
cplint Manual

Fabrizio Riguzzi
fabrizio.riguzzi@unife.it

September 17, 2013

1 Introduction

cplint is a suite of programs for reasoning with ICL [15], LPADs [24, 25] and
CP-logic programs [22, 23]. It contains programs both for inference and learning.

2 Installation

cplint is distributed in source code in the source code development tree of
Yap. It includes Prolog and C files. Download it by following the instruction in
http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html.

cplint requires CUDD. You can download CUDD from ftp://vlsi.colorado.

edu/pub/cudd-2.5.0.tar.gz.
Compile CUDD:

1. decompress cudd-2.4.2.tar.gz

2. cd cudd-2.4.2

3. see the README file for instructions on compilation

Install Yap together with cplint: when compiling Yap following the instruc-
tion of the INSTALL file in the root of the Yap folder, use

configure --enable-cplint=DIR

where DIR is the directory where CUDD is, i.e., the directory ending with
cudd-2.5.0. Under Windows, you have to use Cygwin (CUDD does not com-
pile under MinGW), so

configure --enable-cplint=DIR --enable-cygwin

After having performed make install you can do make installcheck that
will execute a suite of tests of the various programs. If no error is reported you
have a working installation of cplint.

1

http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html
http://vlsi.colorado.edu/~fabio/CUDD/
ftp://vlsi.colorado.edu/pub/cudd-2.5.0.tar.gz
ftp://vlsi.colorado.edu/pub/cudd-2.5.0.tar.gz

3 Syntax

LPAD and CP-logic programs consist of a set of annotated disjunctive clauses.
Disjunction in the head is represented with a semicolon and atoms in the head
are separated from probabilities by a colon. For the rest, the usual syntax of
Prolog is used. For example, the CP-logic clause

h1 : p1 ∨ . . . ∨ hn : pn ← b1, . . . , bm,¬c1, . . . ,¬cl

is represented by

h1:p1 ; ... ; hn:pn :- b1,...,bm,\+ c1,....,\+ cl

No parentheses are necessary. The pi are numeric expressions. It is up to the
user to ensure that the numeric expressions are legal, i.e. that they sum up to
less than one.

If the clause has an empty body, it can be represented like this

h1:p1 ; ... ;hn:pn.

If the clause has a single head with probability 1, the annotation can be omitted
and the clause takes the form of a normal prolog clause, i.e.

h1:- b1,...,bm,\+ c1,...,\+ cl.

stands for

h1:1 :- b1,...,bm,\+ c1,...,\+ cl.

The coin example of [25] is represented as (see file coin.cpl)

heads(Coin):1/2 ; tails(Coin):1/2:-

toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4:-

toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.

toss(coin).

The first clause states that if we toss a coin that is not biased it has equal
probability of landing heads and tails. The second states that if the coin is
biased it has a slightly higher probability of landing heads. The third states
that the coin is fair with probability 0.9 and biased with probability 0.1 and the
last clause states that we toss a coin with certainty.

Moreover, the bodies of rules can contain the built-in predicates:

is/2, >/2, </2, >=/2 ,=</2,

=:=/2, =\=/2, true/0, false/0,

=/2, ==/2, \=/2 ,\==/2, length/2

The bodies can also contain the following library predicates:

member/2, max_list/2, min_list/2

nth0/3, nth/3

2

plus the predicate

average/2

that, given a list of numbers, computes its arithmetic mean.
The syntax of ICL program is the one used by the AILog 2 system.

4 Inference

cplint contains various modules for answering queries.
These modules answer queries using using goal-oriented procedures:

• lpadsld.pl: uses the top-down procedure described in in [16] and [17].
It is based on SLDNF resolution and is an adaptation of the interpreter
for ProbLog [11].

It was proved correct [17] with respect to the semantics of LPADs for
range restricted acyclic programs [1] without function symbols.

It is also able to deal with extensions of LPADs and CP-logic: the clause
bodies can contain setof and bagof, the probabilities in the head may be
depend on variables in the body and it is possible to specify a uniform dis-
tribution in the head with reference to a setof or bagof operator. These
extended features have been introduced in order to represent CLP(BN)
[21] programs and PRM models [14]: setof and bagof allow to express de-
pendency of an attribute from an aggregate function of another attribute,
as in CLP(BN) and PRM, while the possibility of specifying a uniform
distribution allows the use of the reference uncertainty feature of PRM.

• picl.pl: performs inference on ICL programs [18]

• lpad.pl: uses a top-down procedure based on SLG resolution [9]. As a
consequence, it works for any sound LPADs, i.e., any LPAD such that
each of its instances has a two valued well founded model.

• cpl.pl: uses a top-down procedure based on SLG resolution and moreover
checks that the CP-logic program is valid, i.e., that it has at least an
execution model.

• Modules for approximate inference:

– deepit.pl performs iterative deepening [8]

– deepdyn.pl performs dynamic iterative deepening [8]

– bestk.pl performs k-Best [8]

– bestfirst.pl performs best first [8]

– montecarlo.pl performs Monte Carlo [8]

– mcintyre.pl: implements the algorithm MCINTYRE (Monte Carlo
INference wiTh Yap REcord) [19]

• approx/exact.pl as lpadsld.pl but uses SimplecuddLPADs, a modifi-
cation of the Simplecudd instead of the cplint library for building BDDs
and computing the probability.

3

http://www.cs.ubc.ca/~poole/aibook/code/ailog/ailog2.html
http://dtai.cs.kuleuven.be/problog/download.html

These modules answer queries using the definition of the semantics of LPADs
and CP-logic:

• semlpadsld.pl: given an LPAD P , it generates all the instances of P .
The probability of a query Q is computed by identifying all the instances
where Q is derivable by SLDNF resolution.

• semlpad.pl: given an LPAD P , it generates all the instances of P . The
probability of a query Q is computed by identifying all the instances where
Q is derivable by SLG resolution.

• semlcpl.pl: given an LPAD P , it builds an execution model of P , i.e.,
a probabilistic process that satisfy the principles of universal causation,
sufficient causation, independent causation, no deus ex machina events
and temporal precedence. It uses the definition of the semantics given in
[23].

4.1 Commands

The LPAD or CP-logic program must be stored in a text file with extension
.cpl. Suppose you have stored the example above in file coin.cpl. In order to
answer queries from this program, you have to run Yap, load one of the modules
(such as for example lpad.pl) by issuing the command

use_module(library(lpad)).

at the command prompt. Then you must parse the source file coin.cpl with
the command

p(coin).

if coin.cpl is in the current directory, or

p(’path_to_coin/coin’).

if coin.cpl is in a different directory. At this point you can pose query to the
program by using the predicate s/2 (for solve) that takes as its first argument
a conjunction of goals in the form of a list and returns the computed proba-
bility as its second argument. For example, the probability of the conjunction
head(coin),biased(coin) can be asked with the query

s([head(coin),biased(coin)],P).

For computing the probability of a conjunction given another conjunction you
can use the predicate sc/3 (for solve conditional) that take takes as input the
query conjunction as its first argument, the evidence conjunction as its second
argument and returns the probability in its third argument. For example, the
probability of the query heads(coin) given the evidence biased(coin) can be
asked with the query

sc([heads(coin)],[biased(coin)],P).

4

After having parsed a program, in order to read in a new program you must
restart Yap when using semlpadsld.pl and semlpad.pl. With the other mod-
ules, you can directly parse a new program.

When using lpad.pl, the system can print the message “Uunsound pro-
gram” in the case in which an instance with a three valued well founded model
is found. Moreover, it can print the message “It requires the choice of a head
atom from a non ground head”: in this case, in order to answer the query, all the
groundings of the culprit clause must be generated, which may be impossible
for programs with function symbols.

When using semcpl.pl, you can print the execution process by using the
command print. after p(file). Moreover, you can build an execution process
given a context by issuing the command parse(file). and then build(context).

where context is a list of atoms that are true in the context. semcpl.pl can
print “Invalid program” in the case in which no execution process exists.

When using cpl.pl you can print a partial execution model including all the
clauses involved in the query issued with print. cpl.pl can print the messages
“Uunsound program”, “It requires the choice of a head atom from a non ground
head” and “Invalid program”.

For approx/deepit.pl and approx/deepdyn.pl the command

solve(GoalsList, ProbLow, ProbUp, ResTime, BddTime)

takes as input a list of goals GoalsList and returns a lower bound on the
probability ProbLow, an upper bound on the probability ProbUp, the CPU time
spent on performing resolution ResTime and the CPU time spent on handling
BDDs BddTime.

For approx/bestk.pl the command

solve(GoalsList, ProbLow, ResTime, BddTime)

takes as input a list of goals GoalsList and returns a lower bound on the
probability ProbLow, the CPU time spent on performing resolution ResTime

and the CPU time spent on handling BDDs BddTime.
For approx/bestfirst.pl the command

solve(GoalsList, ProbLow, ProbUp, Count, ResTime, BddTime)

takes as input a list of goals GoalsList and returns a lower bound on the
probability ProbLow, an upper bound on the probability ProbUp, the number of
BDDs generated by the algorithm Count, the CPU time spent on performing
resolution ResTime and the CPU time spent on handling BDDs BddTime.

For approx/montecarlo.pl the command

solve(GoalsList, Samples, Time, Low, Prob, Up)

takes as input a list of goals GoalsList and returns the number of samples
taken Samples, the time required to solve the problem Time, the lower end of
the confidence interval Lower, the estimated probability Prob and the upper
end of the confidence interval Up.

For mcintyre.pl: the command

solve(Goals, Samples, CPUTime, WallTime, Lower, Prob, Upper) :-

5

takes as input a conjunction of goals Goals and returns the number of sam-
ples taken Samples, the CPU time required to solve the problem CPUTime, the
wall time required to solve the problem CPUTime, the lower end of the confi-
dence interval Lower, the estimated probability Prob and the upper end of the
confidence interval Up.

For approx/exact.pl the command

solve(GoalsList, Prob, ResTime, BddTime)

takes as input a conjunction of goals Goals and returns the probability Prob,
the CPU time spent on performing resolution ResTime and the CPU time spent
on handling BDDs BddTime.

4.1.1 Parameters

The modules make use of a number of parameters in order to control their
behavior. They that can be set with the command

set(parameter,value).

from the Yap prompt after having loaded the module. The current value can
be read with

setting(parameter,Value).

from the Yap prompt. The available parameters are:

• epsilon_parsing (valid for all modules): if (1 - the sum of the probabili-
ties of all the head atoms) is smaller than epsilon_parsing then cplint

adds the null events to the head. Default value 0.00001

• save_dot (valid for all goal-oriented modules): if true a graph represent-
ing the BDD is saved in the file cpl.dot in the current directory in dot
format. The variables names are of the form Xn_m where n is the number
of the multivalued variable and m is the number of the binary variable.
The correspondence between variables and clauses can be evinced from
the message printed on the screen, such as

Variables: [(2,[X=2,X1=1]),(2,[X=1,X1=0]),(1,[])]

where the first element of each couple is the clause number of the input file
(starting from 1). In the example above variable X0 corresponds to clause
2 with the substitutions X=2,X1=1, variable X1 corresponds to clause 2

with the substitutions X=1,X1=0 and variable X2 corresponds to clause
1 with the empty substitution. You can view the graph with graphviz

using the command

dotty cpl.dot &

• ground_body: (valid for lpadsld.pl and all semantic modules) deter-
mines how non ground clauses are treated: if true, ground clauses are
obtained from a non ground clause by replacing each variable with a con-
stant, if false, ground clauses are obtained by replacing only variables in
the head with a constant. In the case where the body contains variables
not in the head, setting it to false means that the body represents an
existential event.

6

http://www.graphviz.org

• min_error: (valid for approx/deepit.pl, approx/deepdyn.pl, approx/bestk.pl,
approx/bestfirst.pl, approx/montecarlo.pl and mcintyre.pl) is the
threshold under which the difference between upper and lower bounds on
probability must fall for the algorithm to stop.

• k: maximum number of explanations for approx/bestk.pl and approx/bestfirst.pl

and number of samples to take at each iteration for approx/montecarlo.pl
and mcintyre.pl

• prob_bound: (valid for approx/deepit.pl, approx/deepdyn.pl, approx/bestk.pl
and approx/bestfirst.pl) is the initial bound on the probability of ex-
planations when iteratively building explanations

• prob_step: (valid for approx/deepit.pl, approx/deepdyn.pl, approx/bestk.pl
and approx/bestfirst.pl) is the increment on the bound on the proba-
bility of explanations when iteratively building explanations

• timeout: (valid for approx/deepit.pl, approx/deepdyn.pl, approx/bestk.pl,
approx/bestfirst.pl and approx/exact.pl) timeout for builduing BDDs

4.2 Semantic Modules

The three semantic modules need to produce a grounding of the program in
order to compute the semantics. They require an extra file with extension .uni

(for universe) in the same directory where the .cpl file is.
There are two ways to specify how to ground a program. The first consists

in providing the list of constants to which each variable can be instantiated. For
example, in our case the current directory will contain a file coin.uni that is a
Prolog file containing facts of the form

universe(var_list,const_list).

where var_list is a list of variables names (each must be included in single
quotes) and const_list is a list of constants. The semantic modules generate
the grounding by instantiating in all possible ways the variables of var_list
with the constants of const_list. Note that the variables are identified by
name, so a variable with the same name in two different clauses will be instan-
tiated with the same constants.

The other way to specify how to ground a program consists in using mode
and type information. For each predicate, the file .uni must contain a fact of
the form

mode(predicate(t1,...,tn)).

that specifies the number and types of each argument of the predicate. Then,
the list of constants that are in the domain of each type ti must be specified
with a fact of the form

type(ti,list_of_constants).

The file .uni can contain both universe and mode declaration, the ones to be
used depend on the value of the parameter grounding: with value variables,
the universe declarations are used, with value modes the mode declarations are
used.

With semcpl.pl only mode declarations can be used.

7

4.3 Extensions

In this section we will present the extensions to the syntax of LPADs and CP-
logic programs that lpadsld can handle.

When using lpadsld.pl, the bodies can contain the predicates setof/3 and
bagof/3 with the same meaning as in Prolog. Existential quantifiers are allowed
in both, so for example the query

setof(Z, (term(X,Y))^foo(X,Y,Z), L).

returns all the instantiations of Z such that there exists an instantiation of X

and Y for which foo(X,Y,Z) is true.
An example of the use of setof and bagof is in the file female.cpl:

male(C):M/P ; female(C):F/P:-

person(C),

setof(Male,known_male(Male),LM),

length(LM,M),

setof(Female,known_female(Female),LF),

length(LF,F),

P is F+M.

person(f).

known_female(a).

known_female(b).

known_female(c).

known_male(d).

known_male(e).

The disjunctive rule expresses the probability of a person of unknown sex of
being male or female depending on the number of males and females that are
known. This is an example of the use of expressions in the probabilities in the
head that depend on variables in the body. The probabilities are well defined
because they always sum to 1 (unless P is 0).

Another use of setof and bagof is to have an attribute depend on an ag-
gregate function of another attribute, similarly to what is done in PRM and
CLP(BN).

So, in the classical school example (available in student.cpl) you can find
the following clauses:

student_rank(S,h):0.6 ; student_rank(S,l):0.4:-

bagof(G,R^(registr_stu(R,S),registr_gr(R,G)),L),

average(L,Av),Av>1.5.

student_rank(S,h):0.4 ; student_rank(S,l):0.6:-

bagof(G,R^(registr_stu(R,S),registr_gr(R,G)),L),

average(L,Av),Av =< 1.5.

where registr_stu(R,S) expresses that registration R refers to student S and
registr_gr(R,G) expresses that registration R reports grade G which is a nat-
ural number. The two clauses express a dependency of the rank of the student
from the average of her grades.

8

Another extension can be used with lpadsld.pl in order to be able to repre-
sent reference uncertainty of PRMs. Reference uncertainty means that the link
structure of a relational model is not fixed but is uncertain: this is represented
by having the instance referenced in a relationship be chosen uniformly from
a set. For example, consider a domain modeling scientific papers: you have
a single entity, paper, and a relationship, cites, between paper and itself that
connects the citing paper to the cited paper. To represent the fact that the
cited paper and the citing paper are selected uniformly from certain sets, the
following clauses can be used (see file paper_ref_simple.cpl):

uniform(cites_cited(C,P),P,L):-

bagof(Pap,paper_topic(Pap,theory),L).

uniform(cites_citing(C,P),P,L):-

bagof(Pap,paper_topic(Pap,ai),L).

The first clauses states that the paper P cited in a citation C is selected uniformly
from the set of all papers with topic theory. The second clauses expresses that
the citing paper is selected uniformly from the papers with topic ai.

These clauses make use of the predicate

uniform(Atom,Variable,List)

in the head, where Atom must contain Variable. The meaning is the following:
the set of all the atoms obtained by instantiating Variable of Atom with a term
taken from List is generated and the head is obtained by having a disjunct for
each instantiation with probability 1/N where N is the length of List.

A more elaborate example is present in file paper_ref.cpl:

uniform(cites_citing(C,P),P,L):-

setof(Pap,paper(Pap),L).

cites_cited_group(C,theory):0.9 ; cites_cited_group(C,ai):0.1:-

cites_citing(C,P),paper_topic(P,theory).

cites_cited_group(C,theory):0.01;cites_cited_group(C,ai):0.99:-

cites_citing(C,P),paper_topic(P,ai).

uniform(cites_cited(C,P),P,L):-

cites_cited_group(C,T),bagof(Pap,paper_topic(Pap,T),L).

where the cited paper depends on the topic of the citing paper. In particular, if
the topic is theory, the cited paper is selected uniformly from the papers about
theory with probability 0.9 and from the papers about ai with probability 0.1.
if the topic is ai, the cited paper is selected uniformly from the papers about
theory with probability 0.01 and from the papers about ai with probability 0.99.

PRMs take into account as well existence uncertainty, where the existence
of instances is also probabilistic. For example, in the paper domain, the total
number of citations may be unknown and a citation between any two paper may
have a probability of existing. For example, a citation between two paper may
be more probable if they are about the same topic:

9

cites(X,Y):0.005 :-

paper_topic(X,theory),paper_topic(Y,theory).

cites(X,Y):0.001 :-

paper_topic(X,theory),paper_topic(Y,ai).

cites(X,Y):0.003 :-

paper_topic(X,ai),paper_topic(Y,theory).

cites(X,Y):0.008 :-

paper_topic(X,ai),paper_topic(Y,ai).

This is an example where the probabilities in the head do not sum up to one so
the null event is automatically added to the head. The first clause states that,
if the topic of a paper X is theory and of paper Y is theory, there is a probability
of 0.005 that there is a citation from X to Y. The other clauses consider the
remaining cases for the topics.

4.4 Files

In the directory where Yap keeps the library files (usually /usr/local/share/

Yap) you can find the directory cplint that contains the files:

• testlpadsld gbtrue.pl, testlpadsld gbfalse.pl, testlpad.pl, testcpl.pl,

testsemlpadsld.pl, testsemlpad.pl testsemcpl.pl: Prolog programs
for testing the modules. They are executed when issuing the command
make installcheck during the installation. To execute them afterwords,
load the file and issue the command t.

• Subdirectory examples:

– alarm.cpl: representation of the Bayesian network in Figure 2 of
[25].

– coin.cpl: coin example from [25].

– coin2.cpl: coin example with two coins.

– dice.cpl: dice example from [25].

– twosideddice.cpl, threesideddice.cpl game with idealized dice
with two or three sides. Used in the experiments in [17].

– ex.cpl: first example in [17].

– exapprox.cpl: example showing the problems of approximate infer-
ence (see [17]).

– exrange.cpl: example showing the problems with non range re-
stricted programs (see [17]).

– female.cpl: example showing the dependence of probabilities in the
head from variables in the body (from [25]).

– mendel.cpl, mendels.cpl: programs describing the Mendelian rules
of inheritance, taken from [7].

– paper_ref.cpl, paper_ref_simple.cpl: paper citations examples,
showing reference uncertainty, inspired by [14].

10

– paper_ref_not.cpl: paper citations example showing that negation
can be used also for predicates defined by clauses with uniform in
the head.

– school.cpl: example inspired by the example school_32.yap from
the source distribution of Yap in the CLPBN directory.

– school_simple.cpl: simplified version of school.cpl.

– student.cpl: student example from Figure 1.3 of [13].

– win.cpl, light.cpl, trigger.cpl, throws.cpl, hiv.cpl,

invalid.cpl: programs taken from [23]. invalid.cpl is an example
of a program that is invalid but sound.

The files *.uni that are present for some of the examples are used by
the semantical modules. Some of the example files contain in an initial
comment some queries together with their result.

• Subdirectory doc: contains this manual in latex, html and pdf.

5 Learning

cplint contains the following learning algorithms:

• CEM (cplint EM): an implementation of EM for learning parameters
that is based on lpadsld.pl [20]

• RIB (Relational Information Bottleneck): an algorithm for learning pa-
rameters based on the Information Bottleneck [20]

• EMBLEM (EM over Bdds for probabilistic Logic programs Efficient Min-
ing): an implementation of EM for learning parameters that computes
expectations directly on BDDs [5, 2, 3]

• SLIPCASE (Structure LearnIng of ProbabilistiC logic progrAmS with Em
over bdds): an algorithm for learning the structure of programs by search-
ing directly the theory space [4]

• SLIPCOVER (Structure LearnIng of Probabilistic logic programs by searCh-
ing OVER the clause space): an algorithm for learning the structure of
programs by searching the clause space and the theory space separatery
[6]

5.1 Input

To execute the learning algorithms, prepare four files in the same folder:

• <stem>.kb: contains the example interpretations

• <stem>.bg: contains the background knowledge, i.e., knowledge valid for
all interpretations

• <stem>.l: contains language bias information

11

• <stem>.cpl: contains the LPAD for you which you want to learn the
parameters or the initial LPAD for SLIPCASE. For SLIPCOVER, this
file should be absent

where <stem> is your dataset name. Examples of these files can be found in the
dataset pages.

In <stem>.kb the example interpretations have to be given as a list of Prolog
facts initiated by begin(model(<name>)). and terminated by end(model(<name>)).

as in

begin(model(b1)).

sameperson(1,2).

movie(f1,1).

movie(f1,2).

workedunder(1,w1).

workedunder(2,w1).

gender(1,female).

gender(2,female).

actor(1).

actor(2).

end(model(b1)).

The interpretations may contain a fact of the form

prob(0.3).

assigning a probability (0.3 in this case) to the interpretations. If this is omitted,
the probability of each interpretation is considered equal to 1/n where n is the
total number of interpretations. prob/1 can be used to set different multiplicity
for the different interpretations.

In order for RIB to work, the input interpretations must share the Herbrand
universe. If this is not the case, you have to translate the interpretations in this
was, see for example the sp1 files in RIB’s folder, that are the results of the
conversion of the first fold of the IMDB dataset.

<stem>.bg can contain Prolog clauses that can be used to derive additional
conclusions from the atoms in the interpretations.

<stem>.l contains the declarations of the input and output predicates, of
the unseen predicates and the commands for setting the algorithms’ parameters.
Output predicates are declared as

output(<predicate>/<arity>).

and define the predicates whose atoms in the input interpretations are used
as the goals for the prediction of which you want to optimize the parameters.
Derivations for these goals are built by the systems.

Input predicates are those for the predictions of which you do not want to
optimize the parameters. You can declare closed world input predicates with

input_cw(<predicate>/<arity>).

For these predicates, the only true atoms are those in the interpretations, the
clauses in the input program are not used to derive atoms not present in the
interpretations.

Open world input predicates are declared with

12

input(<predicate>/<arity>).

In this case, if a subgoal for such a predicate is encountered when deriving the
atoms for the output predicates, both the facts in the interpretations and the
clauses of the input program are used.

For RIB, if there are unseen predicates, i.e., predicates that are present in
the input program but not in the interpretations, you have to declare them with

unseen(<predicate>/<arity>).

For SLIPCASE and SLIPCOVER, you have to specify the language bias by
means of mode declarations in the style of Progol.

modeh(<recall>,<predicate>(<arg1>,...).

specifies the atoms that can appear in the head of clauses, while

modeb(<recall>,<predicate>(<arg1>,...).

specifies the atoms that can appear in the body of clauses. <recall> can be an
integer or * (currently unused).

The arguments are of the form

+<type>

for specifying an input variable of type <type>, or

-<type>

for specifying an output variable of type <type>. or

<constant>

for specifying a constant.
SLIPCOVER also allows the arguments

#<type>

for specifying an argument which should be replaced by a constant of type
<type> in the bottom clause but should not be used for replacing input variables
of the following literals or

-#<type>

for specifying an argument which should be replaced by a constant of type
<type> in the bottom clause and that should be used for replacing input vari-
ables of the following literals. # and -# differ only in the creation of the bottom
clause.

An example of language bias for the UWCSE domain is

output(advisedby/2).

input(student/1).

input(professor/1).

....

modeh(*,advisedby(+person,+person)).

13

http://www.doc.ic.ac.uk/~shm/progol.html

modeb(*,professor(+person)).

modeb(*,student(+person)).

modeb(*,sameperson(+person, -person)).

modeb(*,sameperson(-person, +person)).

modeb(*,samecourse(+course, -course)).

modeb(*,samecourse(-course, +course)).

....

SLIPCOVER also requires facts for the determination/2 predicate that indi-
cate which predicates can appear in the body of clauses. For example

determination(professor/1,student/1).

determination(student/1,hasposition/2).

state that student/1 can appear in the body of clauses for professor/1 and
that hasposition/2 can appear in the body of clauses for student/1.

SLIPCOVER also allows mode declarations of the form

modeh(<r>,[<s1>,...,<sn>],[<a1>,...,<an>],[<P1/Ar1>,...,<Pk/Ark>]).

These mode declarations are used to generate clauses with more than two head
atoms. In them, <s1>,...,<sn> are schemas, <a1>,...,<an> are atoms such
that <ai> is obtained from <si> by replacing placemarkers with variables,
<Pi/Ari> are the predicates admitted in the body. <a1>,...,<an> are used
to indicate which variables should be shared by the atoms in the head. An
example of such a mode declaration is

modeh(*,

[advisedby(+person,+person),tempadvisedby(+person,+person)],

[advisedby(A,B),tempadvisedby(A,B)],

[professor/1,student/1,hasposition/2,inphase/2,

publication/2,taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).

5.2 Parameters

In order to set the algorithms’ parameters, you have to insert in <stem>.l

commands of the form

:- set(<parameter>,<value>).

The available parameters are:

• depth (values: integer or inf, default value: 3): depth of derivations if
depth_bound is set to true

• single_var (values: {true,false}, default value: false, valid for CEM,
EMBLEM, SLIPCASE and SLIPCOVER): if set to true, there is a ran-
dom variable for each clauses, instead of a separate random variable for
each grounding of a clause

• sample_size (values: integer, default value: 1000): total number of ex-
amples in case in which the models in the .kb file contain a prob(P).

fact. In that case, one model corresponds to sample_size*P examples

14

• epsilon_em (values: real, default value: 0.1, valid for CEM, EMBLEM,
SLIPCASE and SLIPCOVER): if the difference in the log likelihood in
two successive EM iteration is smaller than epsilon_em, then EM stops

• epsilon_em_fraction (values: real, default value: 0.01, valid for CEM,
EMBLEM, SLIPCASE and SLIPCOVER): if the difference in the log like-
lihood in two successive EM iteration is smaller than epsilon_em_fraction*(-
current log likelihood), then EM stops

• iter (values: integer, defualt value: 1, valid for EMBLEM, SLIPCASE
and SLIPCOVER): maximum number of iteration of EM parameter learn-
ing. If set to -1, no maximum number of iterations is imposed

• iterREF (values: integer, defualt value: 1, valid for SLIPCASE and SLIP-
COVER): maximum number of iteration of EM parameter learning for
refinements. If set to -1, no maximum number of iterations is imposed.

• random_restarts_number (values: integer, default value: 1, valid for
CEM, EMBLEM, SLIPCASE and SLIPCOVER): number of random restarts
of EM learning

• random_restarts_REFnumber (values: integer, default value: 1, valid for
SLIPCASE and SLIPCOVER): number of random restarts of EM learning
for refinements

• setrand (values: rand(integer,integer,integer)): seed for the random func-
tions, see Yap manual for allowed values

• minimal_step (values: [0,1], default value: 0.005, valid for RIB): minimal
increment of γ

• maximal_step (values: [0,1], default value: 0.1, valid for RIB): maximal
increment of γ

• logsize_fraction (values: [0,1], default value 0.9, valid for RIB): RIB
stops when I(CH, T ;Y) is above logsize_fraction times its maximum
value (log |CH, T |, see [12])

• delta (values: negative integer, default value -10, valid for RIB): value
assigned to log 0

• epsilon_fraction (values: integer, default value 100, valid for RIB):
in the computation of the step, the value of ε of [12] is obtained as
log |CH, T |×epsilon_fraction

• max_rules (values: integer, default value: 6000, valid for RIB and SLIP-
CASE): maximum number of ground rules. Used to set the size of arrays
for storing internal statistics. Can be increased as much as memory allows.

• logzero (values: negative real, default value log(0.000001), valid for SLIP-
CASE and SLIPCOVER): value assigned to log 0

15

• examples (values: atoms,interpretations, default value atoms, valid for
SLIPCASE): determines how BDDs are built: if set to interpretations,
a BDD for the conjunction of all the atoms for the target predicates in each
interpretations is built. If set to atoms, a BDD is built for the conjunction
of a group of atoms for the target predicates in each interpretations. The
number of atoms in each group is determined by the parameter group

• group (values: integer, default value: 1, valid for SLIPCASE): number of
target atoms in the groups that are used to build BDDs

• nax_iter (values: integer, default value: 10, valid for SLIPCASE and
SLIPCOVER): number of interations of beam search

• max_var (values: integer, default value: 1, valid for SLIPCASE and SLIP-
COVER): maximum number of distinct variables in a clause

• verbosity (values: integer in [1,3], default value: 1): level of verbosity of
the algorithms

• beamsize (values: integer, default value: 20, valid for SLIPCASE and
SLIPCOVER): size of the beam

• megaex_bottom (values: integer, default value: 1, valid for SLIPCOVER):
number of mega-examples on which to build the bottom clauses

• initial_clauses_per_megaex (values: integer, default value: 1, valid for
SLIPCOVER): number of bottom clauses to build for each mega-example

• d (values: integer, default value: 10000, valid for SLIPCOVER): number
of saturation steps when building the bottom clause

• max_iter_structure (values: integer, default value: 1, valid for SLIP-
COVER): maximum number of theory search iterations

• background_clauses (values: integer, default value: 50, valid for SLIP-
COVER): maximum numbers of background clauses

• maxdepth_var (values: integer, default value: 2, valid for SLIPCOVER):
maximum depth of variables in clauses (as defined in [10]).

• score (values: ll, aucpr, default value ll, valid for SLIPCOVER): de-
termines the score function for refinement: if set to ll, log likelihood is
used, if set to aucpr, the area under the Precision-Recall curve is used.

5.3 Commands

To execute CEM, load em.pl with

?:- use_module(library(’cplint/em’)).

and call:

?:- em(stem).

To execute RIB, load rib.pl with

16

?:- use_module(library(’cplint/rib’)).

and call:

?:- ib_par(stem).

To execute EMBLEM, load slipcase.pl with

?:- use_module(library(’cplint/slipcase’)).

and call

?:- em(stem).

To execute SLIPCASE, load slipcase.pl with

?:- use_module(library(’cplint/slipcase’)).

and call

?:- sl(stem).

To execute SLIPCOVER, load slipcover.pl with

?:- use_module(library(’cplint/slipcover’)).

and call

?:- sl(stem).

5.4 Testing

To test the theories learned, load test.pl with

?:- use_module(library(’cplint/test’)).

and call

?:- main([<stem_fold1>,...,<stem_foldn>],[<testing_set_fold1>,...,

<testing_set_foldn>]).

For example, if you want to test the theory in ai_train.rules on the set ai.kb,
you can call

?:- main([ai_train],[ai]).

The testing program has the following parameter:

• neg_ex (values: given, cw, default value: cw): if set to given, the negative
examples are taken from <testing_set_foldi>.kb, i.e., those example ex
stored as neg(ex); if set to cw, the negative examples are generated ac-
cording to the closed world assumption, i.e., all atoms for target predicates
that are not positive examples. The set of all atoms is obtained by col-
lecting the set of constants for each type of the arguments of the target
predicate.

The testing program produces the following output in the current folder:

17

• cll.pl: for each fold, the list of examples orderd by their probability of
being true

• areas.csv: the areas under the Precision-Recall curve and the Receiver
Operating Characteristic curve

• curve_roc.m: a Matlab file for plotting the Receiver Operating Charac-
teristic curve

• curve_pr.m: a Matlab file for plotting the Precision-Recall curve

5.5 Learning Examples

The subfolders em, rib, slipcase and slipcover of the packages/cplint

folder in Yap git distribution contain examples of input and output files for
the learning algorithms.

6 License

cplint, as Yap, follows the Artistic License 2.0 that you can find in Yap CVS
root dir. The copyright is by Fabrizio Riguzzi.

The modules in the approx subdirectory use SimplecuddLPADs, a modifi-
cation of the Simplecudd library whose copyright is by Katholieke Universiteit
Leuven and that follows the Artistic License 2.0.

Some modules use the library CUDD for manipulating BDDs that is included
in glu. For the use of CUDD, the following license must be accepted:

Copyright (c) 1995-2004, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without modifi-

cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

• Neither the name of the University of Colorado nor the names of its con-
tributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

18

http://dtai.cs.kuleuven.be/problog/download.html
http://vlsi.colorado.edu/~fabio/

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAU-SED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

lpad.pl, semlpad.pl and cpl.pl are based on the SLG system by Weidong
Chen and David Scott Warren, Copyright (C) 1993 Southern Methodist Uni-
versity, 1993 SUNY at Stony Brook, see the file COYPRIGHT SLG for detailed
information on this copyright.

References

[1] K. R. Apt and M. Bezem. Acyclic programs. New Gener. Comput.,
9(3/4):335–364, 1991.

[2] Elena Bellodi and Fabrizio Riguzzi. EM over binary decision diagrams for
probabilistic logic programs. In Proceedings of the 26th Italian Confer-
ence on Computational Logic (CILC2011), Pescara, Italy, 31 August 31-2
September, 2011, 2011.

[3] Elena Bellodi and Fabrizio Riguzzi. EM over binary decision diagrams for
probabilistic logic programs. Technical Report CS-2011-01, Dipartimento
di Ingegneria, Università di Ferrara, Italy, 2011.

[4] Elena Bellodi and Fabrizio Riguzzi. Learning the structure of probabilis-
tic logic programs. In Inductive Logic Programming, 21th International
Conference, ILP 2011, London, UK, 31 July-3 August, 2011, 2011.

[5] Elena Bellodi and Fabrizio Riguzzi. Expectation Maximization over binary
decision diagrams for probabilistic logic programs. Intel. Data Anal., 16(6),
2012.

[6] Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic
programs by searching the clause space. Theory and Practice of Logic
Programming, 2013.

[7] H. Blockeel. Probabilistic logical models for mendel’s experiments: An
exercise. In Inductive Logic Programming (ILP 2004), Work in Progress
Track, 2004.

[8] Stefano Bragaglia and Fabrizio Riguzzi. Approximate inference for logic
programs with annotated disjunctions. In Paolo Frasconi and Francesca
Lisi, editors, Inductive Logic Programming 20th International Conference,
ILP 2010, Florence, Italy, June 27-30, 2010. Revised Papers, volume 6489
of LNCS, pages 30–37. Springer, 2011.

[9] Weidong Chen and David Scott Warren. Tabled evaluation with delaying
for general logic programs. Journal of the ACM, 43(1):20–74, 1996.

[10] William W. Cohen. Pac-learning non-recursive prolog clauses. Artif. Intell.,
79(1):1–38, 1995.

19

http://www.cs.sunysb.edu/~warren/

[11] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog
and its application in link discovery. In International Joint Conference on
Artificial Intelligence, pages 2462–2467, 2007.

[12] G. Elidan and N. Friedman. Learning hidden variable networks: The in-
formation bottleneck approach. Journal of Machine Learning Research,
6:81–127, 2005.

[13] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic
relational models. In Saso Dzeroski and Nada Lavrac, editors, Relational
Data Mining. Springer-Verlag, Berlin, 2001.

[14] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilis-
tic models of relational structure. Journal of Machine Learning Research,
3:679–707, December 2002.

[15] David Poole. The independent choice logic for modelling multiple agents
under uncertainty. Artificial Intelligence, 94(1-2):7–56, 1997.

[16] Fabrizio Riguzzi. A top down interpreter for LPAD and CP-logic. In
Congress of the Italian Association for Artificial Intelligence, volume 4733
of LNAI, pages 109–120. Springer, 2007.

[17] Fabrizio Riguzzi. A top down interpreter for LPAD and CP-logic. In
Proceedings of the 14th RCRA workshop Experimental Evaluation of Algo-
rithms for Solving Problems with Combinatorial Explosion, 2007.

[18] Fabrizio Riguzzi. Extended semantics and inference for the Independent
Choice Logic. Logic Journal of the IGPL, 17(6):589–629, 2009.

[19] Fabrizio Riguzzi. MCINTYRE: A Monte Carlo algorithm for probabilis-
tic logic programming. In Proceedings of the 26th Italian Conference on
Computational Logic (CILC2011), Pescara, Italy, 31 August-2 September,
2011, 2011.

[20] Fabrizio Riguzzi and Nicola Di Mauro. Applying the information bottleneck
to statistical relational learning. Machine Learning, 2011. To appear.

[21] V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint
logic programming for probabilistic knowledge. In Uncertainty in Artificial
Intelligence. Morgan Kaufmann, 2003.

[22] J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal infor-
mation about a probabilistic process. In Proceedings of the 10th European
Conference on Logics in Artificial Intelligence, LNAI. Springer, September
2006.

[23] J. Vennekens, Marc Denecker, and Maurice Bruynooghe. CP-logic: A lan-
guage of causal probabilistic events and its relation to logic programming.
Theory Pract. Log. Program., 9(3):245–308, 2009.

[24] J. Vennekens and S. Verbaeten. Logic programs with annotated disjunc-
tions. Technical Report CW386, K. U. Leuven, 2003.

20

[25] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with an-
notated disjunctions. In International Conference on Logic Programming,
volume 3131 of LNCS, pages 195–209. Springer, 2004.

21

	Introduction
	Installation
	Syntax
	Inference
	Commands
	Parameters

	Semantic Modules
	Extensions
	Files

	Learning
	Input
	Parameters
	Commands
	Testing
	Learning Examples

	License

