/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: eval.c * * Last rev: * * mods: * * comments: arithmetical expression evaluation * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif //! @file eval.c //! @{ /** @defgroup arithmetic_preds Arithmetic Predicates @ingroup arithmetic */ #include "Yap.h" #include "Yatom.h" #include "YapHeap.h" #include "eval.h" #if HAVE_STDARG_H #include #endif #include #if HAVE_UNISTD_H #include #endif #if HAVE_FENV_H #include #endif static Term Eval(Term t1 USES_REGS); static Term get_matrix_element(Term t1, Term t2 USES_REGS) { if (!IsPairTerm(t2)) { if (t2 == MkAtomTerm(AtomLength)) { Int sz = 1; while (IsApplTerm(t1)) { Functor f = FunctorOfTerm(t1); if (NameOfFunctor(f) != AtomNil) { return MkIntegerTerm(sz); } sz *= ArityOfFunctor(f); t1 = ArgOfTerm(1, t1); } return MkIntegerTerm(sz); } Yap_ArithError(TYPE_ERROR_EVALUABLE, t2, "X is Y^[A]"); return FALSE; } while (IsPairTerm(t2)) { Int indx; Term indxt = Eval(HeadOfTerm(t2) PASS_REGS); if (!IsIntegerTerm(indxt)) { Yap_ArithError(TYPE_ERROR_EVALUABLE, t2, "X is Y^[A]"); return FALSE; } indx = IntegerOfTerm(indxt); if (!IsApplTerm(t1)) { Yap_ArithError(TYPE_ERROR_EVALUABLE, t1, "X is Y^[A]"); return FALSE; } else { Functor f = FunctorOfTerm(t1); if (ArityOfFunctor(f) < indx) { Yap_ArithError(TYPE_ERROR_EVALUABLE, t1, "X is Y^[A]"); return FALSE; } } t1 = ArgOfTerm(indx, t1); t2 = TailOfTerm(t2); } if (t2 != TermNil) { Yap_ArithError(TYPE_ERROR_EVALUABLE, t2, "X is Y^[A]"); return FALSE; } return Eval(t1 PASS_REGS); } static Term Eval(Term t USES_REGS) { if (IsVarTerm(t)) { return Yap_ArithError(INSTANTIATION_ERROR,t,"in arithmetic"); } else if (IsNumTerm(t)) { return t; } else if (IsAtomTerm(t)) { ExpEntry *p; Atom name = AtomOfTerm(t); if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 0)))) { return Yap_ArithError(TYPE_ERROR_EVALUABLE, takeIndicator(t), "atom %s in arithmetic expression", RepAtom(name)->StrOfAE); } return Yap_eval_atom(p->FOfEE); } else if (IsApplTerm(t)) { Functor fun = FunctorOfTerm(t); if (fun == FunctorString) { const char *s = (const char*)StringOfTerm(t); if (s[1] == '\0') return MkIntegerTerm(s[0]); return Yap_ArithError(TYPE_ERROR_EVALUABLE, t, "string in arithmetic expression"); } else if ((Atom)fun == AtomFoundVar) { return Yap_ArithError(TYPE_ERROR_EVALUABLE, TermNil, "cyclic term in arithmetic expression"); } else { Int n = ArityOfFunctor(fun); Atom name = NameOfFunctor(fun); ExpEntry *p; Term t1, t2; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, n)))) { return Yap_ArithError(TYPE_ERROR_EVALUABLE, takeIndicator(t), "functor %s/%d for arithmetic expression", RepAtom(name)->StrOfAE,n); } if (p->FOfEE == op_power && p->ArityOfEE == 2) { t2 = ArgOfTerm(2, t); if (IsPairTerm(t2)) { return get_matrix_element(ArgOfTerm(1, t), t2 PASS_REGS); } } *RepAppl(t) = (CELL)AtomFoundVar; t1 = Eval(ArgOfTerm(1,t) PASS_REGS); if (t1 == 0L) { *RepAppl(t) = (CELL)fun; return FALSE; } if (n == 1) { *RepAppl(t) = (CELL)fun; return Yap_eval_unary(p->FOfEE, t1); } t2 = Eval(ArgOfTerm(2,t) PASS_REGS); *RepAppl(t) = (CELL)fun; if (t2 == 0L) return FALSE; return Yap_eval_binary(p->FOfEE,t1,t2); } } /* else if (IsPairTerm(t)) */ { if (TailOfTerm(t) != TermNil) { return Yap_ArithError(TYPE_ERROR_EVALUABLE, t, "string must contain a single character to be evaluated as an arithmetic expression"); } return Eval(HeadOfTerm(t) PASS_REGS); } } Term Yap_InnerEval__(Term t USES_REGS) { return Eval(t PASS_REGS); } #ifdef BEAM Int BEAM_is(void); Int BEAM_is(void) { /* X is Y */ union arith_ret res; blob_type bt; bt = Eval(Deref(XREGS[2]), &res); if (bt==db_ref_e) return (NULL); return (EvalToTerm(bt,&res)); } #endif /** @pred is( X:number, + Y:ground) is det This predicate succeeds iff the result of evaluating the expression _Y_ unifies with _X_. This is the predicate normally used to perform evaluation of arithmetic expressions: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ X is 2+3*4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ succeeds with `X = 14`. Consult @ref arithmetic_operators for the complete list of arithmetic_operators */ /// @memberof is/2 static Int p_is( USES_REGS1 ) { /* X is Y */ Term out; yap_error_number err; Term t = Deref(ARG2); if (IsVarTerm(t)) { Yap_EvalError(INSTANTIATION_ERROR,t, "X is Y"); return(FALSE); } Yap_ClearExs(); do { out = Yap_InnerEval(Deref(ARG2)); if ((err = Yap_FoundArithError()) == YAP_NO_ERROR) break; if (err == RESOURCE_ERROR_STACK) { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_gcl(LOCAL_Error_Size, 2, ENV, CP)) { Yap_EvalError(RESOURCE_ERROR_STACK, ARG2, LOCAL_ErrorMessage); return FALSE; } } else { Yap_EvalError(err, takeIndicator( ARG2 ), "X is Exp"); return FALSE; } } while (TRUE); return Yap_unify_constant(ARG1,out); } /** @pred isnan(? X:float) is det Interface to the IEE754 `isnan` test. */ /// @memberof isnan/1 static Int p_isnan( USES_REGS1 ) { /* X isnan Y */ Term out = 0L; while (!(out = Eval(Deref(ARG1) PASS_REGS))) { if (LOCAL_Error_TYPE == RESOURCE_ERROR_STACK) { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_gcl(LOCAL_Error_Size, 1, ENV, CP)) { Yap_EvalError(RESOURCE_ERROR_STACK, ARG2, LOCAL_ErrorMessage); return FALSE; } } else { Yap_EvalError(LOCAL_Error_TYPE, LOCAL_Error_Term, LOCAL_ErrorMessage); return FALSE; } } if (IsVarTerm(out)) { Yap_EvalError(INSTANTIATION_ERROR, out, "isnan/1"); return FALSE; } if (!IsFloatTerm(out)) { Yap_EvalError(TYPE_ERROR_FLOAT, out, "isnan/1"); return FALSE; } return isnan(FloatOfTerm(out)); } /** @pred isinf(? X:float) is det Interface to the IEE754 `isinf` test. */ /// @memberof isnan/1 static Int p_isinf( USES_REGS1 ) { /* X is Y */ Term out = 0L; while (!(out = Eval(Deref(ARG1) PASS_REGS))) { if (LOCAL_Error_TYPE == RESOURCE_ERROR_STACK) { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_gcl(LOCAL_Error_Size, 1, ENV, CP)) { Yap_EvalError(RESOURCE_ERROR_STACK, ARG2, LOCAL_ErrorMessage); return FALSE; } } else { Yap_EvalError(LOCAL_Error_TYPE, LOCAL_Error_Term, LOCAL_ErrorMessage); return FALSE; } } if (IsVarTerm(out)) { Yap_EvalError(INSTANTIATION_ERROR, out, "isinf/1"); return FALSE; } if (!IsFloatTerm(out)) { Yap_EvalError(TYPE_ERROR_FLOAT, out, "isinf/1"); return FALSE; } return isinf(FloatOfTerm(out)); } /** @pred logsum(+ Log1:float, + Log2:float, - Out:float ) is det True if _Log1_ is the logarithm of the positive number _A1_, _Log2_ is the logarithm of the positive number _A2_, and _Out_ is the logarithm of the sum of the numbers _A1_ and _A2_. Useful in probability computation. */ /// @memberof logsum/3 static Int p_logsum( USES_REGS1 ) { /* X is Y */ Term t1 = Deref(ARG1); Term t2 = Deref(ARG2); int done = FALSE; Float f1, f2; while (!done) { if (IsFloatTerm(t1)) { f1 = FloatOfTerm(t1); done = TRUE; } else if (IsIntegerTerm(t1)) { f1 = IntegerOfTerm(t1); done = TRUE; #if USE_GMP } else if (IsBigIntTerm(t1)) { f1 = Yap_gmp_to_float(t1); done = TRUE; #endif } else { while (!(t1 = Eval(t1 PASS_REGS))) { if (LOCAL_Error_TYPE == RESOURCE_ERROR_STACK) { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_gcl(LOCAL_Error_Size, 1, ENV, CP)) { Yap_EvalError(RESOURCE_ERROR_STACK, ARG2, LOCAL_ErrorMessage); return FALSE; } } else { Yap_EvalError(LOCAL_Error_TYPE, LOCAL_Error_Term, LOCAL_ErrorMessage); return FALSE; } } } } done = FALSE; while (!done) { if (IsFloatTerm(t2)) { f2 = FloatOfTerm(t2); done = TRUE; } else if (IsIntegerTerm(t2)) { f2 = IntegerOfTerm(t2); done = TRUE; #if USE_GMP } else if (IsBigIntTerm(t2)) { f2 = Yap_gmp_to_float(t2); done = TRUE; #endif } else { while (!(t2 = Eval(t2 PASS_REGS))) { if (LOCAL_Error_TYPE == RESOURCE_ERROR_STACK) { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_gcl(LOCAL_Error_Size, 2, ENV, CP)) { Yap_EvalError(RESOURCE_ERROR_STACK, ARG2, LOCAL_ErrorMessage); return FALSE; } } else { Yap_EvalError(LOCAL_Error_TYPE, LOCAL_Error_Term, LOCAL_ErrorMessage); return FALSE; } } } } if (f1 >= f2) { Float fi = exp(f2-f1); return Yap_unify(ARG3,MkFloatTerm(f1+log(1+fi))); } else { Float fi = exp(f1-f2); return Yap_unify(ARG3,MkFloatTerm(f2+log(1+fi))); } } Int Yap_ArithError(yap_error_number type, Term where, char *format,...) { CACHE_REGS va_list ap; if (LOCAL_ArithError) return 0L; LOCAL_ArithError = TRUE; LOCAL_Error_TYPE = type; LOCAL_Error_Term = where; if (!LOCAL_ErrorMessage) LOCAL_ErrorMessage = LOCAL_ErrorSay; va_start (ap, format); if (format != NULL) { #if HAVE_VSNPRINTF (void) vsnprintf(LOCAL_ErrorMessage, MAX_ERROR_MSG_SIZE, format, ap); #else (void) vsprintf(LOCAL_ErrorMessage, format, ap); #endif } else { LOCAL_ErrorMessage[0] = '\0'; } va_end (ap); return 0L; } yamop * Yap_EvalError(yap_error_number type, Term where, char *format,...) { CACHE_REGS va_list ap; if (LOCAL_ArithError) { LOCAL_ArithError = YAP_NO_ERROR; return Yap_Error( LOCAL_Error_TYPE, LOCAL_Error_Term, LOCAL_ErrorMessage); } if (!LOCAL_ErrorMessage) LOCAL_ErrorMessage = LOCAL_ErrorSay; va_start (ap, format); if (format != NULL) { #if HAVE_VSNPRINTF (void) vsnprintf(LOCAL_ErrorMessage, MAX_ERROR_MSG_SIZE, format, ap); #else (void) vsprintf(LOCAL_ErrorMessage, format, ap); #endif } else { LOCAL_ErrorMessage[0] = '\0'; } va_end (ap); return Yap_Error( type, where, LOCAL_ErrorMessage); } /** @pred between(+ Low:int, + High:int, ? Value:int) is nondet _Low_ and _High_ are integers, _High_ \>= _Low_. If _Value_ is an integer, _Low_ =\< _Value_ =\< _High_. When _Value_ is a variable it is successively bound to all integers between _Low_ and _High_. If _High_ is inf or infinite between/3 is true iff _Value_ \>= _Low_, a feature that is particularly interesting for generating integers from a certain value. */ /// @memberof between/3 static Int cont_between( USES_REGS1 ) { Term t1 = EXTRA_CBACK_ARG(3,1); Term t2 = EXTRA_CBACK_ARG(3,2); Yap_unify(ARG3, t1); if (IsIntegerTerm(t1)) { Int i1; Term tn; if (t1 == t2) cut_succeed(); i1 = IntegerOfTerm(t1); tn = add_int(i1, 1 PASS_REGS); EXTRA_CBACK_ARG(3,1) = tn; HB = B->cp_h = HR; return TRUE; } else { Term t[2]; Term tn; Int cmp; cmp = Yap_acmp(t1, t2 PASS_REGS); if (cmp == 0) cut_succeed(); t[0] = t1; t[1] = MkIntTerm(1); tn = Eval(Yap_MkApplTerm(FunctorPlus, 2, t) PASS_REGS); EXTRA_CBACK_ARG(3,1) = tn; HB = B->cp_h = HR; return TRUE; } } /// @memberof between/3 static Int init_between( USES_REGS1 ) { Term t1 = Deref(ARG1); Term t2 = Deref(ARG2); if (IsVarTerm(t1)) { Yap_EvalError(INSTANTIATION_ERROR, t1, "between/3"); return FALSE; } if (IsVarTerm(t2)) { Yap_EvalError(INSTANTIATION_ERROR, t1, "between/3"); return FALSE; } if (!IsIntegerTerm(t1) && !IsBigIntTerm(t1)) { Yap_EvalError(TYPE_ERROR_INTEGER, t1, "between/3"); return FALSE; } if (!IsIntegerTerm(t2) && !IsBigIntTerm(t2) && t2 != MkAtomTerm(AtomInf) && t2 != MkAtomTerm(AtomInfinity)) { Yap_EvalError(TYPE_ERROR_INTEGER, t2, "between/3"); return FALSE; } if (IsIntegerTerm(t1) && IsIntegerTerm(t2)) { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Term t3; t3 = Deref(ARG3); if (!IsVarTerm(t3)) { if (!IsIntegerTerm(t3)) { if (!IsBigIntTerm(t3)) { Yap_EvalError(TYPE_ERROR_INTEGER, t3, "between/3"); return FALSE; } cut_fail(); } else { Int i3 = IntegerOfTerm(t3); if (i3 >= i1 && i3 <= i2) cut_succeed(); cut_fail(); } } if (i1 > i2) cut_fail(); if (i1 == i2) { Yap_unify(ARG3, t1); cut_succeed(); } } else if (IsIntegerTerm(t1) && IsAtomTerm(t2)) { Int i1 = IntegerOfTerm(t1); Term t3; t3 = Deref(ARG3); if (!IsVarTerm(t3)) { if (!IsIntegerTerm(t3)) { if (!IsBigIntTerm(t3)) { Yap_EvalError(TYPE_ERROR_INTEGER, t3, "between/3"); return FALSE; } cut_fail(); } else { Int i3 = IntegerOfTerm(t3); if (i3 >= i1) cut_succeed(); cut_fail(); } } } else { Term t3 = Deref(ARG3); Int cmp; if (!IsVarTerm(t3)) { if (!IsIntegerTerm(t3) && !IsBigIntTerm(t3)) { Yap_EvalError(TYPE_ERROR_INTEGER, t3, "between/3"); return FALSE; } if (Yap_acmp(t3, t1 PASS_REGS) >= 0 && Yap_acmp(t2,t3 PASS_REGS) >= 0 && P != FAILCODE) cut_succeed(); cut_fail(); } cmp = Yap_acmp(t1, t2 PASS_REGS); if (cmp > 0) cut_fail(); if (cmp == 0) { Yap_unify(ARG3, t1); cut_succeed(); } } EXTRA_CBACK_ARG(3,1) = t1; EXTRA_CBACK_ARG(3,2) = t2; return cont_between( PASS_REGS1 ); } void Yap_InitEval(void) { /* here are the arithmetical predicates */ Yap_InitConstExps(); Yap_InitUnaryExps(); Yap_InitBinaryExps(); Yap_InitCPred("is", 2, p_is, 0L); Yap_InitCPred("isnan", 1, p_isnan, TestPredFlag); Yap_InitCPred("isinf", 1, p_isinf, TestPredFlag); Yap_InitCPred("logsum", 3, p_logsum, TestPredFlag); Yap_InitCPredBack("between", 3, 2, init_between, cont_between, 0); } /** * * @} */