/** * @file assoc.yap * @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan> * @date Tue Nov 17 13:53:34 2015 * * @brief Red-Black Implementation of Association Lists. * * This file has been included as an YAP library by Vitor Santos Costa, 1999 * * Note: the keys should be bound, the associated values need not be. */ :- module(assoc, [ empty_assoc/1, assoc_to_list/2, is_assoc/1, min_assoc/3, max_assoc/3, gen_assoc/3, get_assoc/3, get_assoc/5, get_next_assoc/4, get_prev_assoc/4, list_to_assoc/2, ord_list_to_assoc/2, map_assoc/2, map_assoc/3, put_assoc/4, del_assoc/4, assoc_to_keys/2, del_min_assoc/4, del_max_assoc/4 ]). /** @defgroup Association_Lists Association Lists @ingroup library @{ The following association list manipulation predicates are available once included with the `use_module(library(assoc))` command. The original library used Richard O'Keefe's implementation, on top of unbalanced binary trees. The current code utilises code from the red-black trees library and emulates the SICStus Prolog interface. The library exports the following definitions: - is/assoc/1 */ :- meta_predicate map_assoc(2, +, -), map_assoc(1, +). :- use_module(library(rbtrees), [ rb_empty/1, rb_visit/2, is_rbtree/1, rb_min/3, rb_max/3, rb_in/3, rb_lookup/3, rb_update/5, rb_next/4, rb_previous/4, list_to_rbtree/2, ord_list_to_rbtree/2, rb_map/2, rb_map/3, rb_keys/2, rb_update/4, rb_insert/4, rb_delete/4, rb_del_min/4, rb_del_max/4 ]). /** @pred empty_assoc(+ _Assoc_) Succeeds if association list _Assoc_ is empty. */ empty_assoc(t). /** @pred assoc_to_list(+ _Assoc_,? _List_) Given an association list _Assoc_ unify _List_ with a list of the form _Key-Val_, where the elements _Key_ are in ascending order. */ assoc_to_list(t, L) :- !, L = []. assoc_to_list(T, L) :- rb_visit(T, L). /** @pred is_assoc(+ _Assoc_) Succeeds if _Assoc_ is an association list, that is, if it is a red-black tree. */ is_assoc(t) :- !. is_assoc(T) :- is_rbtree(T). /** @pred min_assoc(+ _Assoc_,- _Key_,? _Value_) Given the association list _Assoc_, _Key_ in the smallest key in the list, and _Value_ the associated value. */ min_assoc(T,K,V) :- rb_min(T,K,V). /** @pred max_assoc(+ _Assoc_,- _Key_,? _Value_) Given the association list _Assoc_, _Key_ in the largest key in the list, and _Value_ the associated value. */ max_assoc(T,K,V) :- rb_max(T,K,V). /** @pred gen_assoc( ?Key, +Assoc, ?Valu_) Given the association list _Assoc_, unify _Key_ and _Value_ with a key-value pair in the list. It can be used to enumerate all elements in the association list. */ gen_assoc(K, T, V) :- rb_in(K,V,T). /** @pred get_assoc(+ _Key_,+ _Assoc_,? _Value_) If _Key_ is one of the elements in the association list _Assoc_, return the associated value. */ get_assoc(K,T,V) :- rb_lookup(K,V,T). /** @pred get_assoc(+ _Key_,+ _Assoc_,? _Value_,+ _NAssoc_,? _NValue_) If _Key_ is one of the elements in the association list _Assoc_, return the associated value _Value_ and a new association list _NAssoc_ where _Key_ is associated with _NValue_. */ get_assoc(K,T,V,NT,NV) :- rb_update(T,K,V,NV,NT). /** @pred get_next_assoc(+ _Key_,+ _Assoc_,? _Next_,? _Value_) If _Key_ is one of the elements in the association list _Assoc_, return the next key, _Next_, and its value, _Value_. */ get_next_assoc(K,T,KN,VN) :- rb_next(T,K,KN,VN). /** @pred get_prev_assoc(+ _Key_,+ _Assoc_,? _Next_,? _Value_) If _Key_ is one of the elements in the association list _Assoc_, return the previous key, _Next_, and its value, _Value_. */ get_prev_assoc(K,T,KP,VP) :- rb_previous(T,K,KP,VP). /** @pred list_to_assoc(+ _List_,? _Assoc_) Given a list _List_ such that each element of _List_ is of the form _Key-Val_, and all the _Keys_ are unique, _Assoc_ is the corresponding association list. */ list_to_assoc(L, T) :- list_to_rbtree(L, T). /** @pred ord_list_to_assoc(+ _List_,? _Assoc_) Given an ordered list _List_ such that each element of _List_ is of the form _Key-Val_, and all the _Keys_ are unique, _Assoc_ is the corresponding association list. */ ord_list_to_assoc(L, T) :- ord_list_to_rbtree(L, T). /** @pred map_assoc(+ _Pred_,+ _Assoc_) Succeeds if the unary predicate name _Pred_( _Val_) holds for every element in the association list. */ map_assoc(t, _) :- !. map_assoc(P, T) :- yap_flag(typein_module, M0), extract_mod(P, M0, M, G), functor(G, Name, 1), rb_map(T, M:Name). /** @pred map_assoc(+ _Pred_,+ _Assoc_,? _New_) Given the binary predicate name _Pred_ and the association list _Assoc_, _New_ in an association list with keys in _Assoc_, and such that if _Key-Val_ is in _Assoc_, and _Key-Ans_ is in _New_, then _Pred_( _Val_, _Ans_) holds.*/ map_assoc(t, T, T) :- !. map_assoc(P, T, NT) :- yap_flag(typein_module, M0), extract_mod(P, M0, M, G), functor(G, Name, 2), rb_map(T, M:Name, NT). extract_mod(G,_,_) :- var(G), !, fail. extract_mod(M:G, _, FM, FG ) :- !, extract_mod(G, M, FM, FG ). extract_mod(G, M, M, G ). /** @pred put_assoc(+ _Key_,+ _Assoc_,+ _Val_,+ _New_) The association list _New_ includes and element of association _key_ with _Val_, and all elements of _Assoc_ that did not have key _Key_. */ put_assoc(K, T, V, NT) :- rb_update(T, K, V, NT), !. put_assoc(K, t, V, NT) :- !, rbtrees:rb_new(K,V,NT). put_assoc(K, T, V, NT) :- rb_insert(T, K, V, NT). /** @pred del_assoc(+ _Key_, + _Assoc_, ? _Val_, ? _NewAssoc_) Succeeds if _NewAssoc_ is an association list, obtained by removing the element with _Key_ and _Val_ from the list _Assoc_. */ del_assoc(K, T, V, NT) :- rb_delete(T, K, V, NT). /** @pred del_min_assoc(+ _Assoc_, ? _Key_, ? _Val_, ? _NewAssoc_) Succeeds if _NewAssoc_ is an association list, obtained by removing the smallest element of the list, with _Key_ and _Val_ from the list _Assoc_. */ del_min_assoc(T, K, V, NT) :- rb_del_min(T, K, V, NT). /** @pred del_max_assoc(+ _Assoc_, ? _Key_, ? _Val_, ? _NewAssoc_) Succeeds if _NewAssoc_ is an association list, obtained by removing the largest element of the list, with _Key_ and _Val_ from the list _Assoc_. */ del_max_assoc(T, K, V, NT) :- rb_del_max(T, K, V, NT). assoc_to_keys(T, Ks) :- rb_keys(T, Ks). /** @} */