This commit is contained in:
Vitor Santos Costa
2017-04-07 23:10:59 +01:00
parent a9f02dddca
commit faf3c930c8
86 changed files with 901 additions and 642 deletions

View File

@@ -1,11 +1,11 @@
SET (CODES
solarized-light.css
theme.css
yap.css
icons/yap_64x64x32.png
icons/yap_256x256x32.png
icons/yap_128x128x32.png
icons/yap_48x48x32.png
solarized-light.css
theme.css
yap.css
icons/yap_64x64x32.png
icons/yap_256x256x32.png
icons/yap_128x128x32.png
icons/yap_48x48x32.png
)
SET (DOCS
@@ -42,14 +42,16 @@ if (WITH_DOCS)
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
add_custom_target(doc
COMMAND ${DOXYGEN_EXECUTABLE} ${doxyfile}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
COMMENT "Generating API documentation with Doxygen"
VERBATIM)
configure_file(source/conf.py.in source/conf.py)
configure_file(source/index.rst source/index.rst)
add_custom_target(doc
COMMAND ${DOXYGEN_EXECUTABLE} ${doxyfile}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
COMMENT "Generating API documentation with Doxygen"
VERBATIM)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html DESTINATION ${docdir})
install(FILES ${CODES} DESTINATION ${docdir})
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html DESTINATION ${docdir})
install(FILES ${CODES} DESTINATION ${docdir})
endif()

View File

@@ -58,7 +58,7 @@ PROJECT_LOGO = @CMAKE_SOURCE_DIR@/docs/icons/yap_96x96x32.png
# entered, it will be relative to the location where doxygen was started. If
# left blank the current directory will be used.
OUTPUT_DIRECTORY = @PROJECT_BINARY_DIR@/Docs
OUTPUT_DIRECTORY = @PROJECT_BINARY_DIR@/docs
# If the CREATE_SUBDIRS tag is set to YES then doxygen will create 4096 sub-
# directories (in 2 levels) under the output directory of each output format and
@@ -775,7 +775,7 @@ WARN_LOGFILE =
# spaces. See also FILE_PATTERNS and EXTENSION_MAPPING
# Note: If this tag is empty the current directory is searched.
INPUT = @PROJECT_SOURCE_DIR@/pl \
INPUT = @PROJECT_SOURCE_DIR@/pl \
@PROJECT_SOURCE_DIR@/CXX \
@PROJECT_SOURCE_DIR@/OPTYap \
@PROJECT_SOURCE_DIR@/C \
@@ -784,9 +784,10 @@ INPUT = @PROJECT_SOURCE_DIR@/pl \
@PROJECT_SOURCE_DIR@/os \
@PROJECT_SOURCE_DIR@/library \
@PROJECT_SOURCE_DIR@/packages \
@PROJECT_SOURCE_DIR@/swi/library \
@PROJECT_SOURCE_DIR@/docs/md \
@PROJECT_SOURCE_DIR@/INSTALL.md
@PROJECT_SOURCE_DIR@/swi/library
# \
# @PROJECT_SOURCE_DIR@/docs/md \
# @PROJECT_SOURCE_DIR@/INSTALL.md
# This tag can be used to specify the character encoding of the source files
@@ -829,9 +830,22 @@ RECURSIVE = YES
EXCLUDE = *pltotex.pl \
@PROJECT_SOURCE_DIR@/packages/myddas/sqlite3/src \
@PROJECT_SOURCE_DIR@/packages/gecode/4.0.* \
@PROJECT_SOURCE_DIR@/packages/gecode/3,* \
@PROJECT_SOURCE_DIR@/C/traced_absmi_insts.h
@PROJECT_SOURCE_DIR@/packages/gecode/4.4.0 \
@PROJECT_SOURCE_DIR@/packages/gecode/4.2.1 \
@PROJECT_SOURCE_DIR@/packages/gecode/4.2.0 \
@PROJECT_SOURCE_DIR@/packages/gecode/4.0.0 \
@PROJECT_SOURCE_DIR@/packages/gecode/3.7.3 \
@PROJECT_SOURCE_DIR@/packages/gecode/3.7.2 \
@PROJECT_SOURCE_DIR@/packages/gecode/3.7.1 \
@PROJECT_SOURCE_DIR@/packages/gecode/3.7.0 \
@PROJECT_SOURCE_DIR@/packages/gecode/3.6.0 \
@PROJECT_SOURCE_DIR@/packages/gecode/dev \
@PROJECT_SOURCE_DIR@/C/traced_absmi_insts.h \
@PROJECT_SOURCE_DIR@/packages/cplint \
@PROJECT_SOURCE_DIR@/packages/CLPBN/examples \
@PROJECT_SOURCE_DIR@/packages/prosqlite \
@PROJECT_SOURCE_DIR@/packages/pyswip \
# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
# directories that are symbolic links (a Unix file system feature) are excluded
@@ -1316,7 +1330,7 @@ BINARY_TOC = NO
# The default value is: NO.
# This tag requires that the tag GENERATE_HTMLHELP is set to YES.
TOC_EXPAND = NO
TOC_EXPAND = YES
# If the GENERATE_QHP tag is set to YES and both QHP_NAMESPACE and
# QHP_VIRTUAL_FOLDER are set, an additional index file will be generated that
@@ -2030,7 +2044,8 @@ SEARCH_INCLUDES = YES
# preprocessor.
# This tag requires that the tag SEARCH_INCLUDES is set to YES.
INCLUDE_PATH =
INCLUDE_PATH = @CMAKE_BINARY_DIR@ \
@CMAKE_BINARY_DIR@/packages/gecode
# You can use the INCLUDE_FILE_PATTERNS tag to specify one or more wildcard
# patterns (like *.h and *.hpp) to filter out the header-files in the
@@ -2261,7 +2276,7 @@ TEMPLATE_RELATIONS = NO
INCLUDE_GRAPH = YES
# If the INCLUDED_BY_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are
# If the INCLUDED_BY_GRAPH, ENABLE_PREPROCESSING and SEARCH_INCLUDES tags are
# set to YES then doxygen will generate a graph for each documented file showing
# the direct and indirect include dependencies of the file with other documented
# files.

17
docs/md/bdd.md Normal file
View File

@@ -0,0 +1,17 @@
Boolean Decision Making in YAP {#BDDs}
==============================
This is an experimental interface to BDD libraries. It is not as
sophisticated as simplecudd, but it should be fun to play around with bdds.
It currently works with cudd only, although it should be possible to
port to other libraries. It requires the ability to dynamically link
with cudd binaries. This works:
- in fedora with standard package
- in osx with hand-compiled and ports package
In ubuntu, you may want to install the fedora rpm, or just download the package from the original
and compile it.
.

528
docs/md/chr.md Normal file
View File

@@ -0,0 +1,528 @@
CHR: Constraint Handling Rules {#chr}
==============================
This chapter is written by Tom Schrijvers, K.U. Leuven for the hProlog
system. Adjusted by Jan Wielemaker to fit the SWI-Prolog documentation
infrastructure and remove hProlog specific references.
The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The
runtime environment is written by Christian Holzbaur and Tom
Schrijvers while the compiler is written by Tom Schrijvers. Both are
integrated with SWI-Prolog and licenced under compatible conditions
with permission from the authors. Porting and maintenance on YAP is
the entire responsability of Vítor Santos Costa.
The main reference for SWI-Prolog's CHR system is:
+ T. Schrijvers, and B. Demoen, <em>The K.U.Leuven CHR System: Implementation and Application</em>, First Workshop on Constraint Handling Rules: Selected
Contributions (Fruwirth, T. and Meister, M., eds.), pp. 1--5, 2004.
# Introduction
Constraint Handling Rules (CHR) is a committed-choice bottom-up language
embedded in Prolog. It is designed for writing constraint solvers and is
particularily useful for providing application-specific constraints.
It has been used in many kinds of applications, like scheduling,
model checking, abduction, type checking among many others.
CHR has previously been implemented in other Prolog systems (SICStus,
Eclipse, Yap), Haskell and Java. This CHR system is based on the
compilation scheme and runtime environment of CHR in SICStus.
In this documentation we restrict ourselves to giving a short overview
of CHR in general and mainly focus on elements specific to this
implementation. For a more thorough review of CHR we refer the reader to
[Freuhwirth:98]. More background on CHR can be found at the CHR web site.
### Syntax and Semantics
We present informally the syntax and semantics of CHR.
#### CHR Syntax
The syntax of CHR rules in hProlog is the following:
~~~~~
rules --> rule, rules.
rules --> [].
rule --> name, actual_rule, pragma, [atom(`.`)].
name --> atom, [atom(`@`)].
name --> [].
actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.
simplification_rule --> constraints, [atom(`<=>`)], guard, body.
propagation_rule --> constraints, [atom(`==>`)], guard, body.
simpagation_rule --> constraints, [atom(`\`)], constraints, [atom(`<=>`)],
guard, body.
constraints --> constraint, constraint_id.
constraints --> constraint, [atom(`,`)], constraints.
constraint --> compound_term.
constraint_id --> [].
constraint_id --> [atom(`#`)], variable.
guard --> [].
guard --> goal, [atom(`|`)].
body --> goal.
pragma --> [].
pragma --> [atom(`pragma`)], actual_pragmas.
actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(`,`)], actual_pragmas.
actual_pragma --> [atom(`passive(`)], variable, [atom(`)`)].
~~~~~
Additional syntax-related terminology:
+ *head:* the constraints in an `actual_rule` before
the arrow (either `<=>` or `==>`)
#### Semantics Semantics
In this subsection the operational semantics of CHR in Prolog are presented
informally. They do not differ essentially from other CHR systems.
When a constraint is called, it is considered an active constraint and
the system will try to apply the rules to it. Rules are tried and executed
sequentially in the order they are written.
A rule is conceptually tried for an active constraint in the following
way. The active constraint is matched with a constraint in the head of
the rule. If more constraints appear in the head they are looked for
among the suspended constraints, which are called passive constraints in
this context. If the necessary passive constraints can be found and all
match with the head of the rule and the guard of the rule succeeds, then
the rule is committed and the body of the rule executed. If not all the
necessary passive constraint can be found, the matching fails or the
guard fails, then the body is not executed and the process of trying and
executing simply continues with the following rules. If for a rule,
there are multiple constraints in the head, the active constraint will
try the rule sequentially multiple times, each time trying to match with
another constraint.
This process ends either when the active constraint disappears, i.e. it
is removed by some rule, or after the last rule has been processed. In
the latter case the active constraint becomes suspended.
A suspended constraint is eligible as a passive constraint for an active
constraint. The other way it may interact again with the rules, is when
a variable appearing in the constraint becomes bound to either a nonvariable
or another variable involved in one or more constraints. In that case the
constraint is triggered, i.e. it becomes an active constraint and all
the rules are tried.
### Rules
There are three different kinds of rules, each with their specific semantics:
+ simplification
The simplification rule removes the constraints in its head and calls its body.
+ propagation
The propagation rule calls its body exactly once for the constraints in
its head.
+ simpagation
The simpagation rule removes the constraints in its head after the
`\` and then calls its body. It is an optimization of
simplification rules of the form: \[constraints_1, constraints_2 <=>
constraints_1, body \] Namely, in the simpagation form:
~~~~~
constraints1 \ constraints2 <=> body
~~~~~
_constraints1_
constraints are not called in the body.
#### Rule Names
Naming a rule is optional and has no semantical meaning. It only functions
as documentation for the programmer.
### Pragmas
The semantics of the pragmas are:
+ passive(Identifier)
The constraint in the head of a rule _Identifier_ can only act as a
passive constraint in that rule.
Additional pragmas may be released in the future.
### CHR_Options Options
It is possible to specify options that apply to all the CHR rules in the module.
Options are specified with the `option/2` declaration:
~~~~~
option(Option,Value).
~~~~~
Available options are:
+ check_guard_bindings
This option controls whether guards should be checked for illegal
variable bindings or not. Possible values for this option are
`on`, to enable the checks, and `off`, to disable the
checks.
+ optimize
This is an experimental option controlling the degree of optimization.
Possible values are `full`, to enable all available
optimizations, and `off` (default), to disable all optimizations.
The default is derived from the SWI-Prolog flag `optimise`, where
`true` is mapped to `full`. Therefore the commandline
option `-O` provides full CHR optimization.
If optimization is enabled, debugging should be disabled.
+ debug
This options enables or disables the possibility to debug the CHR code.
Possible values are `on` (default) and `off`. See
`debugging` for more details on debugging. The default is
derived from the prolog flag `generate_debug_info`, which
is `true` by default. See `-nodebug`.
If debugging is enabled, optimization should be disabled.
+ mode
This option specifies the mode for a particular constraint. The
value is a term with functor and arity equal to that of a constraint.
The arguments can be one of `-`, `+` or `?`.
The latter is the default. The meaning is the following:
+ -
The corresponding argument of every occurrence
of the constraint is always unbound.
+ +
The corresponding argument of every occurrence
of the constraint is always ground.
+ ?
The corresponding argument of every occurrence
of the constraint can have any instantiation, which may change
over time. This is the default value.
The declaration is used by the compiler for various optimizations.
Note that it is up to the user the ensure that the mode declaration
is correct with respect to the use of the constraint.
This option may occur once for each constraint.
+ type_declaration
This option specifies the argument types for a particular constraint. The
value is a term with functor and arity equal to that of a constraint.
The arguments can be a user-defined type or one of
the built-in types:
+ int
The corresponding argument of every occurrence
of the constraint is an integer number.
+ float
...{} a floating point number.
+ number
...{} a number.
+ natural
...{} a positive integer.
+ any
The corresponding argument of every occurrence
of the constraint can have any type. This is the default value.
Currently, type declarations are only used to improve certain
optimizations (guard simplification, occurrence subsumption, ...{}).
+ type_definition
This option defines a new user-defined type which can be used in
type declarations. The value is a term of the form
`type(` _name_`,` _list_`)`, where
_name_ is a term and _list_ is a list of alternatives.
Variables can be used to define generic types. Recursive definitions
are allowed. Examples are
~~~~~
type(bool,[true,false]).
type(complex_number,[float + float * i]).
type(binary_tree(T),[ leaf(T) | node(binary_tree(T),binary_tree(T)) ]).
type(list(T),[ [] | [T | list(T)]).
~~~~~
The mode, type_declaration and type_definition options are provided
for backward compatibility. The new syntax is described below.
### CHR in Prolog Programs
The CHR constraints defined in a particulary chr file are
associated with a module. The default module is `user`. One should
never load different chr files with the same CHR module name.
#### Constraint Declarations
Every constraint used in CHR rules has to be declared.
There are two ways to do this. The old style is as follows:
~~~~~
option(type_definition,type(list(T),[ [] , [T|list(T)] ]).
option(mode,foo(+,?)).
option(type_declaration,foo(list(int),float)).
:- constraints foo/2, bar/0.
~~~~~
The new style is as follows:
~~~~~
:- chr_type list(T) ---> [] ; [T|list(T)].
:- constraints foo(+list(int),?float), bar.
~~~~~
#### Compilation
The
SWI-Prolog CHR compiler exploits term_expansion/2 rules to translate
the constraint handling rules to plain Prolog. These rules are loaded
from the library chr. They are activated if the compiled file
has the chr extension or after finding a declaration of the
format below.
~~~~~
:- constraints ...
~~~~~
It is adviced to define CHR rules in a module file, where the module
declaration is immediately followed by including the chr
library as examplified below:
~~~~~
:- module(zebra, [ zebra/0 ]).
:- use_module(library(chr)).
:- constraints ...
~~~~~
Using this style CHR rules can be defined in ordinary Prolog
pl files and the operator definitions required by CHR do not
leak into modules where they might cause conflicts.
#### CHR Debugging
The CHR debugging facilities are currently rather limited. Only tracing
is currently available. To use the CHR debugging facilities for a CHR
file it must be compiled for debugging. Generating debug info is
controlled by the CHR option debug, whose default is derived
from the SWI-Prolog flag `generate_debug_info`. Therefore debug
info is provided unless the `-nodebug` is used.
#### Ports
vFor CHR constraints the four standard ports are defined:
+ call
A new constraint is called and becomes active.
+ exit
An active constraint exits: it has either been inserted in the store after
trying all rules or has been removed from the constraint store.
+ fail
An active constraint fails.
+ redo
An active constraint starts looking for an alternative solution.
In addition to the above ports, CHR constraints have five additional
ports:
+ wake
A suspended constraint is woken and becomes active.
+ insert
An active constraint has tried all rules and is suspended in
the constraint store.
+ remove
An active or passive constraint is removed from the constraint
store, if it had been inserted.
+ try
An active constraints tries a rule with possibly
some passive constraints. The try port is entered
just before committing to the rule.
+ apply
An active constraints commits to a rule with possibly
some passive constraints. The apply port is entered
just after committing to the rule.
#### Tracing
Tracing is enabled with the chr_trace/0 predicate
and disabled with the chr_notrace/0 predicate.
When enabled the tracer will step through the `call`,
`exit`, `fail`, `wake` and `apply` ports,
accepting debug commands, and simply write out the other ports.
The following debug commans are currently supported:
~~~~~
CHR debug options:
<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help
~~~~~
Their meaning is:
+ creep
Step to the next port.
+ skip
Skip to exit port of this call or wake port.
+ ancestors
Print list of ancestor call and wake ports.
+ nodebug
Disable the tracer.
+ break
Enter a recursive Prolog toplevel. See break/0.
+ abort
Exit to the toplevel. See abort/0.
+ fail
Insert failure in execution.
+ help
Print the above available debug options.
#### CHR Debugging Predicates
The chr module contains several predicates that allow
inspecting and printing the content of the constraint store.
+ chr_trace
Activate the CHR tracer. By default the CHR tracer is activated and
deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
### CHR_Examples Examples
Here are two example constraint solvers written in CHR.
+
The program below defines a solver with one constraint,
`leq/2`, which is a less-than-or-equal constraint.
~~~~~
:- module(leq,[cycle/3, leq/2]).
:- use_module(library(chr)).
:- constraints leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).
cycle(X,Y,Z):-
leq(X,Y),
leq(Y,Z),
leq(Z,X).
~~~~~
+
The program below implements a simple finite domain
constraint solver.
~~~~~
:- module(dom,[dom/2]).
:- use_module(library(chr)).
:- constraints dom/2.
dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).
intersection([],_,[]).
intersection([H|T],L2,[H|L3]) :-
member(H,L2), !,
intersection(T,L2,L3).
intersection([_|T],L2,L3) :-
intersection(T,L2,L3).
~~~~~
### Compatibility with SICStus CHR
There are small differences between CHR in SWI-Prolog and newer
YAPs and SICStus and older versions of YAP. Besides differences in
available options and pragmas, the following differences should be
noted:
+ [The handler/1 declaration]
In SICStus every CHR module requires a `handler/1`
declaration declaring a unique handler name. This declaration is valid
syntax in SWI-Prolog, but will have no effect. A warning will be given
during compilation.
+ [The rules/1 declaration]
In SICStus, for every CHR module it is possible to only enable a subset
of the available rules through the `rules/1` declaration. The
declaration is valid syntax in SWI-Prolog, but has no effect. A
warning is given during compilation.
+ [Sourcefile naming]
SICStus uses a two-step compiler, where chr files are
first translated into pl files. For SWI-Prolog CHR
rules may be defined in a file with any extension.
### Guidelines
In this section we cover several guidelines on how to use CHR to write
constraint solvers and how to do so efficiently.
+ [Set semantics]
The CHR system allows the presence of identical constraints, i.e.
multiple constraints with the same functor, arity and arguments. For
most constraint solvers, this is not desirable: it affects efficiency
and possibly termination. Hence appropriate simpagation rules should be
added of the form:
~~~~~
{constraint \ constraint <=> true}.
~~~~~
+ [Multi-headed rules]
Multi-headed rules are executed more efficiently when the constraints
share one or more variables.
+ [Mode and type declarations]
Provide mode and type declarations to get more efficient program execution.
Make sure to disable debug (`-nodebug`) and enable optimization
(`-O`).

197
docs/md/gecode.md Normal file
View File

@@ -0,0 +1,197 @@
USING THE GECODE MODULE {#gecode}
=======================
There are two ways to use the gecode interface from YAP. The original approach,
designed by Denys Duchier, requires loading the library:
:- use_module(library(gecode)).
A second approach is closer to CLP(FD), and is described in:
- \ref Gecode_and_ClPbBFDbC
In what follows, we refer the reader to the~\cite{gecode} manual for the necessary background.
CREATING A SPACE
----------------
Space := space
CREATING VARIABLES
-----------------
Unlike in Gecode, variable objects are not bound to a specific Space. Each one
actually contains an index with which it is possible to access a Space-bound
Gecode variable. Variables can be created using the following expressions:
IVar := intvar(Space,SPEC...)
BVar := boolvar(Space)
SVar := setvar(Space,SPEC...)
where SPEC... is the same as in Gecode. For creating lists of variables use
the following variants:
IVars := intvars(Space,N,SPEC...)
BVars := boolvars(Space,N,SPEC...)
SVars := setvars(Space,N,SPEC...)
where N is the number of variables to create (just like for XXXVarArray in
Gecode). Sometimes an IntSet is necessary:
ISet := intset([SPEC...])
where each SPEC is either an integer or a pair (I,J) of integers. An IntSet
describes a set of ints by providing either intervals, or integers (which stand
for an interval of themselves). It might be tempting to simply represent an
IntSet as a list of specs, but this would be ambiguous with IntArgs which,
here, are represented as lists of ints.
Space += keep(Var)
Space += keep(Vars)
Variables can be marked as "kept". In this case, only such variables will be
explicitly copied during search. This could bring substantial benefits in
memory usage. Of course, in a solution, you can then only look at variables
that have been "kept". If no variable is marked as "kept", then they are all
kept. Thus marking variables as "kept" is purely an optimization.
CONSTRAINTS AND BRANCHINGS
---------------------------
all constraint and branching posting functions are available just like in
Gecode. Wherever a XXXArgs or YYYSharedArray is expected, simply use a list.
At present, there is no support for minimodel-like constraint posting.
Constraints and branchings are added to a space using:
Space += CONSTRAINT
Space += BRANCHING
For example:
Space += rel(X,'IRT_EQ',Y)
arrays of variables are represented by lists of variables, and constants are
represented by atoms with the same name as the Gecode constant
(e.g. 'INT_VAR_SIZE_MIN').
SEARCHING FOR SOLUTIONS
--------------------
SolSpace := search(Space)
This is a backtrackable predicate that enumerates all solution spaces
(SolSpace). It may also take options:
SolSpace := search(Space,Options)
Options is a list whose elements maybe:
restart
to select the Restart search engine
threads=N
to activate the parallel search engine and control the number of
workers (see Gecode doc)
c_d=N
to set the commit distance for recomputation
a_d=N
to set the adaptive distance for recomputation
EXTRACTING INFO FROM A SOLUTION
------------------------------
An advantage of non Space-bound variables, is that you can use them both to
post constraints in the original space AND to consult their values in
solutions. Below are methods for looking up information about variables. Each
of these methods can either take a variable as argument, or a list of
variables, and returns resp. either a value, or a list of values:
Val := assigned(Space,X)
Val := min(Space,X)
Val := max(Space,X)
Val := med(Space,X)
Val := val(Space,X)
Val := size(Space,X)
Val := width(Space,X)
Val := regret_min(Space,X)
Val := regret_max(Space,X)
Val := glbSize(Space,V)
Val := lubSize(Space,V)
Val := unknownSize(Space,V)
Val := cardMin(Space,V)
Val := cardMax(Space,V)
Val := lubMin(Space,V)
Val := lubMax(Space,V)
Val := glbMin(Space,V)
Val := glbMax(Space,V)
Val := glb_ranges(Space,V)
Val := lub_ranges(Space,V)
Val := unknown_ranges(Space,V)
Val := glb_values(Space,V)
Val := lub_values(Space,V)
Val := unknown_values(Space,V)
DISJUNCTORS
-----------
Disjunctors provide support for disjunctions of clauses, where each clause is a
conjunction of constraints:
C1 or C2 or ... or Cn
Each clause is executed "speculatively": this means it does not affect the main
space. When a clause becomes failed, it is discarded. When only one clause
remains, it is committed: this means that it now affects the main space.
Example:
Consider the problem where either X=Y=0 or X=Y+(1 or 2) for variable X and Y
that take values in 0..3.
Space := space,
[X,Y] := intvars(Space,2,0,3),
First, we must create a disjunctor as a manager for our 2 clauses:
Disj := disjunctor(Space),
We can now create our first clause:
C1 := clause(Disj),
This clause wants to constrain X and Y to 0. However, since it must be
executed "speculatively", it must operate on new variables X1 and Y1 that
shadow X and Y:
[X1,Y1] := intvars(C1,2,0,3),
C1 += forward([X,Y],[X1,Y1]),
The forward(...) stipulation indicates which global variable is shadowed by
which clause-local variable. Now we can post the speculative clause-local
constraints for X=Y=0:
C1 += rel(X1,'IRT_EQ',0),
C1 += rel(Y1,'IRT_EQ',0),
We now create the second clause which uses X2 and Y2 to shadow X and Y:
C2 := clause(Disj),
[X2,Y2] := intvars(C2,2,0,3),
C2 += forward([X,Y],[X2,Y2]),
However, this clause also needs a clause-local variable Z2 taking values 1 or
2 in order to post the clause-local constraint X2=Y2+Z2:
Z2 := intvar(C2,1,2),
C2 += linear([-1,1,1],[X2,Y2,Z2],'IRT_EQ',0),
Finally, we can branch and search:
Space += branch([X,Y],'INT_VAR_SIZE_MIN','INT_VAL_MIN'),
SolSpace := search(Space),
and lookup values of variables in each solution:
[X_,Y_] := val(SolSpace,[X,Y]).

574
docs/md/myddas.md Normal file
View File

@@ -0,0 +1,574 @@
The MYDDAS Data-base interface {#myddas}
==============================
The MYDDAS database project was developed within a FCT project aiming at
the development of a highly efficient deductive database system, based
on the coupling of the MySQL relational database system with the YAP
Prolog system. MYDDAS was later expanded to support the ODBC interface.
@defgroup Requirements_and_Installation_Guide Requirements and Installation Guide
ee
Next, we describe how to usen of the YAP with the MYDDAS System. The
use of this system is entirely depend of the MySQL development libraries
or the ODBC development libraries. At least one of the this development
libraries must be installed on the computer system, otherwise MYDDAS
will not compile. The MySQL development libraries from MySQL 3.23 an
above are know to work. We recommend the usage of MySQL versus ODBC,
but it is possible to have both options installed
At the same time, without any problem. The MYDDAS system automatically
controls the two options. Currently, MYDDAS is know to compile without
problems in Linux. The usage of this system on Windows has not been
tested yet. MYDDAS must be enabled at configure time. This can be done
with the following options:
+ --enable-myddas
This option will detect which development libraries are installed on the computer system, MySQL, ODBC or both, and will compile the Yap system with the support for which libraries it detects;
+ --enable-myddas-stats
This option is only available in MySQL. It includes code to get
statistics from the MYDDAS system;
+ --enable-top-level
This option is only available in MySQL. It enables the option to interact with the MySQL server in
two different ways. As if we were on the MySQL Client Shell, and as if
we were using Datalog.
@defgroup MYDDAS_Architecture MYDDAS Architecture
The system includes four main blocks that are put together through the
MYDDAS interface: the Yap Prolog compiler, the MySQL database system, an
ODBC level and a Prolog to SQL compiler. Current effort is put on the
MySQL interface rather than on the ODBC interface. If you want to use
the full power of the MYDDAS interface we recommend you to use a MySQL
database. Other databases, such as Oracle, PostGres or Microsoft SQL
Server, can be interfaced through the ODBC layer, but with limited
performance and features support.
The main structure of the MYDDAS interface is simple. Prolog queries
involving database goals are translated to SQL using the Prolog to SQL
compiler; then the SQL expression is sent to the database system, which
returns the set of tuples satisfying the query; and finally those tuples
are made available to the Prolog engine as terms. For recursive queries
involving database goals, the YapTab tabling engine provides the
necessary support for an efficient evaluation of such queries.
An important aspect of the MYDDAS interface is that for the programmer
the use of predicates which are defined in database relations is
completely transparent. An example of this transparent support is the
Prolog cut operator, which has exactly the same behaviour from
predicates defined in the Prolog program source code, or from predicates
defined in database as relations.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Name = 'John Doe',
Number = 123456789 ?
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Backtracking can then be used to retrieve the next row
of the relation phonebook. Records with particular field values may be
selected in the same way as in Prolog. (In particular, no mode
specification for database predicates is required). For instance:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- phonebook(Letter,'John Doe',Letter).
Letter = 'D',
Number = 123456789 ?
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
generates the query
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SELECT A.Letter , 'John Doe' , A.Number
FROM 'phonebook' A
WHERE A.Name = 'John Doe';
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@defgroup View_Level_Interface View Level Interface
@pred db view(+,+,+).
@pred db view(+,+).
If we import a database relation, such as an edge relation representing the edges of a directed graph, through
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_import('Edge',edge).
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sqliand we then write a query to retrieve all the direct cycles in the
graph, such as
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- edge(A,B), edge(B,A).
A = 10,
B = 20 ?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
this is clearly inefficient [3], because of relation-level
access. Relation-level access means that a separate SQL query will be
generated for every goal in the body of the clause. For the second
`edge/2` goal, a SQL query is generated using the variable bindings that
result from the first `edge/2` goal execution. If the second
`edge/2` goal
fails, or if alternative solutions are demanded, backtracking access the
next tuple for the first `edge/2` goal and another SQL query will be
generated for the second `edge/2` goal. The generation of this large
number of queries and the communication overhead with the database
system for each of them, makes the relation-level approach inefficient.
To solve this problem the view level interface can be used for the
definition of rules whose bodies includes only imported database
predicates. One can use the view level interface through the predicates
db_view/3 and `db_view/2`:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_view(Conn,PredName(Arg_1,...,Arg_n),DbGoal).
?- db_view(PredName(Arg_1,...,Arg_n),DbGoal).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All arguments are standard Prolog terms. _Arg1_ through _Argn_
define the attributes to be retrieved from the database, while
_DbGoal_ defines the selection restrictions and join
conditions. _Conn_ is the connection identifier, which again can be
dropped. Calling predicate `PredName/n` will retrieve database
tuples using a single SQL query generated for the _DbGoal_. We next show
an example of a view definition for the direct cycles discussed
above. Assuming the declaration:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_import('Edge',edge).
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
we
write:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_view(direct_cycle(A,B),(edge(A,B), edge(B,A))).
yes
?- direct_cycle(A,B)).
A = 10,
B = 20 ?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This call generates the SQL
statement:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SELECT A.attr1 , A.attr2
FROM Edge A , Edge B
WHERE B.attr1 = A.attr2 AND B.attr2 = A.attr1;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Backtracking, as in relational level interface, can be used to retrieve the next row of the view.
The view interface also supports aggregate function predicates such as
`sum`, `avg`, `count`, `min` and `max`. For
instance:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_view(count(X),(X is count(B, B^edge(10,B)))).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
generates the query :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SELECT COUNT(A.attr2)
FROM Edge A WHERE A.attr1 = 10;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To know how to use db `view/3`, please refer to Draxler's Prolog to
SQL Compiler Manual.
@defgroup Accessing_Tables_in_Data_Sources_Using_SQL Accessing Tables in Data Sources Using SQL
@pred db_sql(+,+,?).
@pred db_sql(+,?).
It is also possible to explicitly send a SQL query to the database server using
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_sql(Conn,SQL,List).
?- db_sql(SQL,List).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
where _SQL_ is an arbitrary SQL expression, and _List_ is a list
holding the first tuple of result set returned by the server. The result
set can also be navigated through backtracking.
Example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_sql('SELECT * FROM phonebook',LA).
LA = ['D','John Doe',123456789] ?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@defgroup Insertion_of_Rows Insertion of Rows
@ingroup MYDDAS
@pred db_assert(+,+).
@pred db_assert(+).
Assuming you have imported the related base table using
`db_import/2` or db_import/3, you can insert to that table
by using db_assert/2 predicate any given fact.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_assert(Conn,Fact).
?- db_assert(Fact).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The second argument must be declared with all of its arguments bound to
constants. For example assuming `helloWorld` is imported through
`db_import/2`:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_import('Hello World',helloWorld).
yes
?- db_assert(helloWorld('A' ,'Ana',31)).
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This, would generate the following query
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
INSERT INTO helloWorld
VALUES ('A','Ana',3)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
which would insert into the helloWorld, the following row:
`A,Ana,31`. If we want to insert `NULL` values into the
relation, we call db_assert/2 with a uninstantiated variable in
the data base imported predicate. For example, the following query on
the YAP-prolog system:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_assert(helloWorld('A',NULL,31)).
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Would insert the row: `A,null value,31` into the relation
`Hello World`, assuming that the second row allows null values.
*/
/** @pred db insert(+,+,+).
@pred db insert(+,+).
This predicate would create a new database predicate, which will insert
any given tuple into the database.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_insert(Conn,RelationName,PredName).
?- db_insert(RelationName,PredName).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This would create a new predicate with name _PredName_, that will
insert tuples into the relation _RelationName_. is the connection
identifier. For example, if we wanted to insert the new tuple
`('A',null,31)` into the relation `Hello World`, we do:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_insert('Hello World',helloWorldInsert).
yes
?- helloWorldInsert('A',NULL,31).
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@defgroup Types_of_Attributes Types of AttributesL
@pred db_get_attributes_types(+,+,?).
@pred db_get_attributes_types(+,?).
The prototype for this predicate is the following:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_get_attributes_types(Conn,RelationName,ListOfFields).
?- db_get_attributes_types(RelationName,ListOfFields).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can use the
predicate `db_get_attributes types/2` or db_get_attributes_types/3, to
know what are the names and attributes types of the fields of a given
relation. For example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_get_attributes_types(myddas,'Hello World',LA).
LA = ['Number',integer,'Name',string,'Letter',string] ?
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
where <tt>Hello World</tt> is the name of the relation and <tt>myddas</tt> is the
connection identifier.
@defgroup Number_of_Fields Number of Fields
@pred db_number_of_fields(+,?).
@pred db_number_of_fields(+,+,?).
The prototype for this
predicate is the following:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_number_of_fields(Conn,RelationName,Arity).
?- db_number_of_fields(RelationName,Arity).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can use the predicate db_number_of_fields/2 or
`db_number_of_fields/3` to know what is the arity of a given
relation. Example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_number_of_fields(myddas,'Hello World',Arity).
Arity = 3 ?
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
where `Hello World` is the name of the
relation and `myddas` is the connection identifier.
@defgroup Describing_a_Relation Describing a Relation
@pred db_datalog_describe(+,+).
@pred db_datalog_describe(+).
The db `datalog_describe/2` predicate does not really returns any
value. It simply prints to the screen the result of the MySQL describe
command, the same way as `DESCRIBE` in the MySQL prompt would.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_datalog_describe(myddas,'Hello World').
+----------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------+----------+------+-----+---------+-------+
+ Number | int(11) | YES | | NULL | |
+ Name | char(10) | YES | | NULL | |
+ Letter | char(1) | YES | | NULL | |
+----------+----------+------+-----+---------+-------+
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@pred db_describe(+,+).
@pred db_describe(+)
The `db_describe/3` predicate does the same action as
db_datalog_describe/2 predicate but with one major
difference. The results are returned by backtracking. For example, the
last query:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_describe(myddas,'Hello World',Term).
Term = tableInfo('Number',int(11),'YES','',null(0),'') ? ;
Term = tableInfo('Name',char(10),'YES','',null(1),'' ? ;
Term = tableInfo('Letter',char(1),'YES','',null(2),'') ? ;
no
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@defgroup Enumerating_Relations Enumeration Relations Describing_a_Relation Describing a Relation
/@pred db_datalog_show_tables(+).
@pred db_datalog_show_tables
If we need to know what relations exists in a given MySQL Schema, we can use
the `db_datalog_show_tables/1` predicate. As <tt>db_datalog_describe/2</tt>,
it does not returns any value, but instead prints to the screen the result of the
`SHOW TABLES` command, the same way as it would be in the MySQL prompt.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_datalog_show_tables(myddas).
+-----------------+
| Tables_in_guest |
+-----------------+
| Hello World |
+-----------------+
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@pred db_show_tables(+, ?).
@pred db_show_tables(?)
The db_show_tables/2 predicate does the same action as
`db_show_tables/1` predicate but with one major difference. The
results are returned by backtracking. For example, given the last query:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_show_tables(myddas,Table).
Table = table('Hello World') ? ;
no
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@defgroup The_MYDDAS_MySQL_Top_Level The MYDDAS MySQL Top Level
@pred db_top_level(+,+,+,+,+).
@pred db_top_level(+,+,+,+).
Through MYDDAS is also possible to access the MySQL Database Server, in
the same wthe mysql client. In this mode, is possible to query the
SQL server by just using the standard SQL language. This mode is exactly the same as
different from the standard mysql client. We can use this
mode, by invoking the db top level/5. as one of the following:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_top_level(mysql,Connection,Host/Database,User,Password).
?- db_top_level(mysql,Connection,Host/Database/Port,User,Password).
?- db_top_level(mysql,Connection,Host/Database/UnixSocket,User,Password).
?- db_top_level(mysql,Connection,Host/Database/Port/UnixSocket,User,Password).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Usage is similar as the one described for the db_open/5 predicate
discussed above. If the login is successful, automatically the prompt of
the mysql client will be used. For example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_top_level(mysql,con1,localhost/guest_db,guest,'').
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
opens a
connection identified by the `con1` atom, to an instance of a MySQL server
running on host `localhost`, using database guest `db` and user `guest` with
empty password. After this is possible to use MYDDAS as the mysql
client.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_top_level(mysql,con1,localhost/guest_db,guest,'').
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Welcome to the MySQL monitor.
Commands end with ; or \g.
Your MySQL connection id is 4468 to server version: 4.0.20
Type 'help;' or '\h' for help.
Type '\c' to clear the buffer.
mysql> exit
Bye
yes
?-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@defgroup Other_MYDDAS_Properties Other MYDDAS Properties
@pred db_verbose(+).
When we ask a question to YAP, using a predicate asserted by
db_import/3, or by db_view/3, this will generate a SQL
`QUERY`. If we want to see that query, we must to this at a given
point in our session on YAP.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_verbose(1).
yes
?-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we want to
disable this feature, we must call the `db_verbose/1` predicate with the value 0.
@pred db_top_level(+,+,+,+).
@pred db_module(?).
When we create a new database predicate, by using db_import/3,
db_view/3 or db_insert/3, that predicate will be asserted
by default on the `user` module. If we want to change this value, we can
use the db_module/1 predicate to do so.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_module(lists).
yes
?-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By executing this predicate, all of the predicates asserted by the
predicates enumerated earlier will created in the lists module.
If we want to put back the value on default, we can manually put the
value user. Example:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_module(user).
yes
?-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can also see in what module the predicates are being asserted by doing:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_module(X).
X=user
yes
?-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@pred db_my_result_set(?).
The MySQL C API permits two modes for transferring the data generated by
a query to the client, in our case YAP. The first mode, and the default
mode used by the MYDDAS-MySQL, is to store the result. This mode copies all the
information generated to the client side.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_my_result_set(X).
X=store_result
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The other mode that we can use is use result. This one uses the result
set created directly from the server. If we want to use this mode, he
simply do
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?- db_my_result_set(use_result).
yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After this command, all
of the database predicates will use use result by default. We can change
this by doing again `db_my_result_set(store_result)`.
@pred db_my_sql_mode(+Conn,?SQL_Mode).
@pred db_my_sql_mode(?SQL_Mode).
The MySQL server allows the user to change the SQL mode. This can be
very useful for debugging proposes. For example, if we want MySQL server
not to ignore the INSERT statement warnings and instead of taking
action, report an error, we could use the following SQL mode.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
?-db_my_sql_mode(traditional). yes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can see the available SQL Modes at the MySQL homepage at
<http://www.mysql.org>.

23
docs/md/raptor.md Normal file
View File

@@ -0,0 +1,23 @@
WWW Reader/Writers for YAP. {#YAPRaptor}
=========================
This provides YAP a rdf reader using
[raptor](http://librdf.org/raptor/). The library is available for
Windows, Linux/Unix and MacOS machines.
###
###Example Usage
~~~~{.prolog}
?- use_module(rdf).
?- rdf_load('example.rdf',user,example).
../example.rdf : 3 triples
?- example(Subject,Predicate,Object).
Object = 'http://www.example.org/tv_show',
Predicate = 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',
Subject = 'http://www.example.org/law_and_order_ci' ?
~~~~{.prolog}
The code also includes a library under developent to connect Yap and libXML2.

276
docs/md/real.md Normal file
View File

@@ -0,0 +1,276 @@
The R Prolog Progrmming Interface {#real}
===================================
@file real.pl
@author Nicos Angelopoulos
@author Vitor Santos Costa
@version 1:0:4, 2013/12/25, sinter_class
@license Perl Artistic License
@defgroup libReal An interface to the R statistical software.
@ingroup packages
This library enables the communication with an R process started as a shared library.
It is the result of the efforts of two research groups that have worked in parallel.
The syntactic emphasis on a minimalistic interface.
In the doc/ directory of the distribution there is user's guide, a published paper
and html documentation from PlDoc (doc/html/real.html). There is large number
of examples in `examples/for_real.pl`.
A single predicate (<-/2,<-/1) channels
the bulk of the interactions. In addition to using R as a shared library, real uses
the c-interfaces of SWI/Yap and R to pass objects in both directions.
The usual mode of operation is to load Prolog values on to R variables and then call
R functions on these values. The return value of the called function can be either placed
on R variable or passed back to Prolog. It has been tested extensively on current
SWI and YAP on Linux machines but it should also compile and work on MS operating systems and Macs.
The main modes for utilising the interface are
~~~~
<- +Rexpr
<- +Rvar
~~~~
Print Rvar or evaluate expression Rexpr in R
~~~~
+Rvar <- +PLdata
+Rexpr <- +PLdata
-PLvar <- +Rvar
-PLvar <- +Rexpr
+Rexpr1 <- +Rexpr2
~~~~
Pass Prolog data to R, pass R data to Prolog or assign an R expression to
an assignable R expression.
@defgroup TestingR Testing Real
There is a raft of examples packed in a singl```e file that test the library.
~~~~
?- [pack(real/examples/for_real)].
?- for_real.
?- edit( pack(real/examples/for_real) ).
~~~~
@defgroup RSyntax Prolog and R Syntax
There are syntactic conventions in R that make unparsable prolog code.
Notably function and variable names are allowed to contain dots, square brackets are used
to access parts of vectors and arrays and functions are allowed empty argument tuples.
We have introduced relevant syntax which allows for easy transition between prolog and R.
Prolog constructs are converted by the library as follows:
* =|..|= within atoms -> =|.|= (ex. =| as..integer(c(1,2,3)) -> as.integer(c(1,2,3))|= )
* =|^[]|= after atoms -> =|[]|= (ex. =|a^[2] -> a[2] |=)
* =|(.)|= at the end of atoms that are known R functions -> =|()|= (ex. =|dev..off(.) -> dev.off()|= )
* =|[]|= -> c() (which equal to R's NULL value)
* ( f(x) :- (..)) -> f(x) (...)
* Lists of lists are converted to matrices. All first level lists must have the same length.
* Filenames must be given as Prolog strings.
* R specific operators (eg. %*% should be quoted in Prolog.
* + prepends strings, for (Prolog) atoms: +'String'
* Expressions that pose difficulty in translation can always be passed as unquoted Prolog atoms or strings.
]]* since 0:1:2 foo() is valid syntax: =|<- dev..off() |= works now (with no need for dev..off(.))
* since 0:1:2 mat[1] is valid syntax: =|m[1] <- 4|= works now (with no need for m^[...])
@defgroup RDataTransfer Mapping Data betweenn Prolog and R
R vectors are mapped to prolog lists and matrices are mapped to nested lists.
The convention works the other way around too.
There are two ways to pass prolog data to R. The more efficient one is by using
~~~~
Rvar <- PLdata
~~~~
Where Pldata is one of the basic data types (number,boolean) a list or a c/n term.
This transfers via C data between R and Prolog. In what follows atomic PLval data
are simply considered as singleton lists.
Flat Pldata lists are translated to R vectors and lists of one level of nesting to R matrices
(which are 2 dimensional arrays in R parlance). The type of values of the vector or matrice is
taken to be the type of the first data element of the Pldata according to the following :
* integer -> integer
* float -> double
* atom -> char
* boolean -> logical
Booleans are represented in prolog as true/false atoms.
Currently arrays of aribtrary dimensions are not supported in the low-level interface.
Note that in R a scalar is just a one element vector. When passing non-scalars the
interface will assume the type of the object is that of the first scalar until it encounters
something different.
Real will currently re-start and repopulate partial integers for floats as illustrated
below:
~~~~
r <- [1,2,3]. % pass 1,2,3 to an R vector r
R <- r. % pass contents of R vector r to Prolog variable R
R = [1, 2, 3].
i <- [1,2,3.1]. % r is now a vector of floats, rather than integers
I <- i.
I = [1.0, 2.0, 3.1].
~~~~
However, not all possible "corrections" are currently supported. For instance,
~~~~
?- c <- [a,b,c,1].
ERROR: real:set_R_variable/2: Type error: `boolean' expected, found `a'
~~~~
In the data passing mode we map Prolog atoms to R strings-
~~~~
?- x <- [abc,def].
true.
?- <- x.
[1] "abc" "def"
true.
?- X <- x.
X = [abc, def].
~~~~
In addition, Prolog data can be passed through the expression mechanism.
That is, data appearing in an arbitrary R expression will be parsed and be part of the long
string that will be passed from Prolog to R for evaluation.
This is only advisable for short data structures. For instance,
~~~~
tut_4a :-
state <- c(+"tas", +"sa", +"qld", +"nsw", +"nsw"),
<- state.
tut_4b :-
state <- c(+tas, +sa, +qld, +nsw, +nsw),
<- state.
~~~~
Through this interface it is more convenient to be explicit about R chars by Prolog prepending
atoms or codes with + as in the above example.
@defgroup RealExamples Examples
~~~~
?- e <- numeric(.).
yes
?- e^[3] <- 17.
yes
?- e[3] <- 17.
yes
?- Z <- e.
Z = ['$NaN','$NaN',17.0]
?- e^[10] <- 12.
yes
?- Z <- e.
Z = ['$NaN','$NaN',17.0,'$NaN','$NaN','$NaN','$NaN','$NaN','$NaN',12.0]
rtest :-
y <- rnorm(50), % get 50 random samples from normal distribution
<- y, % print the values via R
x <- rnorm(y), % get an equal number of normal samples
<- x11(width=5,height=3.5), % create a plotting window
<- plot(x,y) % plot the two samples
r_wait, % wait for user to hit Enter
% <- dev..off(.). % old syntax, still supported
<- dev.off(). % close the plotting window. foo() now acceptable in supported Prologs
tut6 :-
d <- outer(0:9, 0:9),
fr <- table(outer(d, d, "-")),
<- plot(as..numeric(names(fr)), fr, type="h", xlab="Determinant", ylab="Frequency").
tut4b :-
state <- [tas,sa,qld,nsw,nsw,nt,wa],
statef <- factor(state),
incmeans <- tapply( c(60, 49, 40, 61, 64, 60, 59), statef, mean ),
<- incmeans.
logical :-
t <- [1,2,3,4,5,1],
s <- t~~~~1,
<- s,
S <- s,
write( s(S) ), nl.
~~~~
#### Info
@see http://stoics.org.uk/~nicos/sware/real
@see pack(real/examples/for_real)
@see pack(real/doc/real.html)
@see pack(real/doc/guide.pdf)
@see pack(real/doc/padl2013-real.pdf)
@see http://www.r-project.org/
Also @subpaage yap-real describes the YAP specfic details in real.
*/Development of real in YAP (#yap-real)
---------------------------
YAP includes a development version of real, designed to experiment
with the internals of the implementation of R. It includes major
changes and is likely to be much less stable than the version
maintained by Nicos ANgelopoulos. We refer to the version herein as
'realC' and describe the main novelties vs the version described
in~\cite{}. Their major differences:
- Most of realC is written in `C`, instead of aa a Prolog string
generator. The `C` code respects the SWI-Prolog fli interface and
should work both in YAP and in SWI-Prolog.
- realC uses Prolog atoms to represent real variables. R sequences
of characters are represented as Prolog strings (not as lists of
character codes). The atoms `true` and `false` indicate boolean
constants.
By default, YAP represents sequences of codes using double
quotes, and strings by back quotes. Please consult the
documentation o the ISO-Prolog flag `double_quotes` if you using
prefer reading double-quote strings as Prolog string.
- Free variables can be used to represent missing
arguments,ie. `a[_,"G23"] would represent the column "G23".
- All recent versions of real support the common syntax extensions
for [], (), thus realC allows writing `a[[2]] <- f().
- YAP allows A.B to be interpreted as [A|B]. This version takes
advantage of this implementation quirk, and allows one to write
expressions such as `a.b[2] <- f.g()`.
- The left-hand side msy be:
+ a ground unary term, assumed to be an attribute
+ an index
+ an R variable
+ a logic variable, or other Prolog term: in this case it will be
unified with the result of evaluating the right-hamd side.
Yap
?- [examples/for_real].
?- for_real.
---
Nicos Angelopoulos and Vitor Santos Costa
December, 2012.
Updates: Nicos Angelopoulos
Dec. 2013,
March, 2014
Updates: Vitor Santos Costa
Dec. 2015

4
docs/md/udi.md Normal file
View File

@@ -0,0 +1,4 @@
User-Defined Indexing {#yap-udi-indexers}
=====================
YAP UDI indexers.

View File

@@ -1,7 +1,8 @@
#!/Usr/bin/env python3
# -*- coding: utf-8 -*-
#
# yap documentation build configuration file, created by
# sphinx-quickstart on Tue Jan 5 11:01:36 2016.
# YAP documentation build configuration file, created by
# sphinx-quickstart on Sun Mar 26 10:27:55 2017.
#
# This file is execfile()d with the current directory set to its
# containing dir.
@@ -12,25 +13,26 @@
# All configuration values have a default; values that are commented out
# serve to show the default.
import sys
import os
import shlex
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#sys.path.insert(0, os.path.abspath('.'))
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
from recommonmark.parser import CommonMarkParser
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#needs_sphinx = '1.0'
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
extensions = ['sphinx.ext.autodoc',
'sphinx.ext.doctest',
'sphinx.ext.intersphinx',
'sphinx.ext.todo',
@@ -38,37 +40,38 @@ extensions = [
'sphinx.ext.mathjax',
'sphinx.ext.ifconfig',
'sphinx.ext.viewcode',
'sphinx.ext.pngmath',
'breathe'
'sphinx.ext.githubpages',
'breathe'
]
breathe_projects = { "yap": "${CMAKE_CURRENT_BINARY_DIR" }
breathe_default_project = "yap"
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
# source_suffix = ['.rst', '.md']
source_suffix = '.rst'
# The encoding of source files.
#source_encoding = 'utf-8-sig'
#
source_suffix = ['.rst', '.md']
# source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = u'yap'
copyright = u'2016, Vitor Santos Costa'
author = u'Vitor Santos Costa'
project = 'YAP'
copyright = '2017, Vitor Santos Costa'
author = 'Vitor Santos Costa'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = u'4.6.3'
version = '6.3'
# The full version, including alpha/beta/rc tags.
release = u'4.6.3'
release = '6.3.5'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
@@ -77,199 +80,83 @@ release = u'4.6.3'
# Usually you set "language" from the command line for these cases.
language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = []
# The reST default role (used for this markup: `text`) to use for all
# documents.
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
#keep_warnings = False
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True
source_parsers = {
'.md': 'recommonmark.parser.CommonMarkParser',
}
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#html_theme_options = {}
# Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
#html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
#html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
#html_logo = None
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
#html_favicon = None
#
# html_theme_options = {}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# Add any extra paths that contain custom files (such as robots.txt or
# .htaccess) here, relative to this directory. These files are copied
# directly to the root of the documentation.
#html_extra_path = []
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
#html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_domain_indices = True
# If false, no index is generated.
#html_use_index = True
# If true, the index is split into individual pages for each letter.
#html_split_index = False
# If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = None
# Language to be used for generating the HTML full-text search index.
# Sphinx supports the following languages:
# 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja'
# 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr'
#html_search_language = 'en'
# A dictionary with options for the search language support, empty by default.
# Now only 'ja' uses this config value
#html_search_options = {'type': 'default'}
# The name of a javascript file (relative to the configuration directory) that
# implements a search results scorer. If empty, the default will be used.
#html_search_scorer = 'scorer.js'
# -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = 'yapdoc'
htmlhelp_basename = 'YAPdoc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#'figure_align': 'htbp',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, 'yap.tex', u'yap Documentation',
u'Vitor Santos Costa', 'manual'),
(master_doc, 'YAP.tex', 'YAP Documentation',
'Vitor Santos Costa', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
#latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
#latex_use_parts = False
# If true, show page references after internal links.
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
#latex_show_urls = False
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# If false, no module index is generated.
#latex_domain_indices = True
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'yap', u'yap Documentation',
(master_doc, 'yap', 'YAP Documentation',
[author], 1)
]
# If true, show URL addresses after external links.
#man_show_urls = False
# -- Options for Texinfo output -------------------------------------------
@@ -277,27 +164,34 @@ man_pages = [
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'yap', u'yap Documentation',
author, 'yap', 'One line description of project.',
'Miscellaneous'),
(master_doc, 'YAP', 'YAP Documentation',
author, 'YAP', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
#texinfo_appendices = []
# If false, no module index is generated.
#texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
#texinfo_show_urls = 'footnote'
# -- Options for Epub output ----------------------------------------------
# Bibliographic Dublin Core info.
epub_title = project
epub_author = author
epub_publisher = author
epub_copyright = copyright
# The unique identifier of the text. This can be a ISBN number
# or the project homepage.
#
# epub_identifier = ''
# A unique identification for the text.
#
# epub_uid = ''
# A list of files that should not be packed into the epub file.
epub_exclude_files = ['search.html']
# If true, do not generate a @detailmenu in the "Top" node's menu.
#texinfo_no_detailmenu = False
# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {'https://docs.python.org/': None}
breathe_projects = { "yap": "/Users/vsc/git/yap-6.3/Release/docs/xml/" }
breathe_default_project = "yap"

View File

@@ -1,10 +1,197 @@
extensions = [
breathe_projects = { "yap": "/Users/vsc/git/yap-6.3/Release/doc/xml/" }i
breathe_default_project = "yap"
.. doxygenindex::
.. doxygenfunction::
.. doxygenstruct::
.. doxygenenum::
.. doxygentypedef::
.. doxygenclass::
#!/Usr/bin/env python3
# -*- coding: utf-8 -*-
#
# YAP documentation build configuration file, created by
# sphinx-quickstart on Sun Mar 26 10:27:55 2017.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
from recommonmark.parser import CommonMarkParser
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['sphinx.ext.autodoc',
'sphinx.ext.doctest',
'sphinx.ext.intersphinx',
'sphinx.ext.todo',
'sphinx.ext.coverage',
'sphinx.ext.mathjax',
'sphinx.ext.ifconfig',
'sphinx.ext.viewcode',
'sphinx.ext.githubpages',
'breathe'
]
breathe_projects = { "yap": "@CMAKE_CURRENT_BINARY_DIR@/xml" }
breathe_default_project = "yap"
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
source_suffix = ['.rst', '.md']
# source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = 'YAP'
copyright = '2017, Vitor Santos Costa'
author = 'Vitor Santos Costa'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = '6.3'
# The full version, including alpha/beta/rc tags.
release = '6.3.5'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = []
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True
source_parsers = {
'.md': 'recommonmark.parser.CommonMarkParser',
}
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'alabaster'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#
# html_theme_options = {}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = 'YAPdoc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, 'YAP.tex', 'YAP Documentation',
'Vitor Santos Costa', 'manual'),
]
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'yap', 'YAP Documentation',
[author], 1)
]
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'YAP', 'YAP Documentation',
author, 'YAP', 'One line description of project.',
'Miscellaneous'),
]
# -- Options for Epub output ----------------------------------------------
# Bibliographic Dublin Core info.
epub_title = project
epub_author = author
epub_publisher = author
epub_copyright = copyright
# The unique identifier of the text. This can be a ISBN number
# or the project homepage.
#
# epub_identifier = ''
# A unique identification for the text.
#
# epub_uid = ''
# A list of files that should not be packed into the epub file.
epub_exclude_files = ['search.html']
# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {'https://docs.python.org/': None}

View File

@@ -1,16 +1,11 @@
.. yap documentation master file, created by
sphinx-quickstart on Tue Jan 5 11:01:36 2016.
.. YAP documentation master file, created by
sphinx-quickstart on Sun Mar 26 10:27:55 2017.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to yap's documentation!
Welcome to YAP's documentation!
===============================
Contents:
.. toctree::
:maxdepth: 2
.. doxygenindex::
.. doxygenfunction::
.. doxygenstruct::
@@ -18,12 +13,33 @@ Contents:
.. doxygentypedef::
.. doxygenclass::
.. toctree::
:maxdepth: 2
:caption: Contents:
'../../md/attributes.md'
'../../md'/builtins.md'
'../../md'/download.md'
'../../md'/extensions.md'
'../../md'/fli.md'
'../../md'/library.md'
'../../md'/load_files.md'
'../../md'/modules.md'
'../../md'/packages.md'
'../../md'/run.md'
'../../md'/swi.md'
'../../md'/syntax.md'
'../../md'/yap.md'
'classlist.rst'
'file.rst'
'group.rst'
'section.rst'
'union.rst'
'namespace.rst'
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`