% Slim Abdennadher, Thom Fruehwirth, LMU, July 1998 % Finite (enumeration, list) domain solver over integers :- use_module( library(chr)). :- use_module( library(lists), [member/2,memberchk/2,select/3, last/2,is_list/1,min_list/2, max_list/2, remove_duplicates/2]). handler listdom. option(debug_compile,on). option(already_in_heads, on). option(check_guard_bindings, off). % for domain constraints operator( 700,xfx,'::'). operator( 600,xfx,'..'). % for inequality constraints operator( 700,xfx,lt). operator( 700,xfx,le). operator( 700,xfx,ne). constraints (::)/2, le/2, lt/2, ne/2, add/3, mult/3. % X::Dom - X must be element of the finite list domain Dom % special cases X::[] <=> fail. %X::[Y] <=> X=Y. %X::[A|L] <=> ground(X) | (member(X,[A|L]) -> true). % intersection of domains for the same variable X::L1, X::L2 <=> is_list(L1), is_list(L2) | intersection(L1,L2,L) , X::L. X::L, X::Min..Max <=> is_list(L) | remove_lower(Min,L,L1), remove_higher(Max,L1,L2), X::L2. % interaction with inequalities X le Y, X::L1, Y::L2 ==> is_list(L1),is_list(L2), min_list(L1,MinX), min_list(L2,MinY), MinX > MinY | max_list(L2,MaxY), Y::MinX..MaxY. X le Y, X::L1, Y::L2 ==> is_list(L1),is_list(L2), max_list(L1,MaxX), max_list(L2,MaxY), MaxX > MaxY | min_list(L1,MinX), X::MinX..MaxY. X lt Y, X::L1, Y::L2 ==> is_list(L1), is_list(L2), max_list(L1,MaxX), max_list(L2,MaxY), MaxY1 is MaxY - 1, MaxY1 < MaxX | min_list(L1,MinX), X::MinX..MaxY1. X lt Y, X::L1, Y::L2 ==> is_list(L1), is_list(L2), min_list(L1,MinX), min_list(L2,MinY), MinX1 is MinX + 1, MinX1 > MinY | max_list(L2,MaxY), Y :: MinX1..MaxY. X ne Y \ Y::D <=> ground(X), is_list(D), member(X,D) | select(X,D,D1), Y::D1. Y ne X \ Y::D <=> ground(X), is_list(D), member(X,D) | select(X,D,D1), Y::D1. Y::D \ X ne Y <=> ground(X), is_list(D), \+ member(X,D) | true. Y::D \ Y ne X <=> ground(X), is_list(D), \+ member(X,D) | true. % interaction with addition % no backpropagation yet! add(X,Y,Z), X::L1, Y::L2 ==> is_list(L1), is_list(L2) | all_addition(L1,L2,L3), Z::L3. % interaction with multiplication % no backpropagation yet! mult(X,Y,Z), X::L1, Y::L2 ==> is_list(L1), is_list(L2) | all_multiplication(L1,L2,L3), Z::L3. % auxiliary predicates ============================================= remove_lower(_,[],L1):- !, L1=[]. remove_lower(Min,[X|L],L1):- X@Max, !, remove_higher(Max,L,L1). remove_higher(Max,[X|L],[X|L1]):- remove_higher(Max,L,L1). intersection([], _, []). intersection([Head|L1tail], L2, L3) :- memberchk(Head, L2), !, L3 = [Head|L3tail], intersection(L1tail, L2, L3tail). intersection([_|L1tail], L2, L3) :- intersection(L1tail, L2, L3). all_addition(L1,L2,L3) :- setof(Z, X^Y^(member(X,L1), member(Y,L2), Z is X + Y), L3). all_multiplication(L1,L2,L3) :- setof(Z, X^Y^(member(X,L1), member(Y,L2), Z is X * Y), L3). % EXAMPLE ========================================================== /* ?- X::[1,2,3,4,5,6,7], Y::[2,4,6,7,8,0], Y lt X, X::4..9, X ne Y, add(X,Y,Z), mult(X,Y,Z). */ % end of handler listdom.pl ================================================= % ===========================================================================