use avg CPT type.
how to deal with it is a solver problem, not an app issue.
This commit is contained in:
parent
45df10e86d
commit
f6c5d16f63
@ -1,9 +1,11 @@
|
|||||||
|
%
|
||||||
|
% generate explicit CPTs
|
||||||
|
%
|
||||||
:- module(clpbn_aggregates, [
|
:- module(clpbn_aggregates, [
|
||||||
cpt_average/4,
|
cpt_average/6,
|
||||||
cpt_average/5,
|
cpt_average/7,
|
||||||
cpt_max/4,
|
cpt_max/6,
|
||||||
cpt_min/4
|
cpt_min/6
|
||||||
]).
|
]).
|
||||||
|
|
||||||
:- use_module(library(clpbn), [{}/1]).
|
:- use_module(library(clpbn), [{}/1]).
|
||||||
@ -11,6 +13,7 @@
|
|||||||
:- use_module(library(lists),
|
:- use_module(library(lists),
|
||||||
[last/2,
|
[last/2,
|
||||||
sumlist/2,
|
sumlist/2,
|
||||||
|
sum_list/3,
|
||||||
max_list/2,
|
max_list/2,
|
||||||
min_list/2
|
min_list/2
|
||||||
]).
|
]).
|
||||||
@ -22,66 +25,77 @@
|
|||||||
|
|
||||||
:- use_module(dists, [get_dist_domain_size/2]).
|
:- use_module(dists, [get_dist_domain_size/2]).
|
||||||
|
|
||||||
cpt_average(Vars, Key, Els0, CPT) :-
|
cpt_average(AllVars, Key, Els0, Tab, Vs, NewVs) :-
|
||||||
build_avg_table(Vars, Els0, Key, 1.0, CPT).
|
cpt_average(AllVars, Key, Els0, 1.0, Tab, Vs, NewVs).
|
||||||
|
|
||||||
cpt_average(Vars, Key, Els0, Softness, CPT) :-
|
% support variables with evidence from domain. This should make everyone's life easier.
|
||||||
build_avg_table(Vars, Els0, Key, Softness, CPT).
|
cpt_average([_|Vars], Key, Els0, Softness, p(Els0, CPT, NewEls), Vs, NewVs) :-
|
||||||
|
find_evidence(Vars, 0, TotEvidence, RVars),
|
||||||
|
build_avg_table(RVars, Vars, Els0, Key, TotEvidence, Softness, MAT, NewEls, Vs, NewVs),
|
||||||
|
matrix_to_list(MAT, CPT).
|
||||||
|
|
||||||
cpt_max(Vars, Key, Els0, CPT) :-
|
find_evidence([], TotEvidence, TotEvidence, []).
|
||||||
build_max_table(Vars, Els0, Els0, Key, 1.0, CPT).
|
find_evidence([V|Vars], TotEvidence0, TotEvidence, RVars) :-
|
||||||
|
clpbn:get_atts(V,[evidence(Ev)]), !,
|
||||||
|
TotEvidenceI is TotEvidence0+Ev,
|
||||||
|
find_evidence(Vars, TotEvidenceI, TotEvidence, RVars).
|
||||||
|
find_evidence([V|Vars], TotEvidence0, TotEvidence, [V|RVars]) :-
|
||||||
|
find_evidence(Vars, TotEvidence0, TotEvidence, RVars).
|
||||||
|
|
||||||
cpt_min(Vars, Key, Els0, CPT) :-
|
cpt_max([_|Vars], Key, Els0, CPT, Vs, NewVs) :-
|
||||||
build_min_table(Vars, Els0, Els0, Key, 1.0, CPT).
|
build_max_table(Vars, Els0, Els0, Key, 1.0, CPT, Vs, NewVs).
|
||||||
|
|
||||||
build_avg_table(Vars, Domain, _, Softness, p(Domain, CPT, Vars)) :-
|
cpt_min([_|Vars], Key, Els0, CPT, Vs, NewVs) :-
|
||||||
|
build_min_table(Vars, Els0, Els0, Key, 1.0, CPT, Vs, NewVs).
|
||||||
|
|
||||||
|
build_avg_table(Vars, OVars, Domain, _, TotEvidence, Softness, CPT, Vars, Vs, Vs) :-
|
||||||
length(Domain, SDomain),
|
length(Domain, SDomain),
|
||||||
int_power(Vars, SDomain, 1, TabSize),
|
int_power(Vars, SDomain, 1, TabSize),
|
||||||
TabSize =< 16,
|
TabSize =< 256,
|
||||||
/* case gmp is not there !! */
|
/* case gmp is not there !! */
|
||||||
TabSize > 0, !,
|
TabSize > 0, !,
|
||||||
average_cpt(Vars, Domain, Softness, CPT).
|
average_cpt(Vars, OVars, Domain, TotEvidence, Softness, CPT).
|
||||||
build_avg_table(Vars, Domain, Key, Softness, p(Domain, CPT, [V1,V2])) :-
|
build_avg_table(Vars, OVars, Domain, Key, TotEvidence, Softness, CPT, [V1,V2], Vs, [V1,V2|NewVs]) :-
|
||||||
length(Vars,L),
|
length(Vars,L),
|
||||||
LL1 is L//2,
|
LL1 is L//2,
|
||||||
LL2 is L-LL1,
|
LL2 is L-LL1,
|
||||||
list_split(LL1, Vars, L1, L2),
|
list_split(LL1, Vars, L1, L2),
|
||||||
Min = 0,
|
Min = 0,
|
||||||
length(Domain,Max1), Max is Max1-1,
|
length(Domain,Max1), Max is Max1-1,
|
||||||
build_intermediate_table(LL1, sum(Min,Max), L1, V1, Key, 1.0, 0, I1),
|
build_intermediate_table(LL1, sum(Min,Max), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
|
||||||
build_intermediate_table(LL2, sum(Min,Max), L2, V2, Key, 1.0, I1, _),
|
build_intermediate_table(LL2, sum(Min,Max), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
|
||||||
average_cpt([V1,V2], Domain, Softness, CPT).
|
average_cpt([V1,V2], OVars, Domain, TotEvidence, Softness, CPT).
|
||||||
|
|
||||||
build_max_table(Vars, Domain, Softness, p(Domain, CPT, Vars)) :-
|
build_max_table(Vars, Domain, Softness, p(Domain, CPT, Vars), Vs, Vs) :-
|
||||||
length(Domain, SDomain),
|
length(Domain, SDomain),
|
||||||
int_power(Vars, SDomain, 1, TabSize),
|
int_power(Vars, SDomain, 1, TabSize),
|
||||||
TabSize =< 16,
|
TabSize =< 16,
|
||||||
/* case gmp is not there !! */
|
/* case gmp is not there !! */
|
||||||
TabSize > 0, !,
|
TabSize > 0, !,
|
||||||
max_cpt(Vars, Domain, Softness, CPT).
|
max_cpt(Vars, Domain, Softness, CPT).
|
||||||
build_max_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2])) :-
|
build_max_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2]), Vs, [V1,V2|NewVs]) :-
|
||||||
length(Vars,L),
|
length(Vars,L),
|
||||||
LL1 is L//2,
|
LL1 is L//2,
|
||||||
LL2 is L-LL1,
|
LL2 is L-LL1,
|
||||||
list_split(LL1, Vars, L1, L2),
|
list_split(LL1, Vars, L1, L2),
|
||||||
build_intermediate_table(LL1, max(Domain,CPT), L1, V1, Key, 1.0, 0, I1),
|
build_intermediate_table(LL1, max(Domain,CPT), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
|
||||||
build_intermediate_table(LL2, max(Domain,CPT), L2, V2, Key, 1.0, I1, _),
|
build_intermediate_table(LL2, max(Domain,CPT), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
|
||||||
max_cpt([V1,V2], Domain, Softness, CPT).
|
max_cpt([V1,V2], Domain, Softness, CPT).
|
||||||
|
|
||||||
build_min_table(Vars, Domain, Softness, p(Domain, CPT, Vars)) :-
|
build_min_table(Vars, Domain, Softness, p(Domain, CPT, Vars), Vs, Vs) :-
|
||||||
length(Domain, SDomain),
|
length(Domain, SDomain),
|
||||||
int_power(Vars, SDomain, 1, TabSize),
|
int_power(Vars, SDomain, 1, TabSize),
|
||||||
TabSize =< 16,
|
TabSize =< 16,
|
||||||
/* case gmp is not there !! */
|
/* case gmp is not there !! */
|
||||||
TabSize > 0, !,
|
TabSize > 0, !,
|
||||||
min_cpt(Vars, Domain, Softness, CPT).
|
min_cpt(Vars, Domain, Softness, CPT).
|
||||||
build_min_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2])) :-
|
build_min_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2]), Vs, [V1,V2|NewVs]) :-
|
||||||
length(Vars,L),
|
length(Vars,L),
|
||||||
LL1 is L//2,
|
LL1 is L//2,
|
||||||
LL2 is L-LL1,
|
LL2 is L-LL1,
|
||||||
list_split(LL1, Vars, L1, L2),
|
list_split(LL1, Vars, L1, L2),
|
||||||
build_intermediate_table(LL1, min(Domain,CPT), L1, V1, Key, 1.0, 0, I1),
|
build_intermediate_table(LL1, min(Domain,CPT), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
|
||||||
build_intermediate_table(LL2, min(Domain,CPT), L2, V2, Key, 1.0, I1, _),
|
build_intermediate_table(LL2, min(Domain,CPT), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
|
||||||
min_cpt([V1,V2], Domain, Softness, CPT).
|
min_cpt([V1,V2], Domain, Softness, CPT).
|
||||||
|
|
||||||
int_power([], _, TabSize, TabSize).
|
int_power([], _, TabSize, TabSize).
|
||||||
@ -89,17 +103,17 @@ int_power([_|L], X, I0, TabSize) :-
|
|||||||
I is I0*X,
|
I is I0*X,
|
||||||
int_power(L, X, I, TabSize).
|
int_power(L, X, I, TabSize).
|
||||||
|
|
||||||
build_intermediate_table(1,_,[V],V, _, _, I, I) :- !.
|
build_intermediate_table(1,_,[V],V, _, _, I, I, Vs, Vs) :- !.
|
||||||
build_intermediate_table(2, Op, [V1,V2], V, Key, Softness, I0, If) :- !,
|
build_intermediate_table(2, Op, [V1,V2], V, Key, Softness, I0, If, Vs, Vs) :- !,
|
||||||
If is I0+1,
|
If is I0+1,
|
||||||
generate_tmp_random(Op, 2, [V1,V2], V, Key, Softness, I0).
|
generate_tmp_random(Op, 2, [V1,V2], V, Key, Softness, I0).
|
||||||
build_intermediate_table(N, Op, L, V, Key, Softness, I0, If) :-
|
build_intermediate_table(N, Op, L, V, Key, Softness, I0, If, Vs, [V1,V2|NewVs]) :-
|
||||||
LL1 is N//2,
|
LL1 is N//2,
|
||||||
LL2 is N-LL1,
|
LL2 is N-LL1,
|
||||||
list_split(LL1, L, L1, L2),
|
list_split(LL1, L, L1, L2),
|
||||||
I1 is I0+1,
|
I1 is I0+1,
|
||||||
build_intermediate_table(LL1, Op, L1, V1, Key, Softness, I1, I2),
|
build_intermediate_table(LL1, Op, L1, V1, Key, Softness, I1, I2, Vs, Vs1),
|
||||||
build_intermediate_table(LL2, Op, L2, V2, Key, Softness, I2, If),
|
build_intermediate_table(LL2, Op, L2, V2, Key, Softness, I2, If, Vs1, NewVs),
|
||||||
generate_tmp_random(Op, N, [V1,V2], V, Key, Softness, I0).
|
generate_tmp_random(Op, N, [V1,V2], V, Key, Softness, I0).
|
||||||
|
|
||||||
% averages are transformed into sums.
|
% averages are transformed into sums.
|
||||||
@ -129,26 +143,26 @@ list_split(I, [H|L], [H|L1], L2) :-
|
|||||||
% generate actual table, instead of trusting the solver
|
% generate actual table, instead of trusting the solver
|
||||||
%
|
%
|
||||||
|
|
||||||
average_cpt(Vs,Vals,_,CPT) :-
|
average_cpt(Vs, OVars, Vals, Base, _, MCPT) :-
|
||||||
get_ds_lengths(Vs,Lengs),
|
get_ds_lengths(Vs,Lengs),
|
||||||
sumlist(Lengs, Tot),
|
length(OVars, N),
|
||||||
length(Vals, SVals),
|
length(Vals, SVals),
|
||||||
|
Tot is (N-1)*SVals,
|
||||||
Factor is SVals/Tot,
|
Factor is SVals/Tot,
|
||||||
matrix_new(floats,[SVals|Lengs],MCPT),
|
matrix_new(floats,[SVals|Lengs],MCPT),
|
||||||
fill_in_average(Lengs,Factor,MCPT),
|
fill_in_average(Lengs,Factor,Base,MCPT).
|
||||||
matrix_to_list(MCPT,CPT).
|
|
||||||
|
|
||||||
get_ds_lengths([],[]).
|
get_ds_lengths([],[]).
|
||||||
get_ds_lengths([V|Vs],[Sz|Lengs]) :-
|
get_ds_lengths([V|Vs],[Sz|Lengs]) :-
|
||||||
get_vdist_size(V, Sz),
|
get_vdist_size(V, Sz),
|
||||||
get_ds_lengths(Vs,Lengs).
|
get_ds_lengths(Vs,Lengs).
|
||||||
|
|
||||||
fill_in_average(Lengs,SVals,MCPT) :-
|
fill_in_average(Lengs, SVals, Base, MCPT) :-
|
||||||
generate(Lengs, Case),
|
generate(Lengs, Case),
|
||||||
average(Case, SVals, Val),
|
average(Case, SVals, Base, Val),
|
||||||
matrix_set(MCPT,[Val|Case],1.0),
|
matrix_set(MCPT,[Val|Case],1.0),
|
||||||
fail.
|
fail.
|
||||||
fill_in_average(_,_,_).
|
fill_in_average(_,_,_,_).
|
||||||
|
|
||||||
generate([], []).
|
generate([], []).
|
||||||
generate([N|Lengs], [C|Case]) :-
|
generate([N|Lengs], [C|Case]) :-
|
||||||
@ -161,8 +175,8 @@ from(I1,M,J) :-
|
|||||||
I < M,
|
I < M,
|
||||||
from(I,M,J).
|
from(I,M,J).
|
||||||
|
|
||||||
average(Case, SVals, Val) :-
|
average(Case, SVals, Base, Val) :-
|
||||||
sumlist(Case, Tot),
|
sum_list(Case, Base, Tot),
|
||||||
Val is integer(round(Tot*SVals)).
|
Val is integer(round(Tot*SVals)).
|
||||||
|
|
||||||
|
|
||||||
|
@ -68,6 +68,9 @@ where Id is the id,
|
|||||||
DSize is the domain size,
|
DSize is the domain size,
|
||||||
Type is
|
Type is
|
||||||
tab for tabular
|
tab for tabular
|
||||||
|
avg for average
|
||||||
|
max for maximum
|
||||||
|
min for minimum
|
||||||
trans for HMMs
|
trans for HMMs
|
||||||
continuous
|
continuous
|
||||||
Domain is
|
Domain is
|
||||||
@ -98,6 +101,9 @@ dist(V, Id, Key, Parents) :-
|
|||||||
dist(V, Id, Key, Parents) :-
|
dist(V, Id, Key, Parents) :-
|
||||||
var(Key), !,
|
var(Key), !,
|
||||||
when(Key, dist(V, Id, Key, Parents)).
|
when(Key, dist(V, Id, Key, Parents)).
|
||||||
|
dist(avg(Domain, Parents), avg(Domain), _, Parents).
|
||||||
|
dist(max(Domain, Parents), max(Domain), _, Parents).
|
||||||
|
dist(min(Domain, Parents), min(Domain), _, Parents).
|
||||||
dist(p(Type, CPT), Id, Key, FParents) :-
|
dist(p(Type, CPT), Id, Key, FParents) :-
|
||||||
copy_structure(Key, Key0),
|
copy_structure(Key, Key0),
|
||||||
distribution(Type, CPT, Id, Key0, [], FParents).
|
distribution(Type, CPT, Id, Key0, [], FParents).
|
||||||
@ -207,6 +213,8 @@ get_dsizes([P|Parents], [Sz|Sizes], Sizes0) :-
|
|||||||
get_dist_params(Id, Parms) :-
|
get_dist_params(Id, Parms) :-
|
||||||
recorded(clpbn_dist_db, db(Id, _, Parms, _, _, _, _), _).
|
recorded(clpbn_dist_db, db(Id, _, Parms, _, _, _, _), _).
|
||||||
|
|
||||||
|
get_dist_domain_size(avg(D,_), DSize) :- !,
|
||||||
|
length(D, DSize).
|
||||||
get_dist_domain_size(Id, DSize) :-
|
get_dist_domain_size(Id, DSize) :-
|
||||||
recorded(clpbn_dist_db, db(Id, _, _, _, _, _, DSize), _).
|
recorded(clpbn_dist_db, db(Id, _, _, _, _, _, DSize), _).
|
||||||
|
|
||||||
|
@ -47,8 +47,7 @@ course_professor(Key, PKey) :-
|
|||||||
|
|
||||||
course_rating(CKey, Rat) :-
|
course_rating(CKey, Rat) :-
|
||||||
setof(Sat, RKey^(registration_course(RKey,CKey), registration_satisfaction(RKey,Sat)), Sats),
|
setof(Sat, RKey^(registration_course(RKey,CKey), registration_satisfaction(RKey,Sat)), Sats),
|
||||||
build_rating_table(Sats, rating(CKey), Table),
|
{ Rat = rating(CKey) with avg([h,m,l],Sats) }.
|
||||||
{ Rat = rating(CKey) with Table }.
|
|
||||||
|
|
||||||
course_difficulty(Key, Dif) :-
|
course_difficulty(Key, Dif) :-
|
||||||
dif_table(Key, Dist),
|
dif_table(Key, Dist),
|
||||||
@ -64,8 +63,7 @@ student_intelligence(Key, Int) :-
|
|||||||
student_ranking(Key, Rank) :-
|
student_ranking(Key, Rank) :-
|
||||||
setof(Grade, CKey^(registration_student(CKey,Key),
|
setof(Grade, CKey^(registration_student(CKey,Key),
|
||||||
registration_grade(CKey, Grade)), Grades),
|
registration_grade(CKey, Grade)), Grades),
|
||||||
build_grades_table(Grades, ranking(Key), GradesTable),
|
{ Rank = ranking(Key) with avg([a,b,c,d],Grades) }.
|
||||||
{ Rank = ranking(Key) with GradesTable }.
|
|
||||||
|
|
||||||
:- ensure_loaded(tables).
|
:- ensure_loaded(tables).
|
||||||
|
|
||||||
|
@ -31,12 +31,12 @@
|
|||||||
|
|
||||||
:- use_module(library('clpbn/dists'),
|
:- use_module(library('clpbn/dists'),
|
||||||
[
|
[
|
||||||
|
dist/4,
|
||||||
get_dist_domain_size/2,
|
get_dist_domain_size/2,
|
||||||
get_dist_matrix/5]).
|
get_dist_matrix/5]).
|
||||||
|
|
||||||
:- use_module(library('clpbn/utils'), [
|
:- use_module(library('clpbn/utils'), [
|
||||||
clpbn_not_var_member/2,
|
clpbn_not_var_member/2]).
|
||||||
check_for_hidden_vars/3]).
|
|
||||||
|
|
||||||
:- use_module(library('clpbn/display'), [
|
:- use_module(library('clpbn/display'), [
|
||||||
clpbn_bind_vals/3]).
|
clpbn_bind_vals/3]).
|
||||||
@ -60,6 +60,10 @@
|
|||||||
append/3
|
append/3
|
||||||
]).
|
]).
|
||||||
|
|
||||||
|
:- use_module(library('clpbn/aggregates'),
|
||||||
|
[cpt_average/6]).
|
||||||
|
|
||||||
|
|
||||||
check_if_vel_done(Var) :-
|
check_if_vel_done(Var) :-
|
||||||
get_atts(Var, [size(_)]), !.
|
get_atts(Var, [size(_)]), !.
|
||||||
|
|
||||||
@ -70,14 +74,12 @@ vel([[]],_,_) :- !.
|
|||||||
vel([LVs],Vs0,AllDiffs) :-
|
vel([LVs],Vs0,AllDiffs) :-
|
||||||
init_vel_solver([LVs], Vs0, AllDiffs, State),
|
init_vel_solver([LVs], Vs0, AllDiffs, State),
|
||||||
% variable elimination proper
|
% variable elimination proper
|
||||||
run_vel_solver([LVs], [Ps], State),
|
run_vel_solver([LVs], [LPs], State),
|
||||||
% from array to list
|
|
||||||
list_from_CPT(Ps, LPs),
|
|
||||||
% bind Probs back to variables so that they can be output.
|
% bind Probs back to variables so that they can be output.
|
||||||
clpbn_bind_vals([LVs],[LPs],AllDiffs).
|
clpbn_bind_vals([LVs],[LPs],AllDiffs).
|
||||||
|
|
||||||
init_vel_solver(Qs, Vs0, _, LVis) :-
|
init_vel_solver(Qs, Vs0, _, LVis) :-
|
||||||
check_for_hidden_vars(Vs0, Vs0, Vs1),
|
check_for_special_vars(Vs0, Vs1),
|
||||||
% LVi will have a list of CLPBN variables
|
% LVi will have a list of CLPBN variables
|
||||||
% Tables0 will have the full data on each variable
|
% Tables0 will have the full data on each variable
|
||||||
init_influences(Vs1, G, RG),
|
init_influences(Vs1, G, RG),
|
||||||
@ -86,6 +88,21 @@ init_vel_solver(Qs, Vs0, _, LVis) :-
|
|||||||
(clpbn:output(xbif(XBifStream)) -> clpbn2xbif(XBifStream,vel,Vs) ; true),
|
(clpbn:output(xbif(XBifStream)) -> clpbn2xbif(XBifStream,vel,Vs) ; true),
|
||||||
(clpbn:output(gviz(XBifStream)) -> clpbn2gviz(XBifStream,vel,Vs,_) ; true).
|
(clpbn:output(gviz(XBifStream)) -> clpbn2gviz(XBifStream,vel,Vs,_) ; true).
|
||||||
|
|
||||||
|
check_for_special_vars([], []).
|
||||||
|
check_for_special_vars([V|Vs0], [V|Vs1]) :-
|
||||||
|
clpbn:get_atts(V, [key(K), dist(Id,Parents)]), !,
|
||||||
|
simplify_dist(Id, V, K, Parents, Vs0, Vs00),
|
||||||
|
check_for_special_vars(Vs00, Vs1).
|
||||||
|
check_for_special_vars([_|Vs0], Vs1) :-
|
||||||
|
check_for_special_vars(Vs0, Vs1).
|
||||||
|
|
||||||
|
% transform aggregate distribution into tree
|
||||||
|
simplify_dist(avg(Domain), V, Key, Parents, Vs0, VsF) :- !,
|
||||||
|
cpt_average([V|Parents], Key, Domain, NewDist, Vs0, VsF),
|
||||||
|
dist(NewDist, Id, Key, ParentsF),
|
||||||
|
clpbn:put_atts(V, [dist(Id,ParentsF)]).
|
||||||
|
simplify_dist(_, _, _, _, Vs0, Vs0).
|
||||||
|
|
||||||
init_vel_solver_for_questions([], _, _, [], []).
|
init_vel_solver_for_questions([], _, _, [], []).
|
||||||
init_vel_solver_for_questions([Vs|MVs], G, RG, [NVs|MNVs0], [NVs|LVis]) :-
|
init_vel_solver_for_questions([Vs|MVs], G, RG, [NVs|MNVs0], [NVs|LVis]) :-
|
||||||
influences(Vs, _, NVs0, G, RG),
|
influences(Vs, _, NVs0, G, RG),
|
||||||
|
@ -11,7 +11,7 @@ main :-
|
|||||||
em(L,0.01,10,CPTs,Lik),
|
em(L,0.01,10,CPTs,Lik),
|
||||||
writeln(Lik:CPTs).
|
writeln(Lik:CPTs).
|
||||||
|
|
||||||
missing(0.3).
|
missing(0.1).
|
||||||
|
|
||||||
% miss 30% of the examples.
|
% miss 30% of the examples.
|
||||||
goal(professor_ability(P,V)) :-
|
goal(professor_ability(P,V)) :-
|
||||||
|
Reference in New Issue
Block a user