=<PU+1e-10,
test_alli(F,T).
files([
exapprox,exrange,
threesideddice,
mendel,
coin2,ex,trigger,throws,light]).
test((s([death],P),close_to(P,0.305555555555556)),trigger,_).
test((s([throws(mary),throws(john),break],P),close_to(P,0.46)),throws,_).
test((s([throws(mary),throws(john),\+break],P),close_to(P,0.04)),throws,_).
test((s([\+ throws(mary),throws(john),break],P),close_to(P,0.3)),throws,_).
test((s([\+ throws(mary),throws(john),\+ break],P),close_to(P,0.2)),throws,_).
test((s([push,replace],P),close_to(P,0.5)),light,_).
test((s([push,light],P),close_to(P,0.5)),light,_).
test((s([push,light,replace],P),close_to(P,0)),light,_).
test((s([light,replace],P),close_to(P,0)),light,_).
test((s([light],P),close_to(P,0.5)),light,_).
test((s([replace],P),close_to(P,0.5)),light,_).
test((s([\+ cites_cited(c1,p1)],P),close_to(P,0.7)),paper_ref_not,_).
test((s([cites_citing(c1,p1)],P),close_to(P,0.14)),paper_ref_not,_).
test((s([cites_cited(c1,p1)],P),close_to(P,0.181333333)),paper_ref,_).
test((s([cites_cited(c1,p2)],P),close_to(P,0.181333333)),paper_ref,_).
test((s([cites_cited(c1,p4)],P),close_to(P,0.181333333)),paper_ref,_).
test((s([cites_cited(c1,p3)],P),close_to(P,0.228)),paper_ref,_).
test((s([cites_cited(c1,p5)],P),close_to(P,0.228)),paper_ref,_).
test((s([female(f)],P),close_to(P,0.6)),female,_).
test((s([male(f)],P),close_to(P,0.4)),female,_).
test((s([a],P),close_to(P,0.1719)),exapprox,ground_body(true)).
test((s([a],P),close_to(P,0.099)),exapprox,ground_body(false)).
test((s([a(1)],P),close_to(P,0.2775)),exrange,_).
test((s([a(2)],P),close_to(P,0.36)),exrange,_).
test((s([on(0,1)],P),close_to(P,0.333333333333333)),threesideddice,_).
test((s([on(1,1)],P),close_to(P,0.222222222222222)),threesideddice,_).
test((s([on(2,1)],P),close_to(P,0.148148147703704)),threesideddice,_).
test((s([on(3,1)],P),close_to(P,0.0987654320987654)),threesideddice,_).
test((s([on(4,1)],P),close_to(P,0.0658436213991769)),threesideddice,_).
test((sc([on(2,1)],[on(0,1)],P),close_to(P,0.222222222222222)),threesideddice,_).
test((sc([on(2,1)],[on(1,1)],P),close_to(P,0.333333333333333)),threesideddice,_).
test((sc([on(4,1)],[on(1,1)],P),close_to(P, 0.148148148148148)),threesideddice,_).
test((sc([on(5,1)],[on(2,1)],P),close_to(P, 0.148148148148148)),threesideddice,_).
test((s([cg(s,1,p)],P),close_to(P,0.75)),mendel,_).
test((s([cg(s,1,w)],P),close_to(P,0.25)),mendel,_).
test((s([cg(s,2,p)],P),close_to(P,0.25)),mendel,_).
test((s([cg(s,2,w)],P),close_to(P,0.75)),mendel,_).
test((s([cg(f,2,w)],P),close_to(P,0.5)),mendel,_).
test((s([cg(s,2,w)],P),close_to(P,0.75)),mendel,_).
test((s([a],P),close_to(P,0.226)),ex,_).
test((s([heads(coin1)],P),close_to(P,0.51)),coin2,_).
test((s([heads(coin2)],P),close_to(P,0.51)),coin2,_).
test((s([tails(coin1)],P),close_to(P,0.49)),coin2,_).
test((s([tails(coin2)],P),close_to(P,0.49)),coin2,_).
test((s([student_rank(jane_doe,h)],P),close_to(P,0.465)),student,_).
test((s([student_rank(jane_doe,l)],P),close_to(P,0.535)),student,_).
test((s([course_rat(phil101,h)],P),close_to(P,0.330656)),student,_).
test((s([course_rat(phil101,l)],P),close_to(P,0.669344)),student,_).
test((s([professor_ability(p0,h)],P),close_to(P,0.5)),school,_).
test((s([professor_ability(p0,m)],P),close_to(P,0.4)),school,_).
test((s([professor_ability(p0,l)],P),close_to(P,0.1)),school,_).
test((s([professor_popularity(p0,h)],P),close_to(P,0.531)),school,_).
test((s([professor_popularity(p0,l)],P),close_to(P,0.175)),school,_).
test((s([professor_popularity(p0,m)],P),close_to(P,0.294)),school,_).
test((sc([professor_ability(p0,h)],[professor_popularity(p0,h)],P),close_to(P,0.847457627118644)),school,_).
test((sc([professor_ability(p0,l)],[professor_popularity(p0,h)],P),close_to(P,0.00188323917137476)),school,_).
test((sc([professor_ability(p0,m)],[professor_popularity(p0,h)],P),close_to(P,0.150659133709981)),school,_).
test((sc([professor_popularity(p0,h)],[professor_ability(p0,h)],P),close_to(P,0.9)),school,_).
test((sc([professor_popularity(p0,l)],[professor_ability(p0,h)],P),close_to(P,0.01)),school,_).
test((sc([professor_popularity(p0,m)],[professor_ability(p0,h)],P),close_to(P,0.09)),school,_).
test(( s([registration_grade(r0,1)],P),close_to(P,0.06675)),school,_).
test(( s([registration_grade(r0,2)],P),close_to(P,0.16575)),school,_).
test(( s([registration_grade(r0,3)],P),close_to(P, 0.356)),school,_).
test(( s([registration_grade(r0,4)],P),close_to(P,0.4115)),school,_).
test((sc([registration_grade(r0,1)],[registration_course(r0,C), course_difficulty(C,h)],P),close_to(P,0.15)),school,_).
test((sc([registration_grade(r0,2)],[registration_course(r0,C), course_difficulty(C,h)],P),close_to(P,0.285)),school,_).
test((sc([registration_grade(r0,3)],[registration_course(r0,C), course_difficulty(C,h)],P),close_to(P,0.424)),school,_).
test((sc([registration_grade(r0,4)],[registration_course(r0,C), course_difficulty(C,h)],P),close_to(P,0.141)),school,_).
test((sc([registration_grade(r0,1)], [registration_course(r0,C), course_difficulty(C,h),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.05)),school,_).
test((sc([registration_grade(r0,2)], [registration_course(r0,C), course_difficulty(C,h),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.15)),school,_).
test((sc([registration_grade(r0,3)], [registration_course(r0,C), course_difficulty(C,h),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.6)),school,_).
test((sc([registration_grade(r0,4)], [registration_course(r0,C), course_difficulty(C,h),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.2)),school,_).
test((sc([registration_grade(r0,1)],[registration_course(r0,C), course_difficulty(C,l),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.01)),school,_).
test((sc([registration_grade(r0,2)],[registration_course(r0,C), course_difficulty(C,l),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.02)),school,_).
test((sc([registration_grade(r0,3)],[registration_course(r0,C), course_difficulty(C,l),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.12)),school,_).
test((sc([registration_grade(r0,4)],[registration_course(r0,C), course_difficulty(C,l),
registration_student(r0,S), student_intelligence(S,h)],P),close_to(P,0.85)),school,_).
test((s([registration_satisfaction(r0,1)],P),close_to(P,0.15197525)),school,_).
test((s([registration_satisfaction(r0,2)],P),close_to(P,0.1533102)),school,_).
test((s([registration_satisfaction(r0,3)],P),close_to(P,0.6947145)),school,_).
test((sc([registration_satisfaction(r0,1)],[ registration_student(r0,S),
student_intelligence(S,h)],P),close_to(P,0.0959225)),school,_).
test((sc([registration_satisfaction(r0,2)],[ registration_student(r0,S),
student_intelligence(S,h)],P),close_to(P,0.124515)),school,_).
test((sc([registration_satisfaction(r0,3)],[ registration_student(r0,S),
student_intelligence(S,h)],P),close_to(P,0.7795625)),school,_).
test((sc([registration_satisfaction(r0,1)],[registration_grade(r0,4)],P),close_to(P,0.04)),school,_).
test((sc([registration_satisfaction(r0,2)],[registration_grade(r0,4)],P),close_to(P,0.06)),school,_).
test((sc([registration_satisfaction(r0,3)],[registration_grade(r0,4)],P),close_to(P,0.9)),school,_).
test((sc([registration_satisfaction(r0,1)],[registration_grade(r0,1)],P),close_to(P,0.528)),school,_).
test((sc([registration_satisfaction(r0,2)],[registration_grade(r0,1)],P),close_to(P,0.167)),school,_).
test((sc([registration_satisfaction(r0,3)],[registration_grade(r0,1)],P),close_to(P,0.305)),school,_).
test((sc([ registration_grade(r0,1)],[registration_satisfaction(r0,3)],P),close_to(P,0.0293052037923492)),school,_).
test((sc([ registration_grade(r0,2)],[registration_satisfaction(r0,3)],P),close_to(P, 0.114760451955444)),school,_).
test((sc([ registration_grade(r0,3)],[registration_satisfaction(r0,3)],P),close_to(P,0.322837654892765)),school,_).
test((sc([ registration_grade(r0,4)],[registration_satisfaction(r0,3)],P),close_to(P,0.533096689359442)),school,_).
test((s([course_rating(c0,h)],P),close_to(P,0.5392099)),school,_).
test((s([course_rating(c0,l)],P),close_to(P, 0.2)),school,_).
test((s([course_rating(c0,m)],P),close_to(P,0.2607901)),school,_).
test((sc([course_difficulty(c0,h)],[course_rating(c0,h)],P),close_to(P,0.235185778302661)),school,_).
test((sc([course_difficulty(c0,l)],[course_rating(c0,h)],P),close_to(P,0.259096503977393)),school,_).
test((sc([course_difficulty(c0,m)],[course_rating(c0,h)],P),close_to(P,0.505717717719945)),school,_).
test((s([course_difficulty(c0,h)],P),close_to(P,0.25)),school,_).
test((s([course_difficulty(c0,l)],P),close_to(P,0.25)),school,_).
test((s([course_difficulty(c0,m)],P),close_to(P,0.5)),school,_).
test((s([student_ranking(s0,h)],P),close_to(P,0.6646250000000005)),school_simple,_).
test((s([student_ranking(s0,l)],P),close_to(P,0.33537499999999987)),school_simple,_).