use avg CPT type.
how to deal with it is a solver problem, not an app issue.
This commit is contained in:
parent
45df10e86d
commit
f6c5d16f63
@ -1,9 +1,11 @@
|
||||
|
||||
%
|
||||
% generate explicit CPTs
|
||||
%
|
||||
:- module(clpbn_aggregates, [
|
||||
cpt_average/4,
|
||||
cpt_average/5,
|
||||
cpt_max/4,
|
||||
cpt_min/4
|
||||
cpt_average/6,
|
||||
cpt_average/7,
|
||||
cpt_max/6,
|
||||
cpt_min/6
|
||||
]).
|
||||
|
||||
:- use_module(library(clpbn), [{}/1]).
|
||||
@ -11,6 +13,7 @@
|
||||
:- use_module(library(lists),
|
||||
[last/2,
|
||||
sumlist/2,
|
||||
sum_list/3,
|
||||
max_list/2,
|
||||
min_list/2
|
||||
]).
|
||||
@ -22,66 +25,77 @@
|
||||
|
||||
:- use_module(dists, [get_dist_domain_size/2]).
|
||||
|
||||
cpt_average(Vars, Key, Els0, CPT) :-
|
||||
build_avg_table(Vars, Els0, Key, 1.0, CPT).
|
||||
cpt_average(AllVars, Key, Els0, Tab, Vs, NewVs) :-
|
||||
cpt_average(AllVars, Key, Els0, 1.0, Tab, Vs, NewVs).
|
||||
|
||||
cpt_average(Vars, Key, Els0, Softness, CPT) :-
|
||||
build_avg_table(Vars, Els0, Key, Softness, CPT).
|
||||
% support variables with evidence from domain. This should make everyone's life easier.
|
||||
cpt_average([_|Vars], Key, Els0, Softness, p(Els0, CPT, NewEls), Vs, NewVs) :-
|
||||
find_evidence(Vars, 0, TotEvidence, RVars),
|
||||
build_avg_table(RVars, Vars, Els0, Key, TotEvidence, Softness, MAT, NewEls, Vs, NewVs),
|
||||
matrix_to_list(MAT, CPT).
|
||||
|
||||
cpt_max(Vars, Key, Els0, CPT) :-
|
||||
build_max_table(Vars, Els0, Els0, Key, 1.0, CPT).
|
||||
find_evidence([], TotEvidence, TotEvidence, []).
|
||||
find_evidence([V|Vars], TotEvidence0, TotEvidence, RVars) :-
|
||||
clpbn:get_atts(V,[evidence(Ev)]), !,
|
||||
TotEvidenceI is TotEvidence0+Ev,
|
||||
find_evidence(Vars, TotEvidenceI, TotEvidence, RVars).
|
||||
find_evidence([V|Vars], TotEvidence0, TotEvidence, [V|RVars]) :-
|
||||
find_evidence(Vars, TotEvidence0, TotEvidence, RVars).
|
||||
|
||||
cpt_min(Vars, Key, Els0, CPT) :-
|
||||
build_min_table(Vars, Els0, Els0, Key, 1.0, CPT).
|
||||
cpt_max([_|Vars], Key, Els0, CPT, Vs, NewVs) :-
|
||||
build_max_table(Vars, Els0, Els0, Key, 1.0, CPT, Vs, NewVs).
|
||||
|
||||
build_avg_table(Vars, Domain, _, Softness, p(Domain, CPT, Vars)) :-
|
||||
cpt_min([_|Vars], Key, Els0, CPT, Vs, NewVs) :-
|
||||
build_min_table(Vars, Els0, Els0, Key, 1.0, CPT, Vs, NewVs).
|
||||
|
||||
build_avg_table(Vars, OVars, Domain, _, TotEvidence, Softness, CPT, Vars, Vs, Vs) :-
|
||||
length(Domain, SDomain),
|
||||
int_power(Vars, SDomain, 1, TabSize),
|
||||
TabSize =< 16,
|
||||
TabSize =< 256,
|
||||
/* case gmp is not there !! */
|
||||
TabSize > 0, !,
|
||||
average_cpt(Vars, Domain, Softness, CPT).
|
||||
build_avg_table(Vars, Domain, Key, Softness, p(Domain, CPT, [V1,V2])) :-
|
||||
average_cpt(Vars, OVars, Domain, TotEvidence, Softness, CPT).
|
||||
build_avg_table(Vars, OVars, Domain, Key, TotEvidence, Softness, CPT, [V1,V2], Vs, [V1,V2|NewVs]) :-
|
||||
length(Vars,L),
|
||||
LL1 is L//2,
|
||||
LL2 is L-LL1,
|
||||
list_split(LL1, Vars, L1, L2),
|
||||
Min = 0,
|
||||
length(Domain,Max1), Max is Max1-1,
|
||||
build_intermediate_table(LL1, sum(Min,Max), L1, V1, Key, 1.0, 0, I1),
|
||||
build_intermediate_table(LL2, sum(Min,Max), L2, V2, Key, 1.0, I1, _),
|
||||
average_cpt([V1,V2], Domain, Softness, CPT).
|
||||
build_intermediate_table(LL1, sum(Min,Max), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
|
||||
build_intermediate_table(LL2, sum(Min,Max), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
|
||||
average_cpt([V1,V2], OVars, Domain, TotEvidence, Softness, CPT).
|
||||
|
||||
build_max_table(Vars, Domain, Softness, p(Domain, CPT, Vars)) :-
|
||||
build_max_table(Vars, Domain, Softness, p(Domain, CPT, Vars), Vs, Vs) :-
|
||||
length(Domain, SDomain),
|
||||
int_power(Vars, SDomain, 1, TabSize),
|
||||
TabSize =< 16,
|
||||
/* case gmp is not there !! */
|
||||
TabSize > 0, !,
|
||||
max_cpt(Vars, Domain, Softness, CPT).
|
||||
build_max_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2])) :-
|
||||
build_max_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2]), Vs, [V1,V2|NewVs]) :-
|
||||
length(Vars,L),
|
||||
LL1 is L//2,
|
||||
LL2 is L-LL1,
|
||||
list_split(LL1, Vars, L1, L2),
|
||||
build_intermediate_table(LL1, max(Domain,CPT), L1, V1, Key, 1.0, 0, I1),
|
||||
build_intermediate_table(LL2, max(Domain,CPT), L2, V2, Key, 1.0, I1, _),
|
||||
build_intermediate_table(LL1, max(Domain,CPT), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
|
||||
build_intermediate_table(LL2, max(Domain,CPT), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
|
||||
max_cpt([V1,V2], Domain, Softness, CPT).
|
||||
|
||||
build_min_table(Vars, Domain, Softness, p(Domain, CPT, Vars)) :-
|
||||
build_min_table(Vars, Domain, Softness, p(Domain, CPT, Vars), Vs, Vs) :-
|
||||
length(Domain, SDomain),
|
||||
int_power(Vars, SDomain, 1, TabSize),
|
||||
TabSize =< 16,
|
||||
/* case gmp is not there !! */
|
||||
TabSize > 0, !,
|
||||
min_cpt(Vars, Domain, Softness, CPT).
|
||||
build_min_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2])) :-
|
||||
build_min_table(Vars, Domain, Softness, p(Domain, CPT, [V1,V2]), Vs, [V1,V2|NewVs]) :-
|
||||
length(Vars,L),
|
||||
LL1 is L//2,
|
||||
LL2 is L-LL1,
|
||||
list_split(LL1, Vars, L1, L2),
|
||||
build_intermediate_table(LL1, min(Domain,CPT), L1, V1, Key, 1.0, 0, I1),
|
||||
build_intermediate_table(LL2, min(Domain,CPT), L2, V2, Key, 1.0, I1, _),
|
||||
build_intermediate_table(LL1, min(Domain,CPT), L1, V1, Key, 1.0, 0, I1, Vs, Vs1),
|
||||
build_intermediate_table(LL2, min(Domain,CPT), L2, V2, Key, 1.0, I1, _, Vs1, NewVs),
|
||||
min_cpt([V1,V2], Domain, Softness, CPT).
|
||||
|
||||
int_power([], _, TabSize, TabSize).
|
||||
@ -89,17 +103,17 @@ int_power([_|L], X, I0, TabSize) :-
|
||||
I is I0*X,
|
||||
int_power(L, X, I, TabSize).
|
||||
|
||||
build_intermediate_table(1,_,[V],V, _, _, I, I) :- !.
|
||||
build_intermediate_table(2, Op, [V1,V2], V, Key, Softness, I0, If) :- !,
|
||||
build_intermediate_table(1,_,[V],V, _, _, I, I, Vs, Vs) :- !.
|
||||
build_intermediate_table(2, Op, [V1,V2], V, Key, Softness, I0, If, Vs, Vs) :- !,
|
||||
If is I0+1,
|
||||
generate_tmp_random(Op, 2, [V1,V2], V, Key, Softness, I0).
|
||||
build_intermediate_table(N, Op, L, V, Key, Softness, I0, If) :-
|
||||
build_intermediate_table(N, Op, L, V, Key, Softness, I0, If, Vs, [V1,V2|NewVs]) :-
|
||||
LL1 is N//2,
|
||||
LL2 is N-LL1,
|
||||
list_split(LL1, L, L1, L2),
|
||||
I1 is I0+1,
|
||||
build_intermediate_table(LL1, Op, L1, V1, Key, Softness, I1, I2),
|
||||
build_intermediate_table(LL2, Op, L2, V2, Key, Softness, I2, If),
|
||||
build_intermediate_table(LL1, Op, L1, V1, Key, Softness, I1, I2, Vs, Vs1),
|
||||
build_intermediate_table(LL2, Op, L2, V2, Key, Softness, I2, If, Vs1, NewVs),
|
||||
generate_tmp_random(Op, N, [V1,V2], V, Key, Softness, I0).
|
||||
|
||||
% averages are transformed into sums.
|
||||
@ -129,26 +143,26 @@ list_split(I, [H|L], [H|L1], L2) :-
|
||||
% generate actual table, instead of trusting the solver
|
||||
%
|
||||
|
||||
average_cpt(Vs,Vals,_,CPT) :-
|
||||
average_cpt(Vs, OVars, Vals, Base, _, MCPT) :-
|
||||
get_ds_lengths(Vs,Lengs),
|
||||
sumlist(Lengs, Tot),
|
||||
length(OVars, N),
|
||||
length(Vals, SVals),
|
||||
Tot is (N-1)*SVals,
|
||||
Factor is SVals/Tot,
|
||||
matrix_new(floats,[SVals|Lengs],MCPT),
|
||||
fill_in_average(Lengs,Factor,MCPT),
|
||||
matrix_to_list(MCPT,CPT).
|
||||
fill_in_average(Lengs,Factor,Base,MCPT).
|
||||
|
||||
get_ds_lengths([],[]).
|
||||
get_ds_lengths([V|Vs],[Sz|Lengs]) :-
|
||||
get_vdist_size(V, Sz),
|
||||
get_ds_lengths(Vs,Lengs).
|
||||
|
||||
fill_in_average(Lengs,SVals,MCPT) :-
|
||||
fill_in_average(Lengs, SVals, Base, MCPT) :-
|
||||
generate(Lengs, Case),
|
||||
average(Case, SVals, Val),
|
||||
average(Case, SVals, Base, Val),
|
||||
matrix_set(MCPT,[Val|Case],1.0),
|
||||
fail.
|
||||
fill_in_average(_,_,_).
|
||||
fill_in_average(_,_,_,_).
|
||||
|
||||
generate([], []).
|
||||
generate([N|Lengs], [C|Case]) :-
|
||||
@ -161,8 +175,8 @@ from(I1,M,J) :-
|
||||
I < M,
|
||||
from(I,M,J).
|
||||
|
||||
average(Case, SVals, Val) :-
|
||||
sumlist(Case, Tot),
|
||||
average(Case, SVals, Base, Val) :-
|
||||
sum_list(Case, Base, Tot),
|
||||
Val is integer(round(Tot*SVals)).
|
||||
|
||||
|
||||
|
@ -68,6 +68,9 @@ where Id is the id,
|
||||
DSize is the domain size,
|
||||
Type is
|
||||
tab for tabular
|
||||
avg for average
|
||||
max for maximum
|
||||
min for minimum
|
||||
trans for HMMs
|
||||
continuous
|
||||
Domain is
|
||||
@ -98,6 +101,9 @@ dist(V, Id, Key, Parents) :-
|
||||
dist(V, Id, Key, Parents) :-
|
||||
var(Key), !,
|
||||
when(Key, dist(V, Id, Key, Parents)).
|
||||
dist(avg(Domain, Parents), avg(Domain), _, Parents).
|
||||
dist(max(Domain, Parents), max(Domain), _, Parents).
|
||||
dist(min(Domain, Parents), min(Domain), _, Parents).
|
||||
dist(p(Type, CPT), Id, Key, FParents) :-
|
||||
copy_structure(Key, Key0),
|
||||
distribution(Type, CPT, Id, Key0, [], FParents).
|
||||
@ -207,6 +213,8 @@ get_dsizes([P|Parents], [Sz|Sizes], Sizes0) :-
|
||||
get_dist_params(Id, Parms) :-
|
||||
recorded(clpbn_dist_db, db(Id, _, Parms, _, _, _, _), _).
|
||||
|
||||
get_dist_domain_size(avg(D,_), DSize) :- !,
|
||||
length(D, DSize).
|
||||
get_dist_domain_size(Id, DSize) :-
|
||||
recorded(clpbn_dist_db, db(Id, _, _, _, _, _, DSize), _).
|
||||
|
||||
|
@ -47,8 +47,7 @@ course_professor(Key, PKey) :-
|
||||
|
||||
course_rating(CKey, Rat) :-
|
||||
setof(Sat, RKey^(registration_course(RKey,CKey), registration_satisfaction(RKey,Sat)), Sats),
|
||||
build_rating_table(Sats, rating(CKey), Table),
|
||||
{ Rat = rating(CKey) with Table }.
|
||||
{ Rat = rating(CKey) with avg([h,m,l],Sats) }.
|
||||
|
||||
course_difficulty(Key, Dif) :-
|
||||
dif_table(Key, Dist),
|
||||
@ -64,8 +63,7 @@ student_intelligence(Key, Int) :-
|
||||
student_ranking(Key, Rank) :-
|
||||
setof(Grade, CKey^(registration_student(CKey,Key),
|
||||
registration_grade(CKey, Grade)), Grades),
|
||||
build_grades_table(Grades, ranking(Key), GradesTable),
|
||||
{ Rank = ranking(Key) with GradesTable }.
|
||||
{ Rank = ranking(Key) with avg([a,b,c,d],Grades) }.
|
||||
|
||||
:- ensure_loaded(tables).
|
||||
|
||||
|
@ -31,12 +31,12 @@
|
||||
|
||||
:- use_module(library('clpbn/dists'),
|
||||
[
|
||||
dist/4,
|
||||
get_dist_domain_size/2,
|
||||
get_dist_matrix/5]).
|
||||
|
||||
:- use_module(library('clpbn/utils'), [
|
||||
clpbn_not_var_member/2,
|
||||
check_for_hidden_vars/3]).
|
||||
clpbn_not_var_member/2]).
|
||||
|
||||
:- use_module(library('clpbn/display'), [
|
||||
clpbn_bind_vals/3]).
|
||||
@ -60,6 +60,10 @@
|
||||
append/3
|
||||
]).
|
||||
|
||||
:- use_module(library('clpbn/aggregates'),
|
||||
[cpt_average/6]).
|
||||
|
||||
|
||||
check_if_vel_done(Var) :-
|
||||
get_atts(Var, [size(_)]), !.
|
||||
|
||||
@ -70,14 +74,12 @@ vel([[]],_,_) :- !.
|
||||
vel([LVs],Vs0,AllDiffs) :-
|
||||
init_vel_solver([LVs], Vs0, AllDiffs, State),
|
||||
% variable elimination proper
|
||||
run_vel_solver([LVs], [Ps], State),
|
||||
% from array to list
|
||||
list_from_CPT(Ps, LPs),
|
||||
run_vel_solver([LVs], [LPs], State),
|
||||
% bind Probs back to variables so that they can be output.
|
||||
clpbn_bind_vals([LVs],[LPs],AllDiffs).
|
||||
|
||||
init_vel_solver(Qs, Vs0, _, LVis) :-
|
||||
check_for_hidden_vars(Vs0, Vs0, Vs1),
|
||||
check_for_special_vars(Vs0, Vs1),
|
||||
% LVi will have a list of CLPBN variables
|
||||
% Tables0 will have the full data on each variable
|
||||
init_influences(Vs1, G, RG),
|
||||
@ -86,6 +88,21 @@ init_vel_solver(Qs, Vs0, _, LVis) :-
|
||||
(clpbn:output(xbif(XBifStream)) -> clpbn2xbif(XBifStream,vel,Vs) ; true),
|
||||
(clpbn:output(gviz(XBifStream)) -> clpbn2gviz(XBifStream,vel,Vs,_) ; true).
|
||||
|
||||
check_for_special_vars([], []).
|
||||
check_for_special_vars([V|Vs0], [V|Vs1]) :-
|
||||
clpbn:get_atts(V, [key(K), dist(Id,Parents)]), !,
|
||||
simplify_dist(Id, V, K, Parents, Vs0, Vs00),
|
||||
check_for_special_vars(Vs00, Vs1).
|
||||
check_for_special_vars([_|Vs0], Vs1) :-
|
||||
check_for_special_vars(Vs0, Vs1).
|
||||
|
||||
% transform aggregate distribution into tree
|
||||
simplify_dist(avg(Domain), V, Key, Parents, Vs0, VsF) :- !,
|
||||
cpt_average([V|Parents], Key, Domain, NewDist, Vs0, VsF),
|
||||
dist(NewDist, Id, Key, ParentsF),
|
||||
clpbn:put_atts(V, [dist(Id,ParentsF)]).
|
||||
simplify_dist(_, _, _, _, Vs0, Vs0).
|
||||
|
||||
init_vel_solver_for_questions([], _, _, [], []).
|
||||
init_vel_solver_for_questions([Vs|MVs], G, RG, [NVs|MNVs0], [NVs|LVis]) :-
|
||||
influences(Vs, _, NVs0, G, RG),
|
||||
|
@ -11,7 +11,7 @@ main :-
|
||||
em(L,0.01,10,CPTs,Lik),
|
||||
writeln(Lik:CPTs).
|
||||
|
||||
missing(0.3).
|
||||
missing(0.1).
|
||||
|
||||
% miss 30% of the examples.
|
||||
goal(professor_ability(P,V)) :-
|
||||
|
Reference in New Issue
Block a user