/************************************************************************ ** ** ** The YapTab/YapOr/OPTYap systems ** ** ** ** YapTab extends the Yap Prolog engine to support sequential tabling ** ** YapOr extends the Yap Prolog engine to support or-parallelism ** ** OPTYap extends the Yap Prolog engine to support or-parallel tabling ** ** ** ** ** ** Yap Prolog was developed at University of Porto, Portugal ** ** ** ************************************************************************/ /************************************************************************ ** Atomic locks for SPARC ** ************************************************************************/ #define swap_il(adr,reg) \ ({ int _ret; \ asm volatile ("swap %1,%0" \ : "=r" (_ret), "=m" (*(adr)) /* Output %0,%1 */ \ : "m" (*(adr)), "0" (reg)); /* Input (%2),%0 */ \ _ret; \ }) #define TRY_LOCK(LOCK_VAR) (swap_il((LOCK_VAR),1)==0) #define INIT_LOCK(LOCK_VAR) ((LOCK_VAR) = 0) #define LOCK(LOCK_VAR) do { \ if (TRY_LOCK(&(LOCK_VAR))) break; \ while (IS_LOCKED(LOCK_VAR)) continue; \ } while (1) #define IS_LOCKED(LOCK_VAR) ((LOCK_VAR) != 0) #define IS_UNLOCKED(LOCK_VAR) ((LOCK_VAR) == 0) #define UNLOCK(LOCK_VAR) ((LOCK_VAR) = 0) /* Read-write spinlocks, allowing multiple readers * but only one writer. * */ typedef struct { volatile unsigned int lock; } rwlock_t; /* Sort of like atomic_t's on Sparc, but even more clever. * * ------------------------------------ * | 24-bit counter | wlock | rwlock_t * ------------------------------------ * 31 8 7 0 * * wlock signifies the one writer is in or somebody is updating * counter. For a writer, if he successfully acquires the wlock, * but counter is non-zero, he has to release the lock and wait, * till both counter and wlock are zero. * * Unfortunately this scheme limits us to ~16,000,000 cpus. */ static __inline__ void _read_lock(rwlock_t *rw) { register rwlock_t *lp asm("g1"); lp = rw; asm __volatile__("mov %%o7, %%g4\n\t" \ "call ___rw_read_enter\n\t" \ "ldstub [%%g1 + 3], %%g2\n" \ : /* no outputs */ \ : "r" (lp) \ : "g2", "g4", "g7", "memory", "cc"); } #define READ_LOCK(lock) \ do { _read_lock(&(lock)); \ } while(0) static __inline__ void _read_unlock(rwlock_t *rw) { register rwlock_t *lp asm("g1"); lp = rw; asm __volatile__( \ "mov %%o7, %%g4\n\t" \ "call ___rw_read_exit\n\t" \ "ldstub [%%g1 + 3], %%g2\n" \ : /* no outputs */ \ : "r" (lp) \ : "g2", "g4", "g7", "memory", "cc"); } #define READ_UNLOCK(lock) \ do { _read_unlock(&lock); \ } while(0) static __inline__ void write_lock(rwlock_t *rw) { register rwlock_t *lp asm("g1"); lp = rw; asm __volatile__( \ "mov %%o7, %%g4\n\t"\ "call ___rw_write_enter\n\t" \ "ldstub [%%g1 + 3], %%g2\n\t" \ : /* no outputs */ \ : "r" (lp) \ : "g2", "g4", "g7", "memory", "cc"); } #define WRITE_LOCK(X) write_lock(&(X)) #define WRITE_UNLOCK(rw) do { (&(rw))->lock = 0; } while(0) #define INIT_RWLOCK(RW) (RW).lock = 0