:- protocol(find_rootp). :- info([ version is 1.0, date is 2006/4/21, author is 'Paulo Nunes', comment is 'Default protocol for root find algorithms.']). :- public(find_root/5). :- mode(find_root(+object_identifier, +float, +float, +float, -float), one). :- info(find_root/5, [ comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error.', argnames is ['Function', 'A', 'B', 'Error', 'Zero']]). :- public(find_root/6). :- mode(find_root(+object_identifier, +float, +float, +float, -float, -object_identifier), one). :- info(find_root/6, [ comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error. Return the method used.', argnames is ['Function', 'A', 'B', 'Error', 'Zero', 'Method']]). :- end_protocol. :- protocol(functionp). :- info([ version is 1.0, date is 2006/4/21, author is 'Paulo Nunes', comment is 'Default protocol for real functions of a single real variable.']). :- public(eval/2). :- mode(eval(+float, -float), one). :- info(eval/2, [ comment is 'Calculate the function value.', argnames is ['X', 'Fx']]). :- public(evald/2). :- mode(evald(+float, -float), one). :- info(evald/2, [ comment is 'Calculate the value of the function derivative.', argnames is ['X', 'DFx']]). :- end_protocol. :- object(f1, implements(functionp)). % x^2 - 4 % 2.0 eval(X, Y) :- Y is X * X - 4. evald(X, Y) :- Y is 2 * X. :- end_object. :- object(f2, implements(functionp)). % x^7 + 9x^5 - 13x - 17 % 1.29999999999945448 eval(X, Y) :- Y is X**7 + 9*X**5 - 13*X - 17. evald(X, Y) :- Y is 7*X**6 + 45*X**4 - 13. :- end_object. :- object(f3, implements(functionp)). % (x - sqrt(2))^7 % 1.41421356237309537 eval(X, Y) :- Y is (X - sqrt(2.0))**8. evald(X, Y) :- Y is 8*(X - sqrt(2.0))**7. :- end_object. :- object(function_root, implements(find_rootp)). :- info([ version is 1.0, date is 2006/4/21, author is 'Paulo Nunes', comment is 'Multi-threading interface to root finding algorithms.']). :- threaded. find_root(Function, A, B, Error, Zero) :- find_root(Function, A, B, Error, Zero, _). find_root(Function, A, B, Error, Zero, Algorithm) :- threaded_call( ( try_method(bisection, Function, A, B, Error, Zero) ; try_method(newton, Function, A, B, Error, Zero) ; try_method(muller, Function, A, B, Error, Zero) )), threaded_exit(try_method(Algorithm, Function, A, B, Error, Zero)). try_method(Algorithm, Function, A, B, Error, Zero) :- Algorithm::find_root(Function, A, B, Error, Zero). :- end_object. :- object(bisection, implements(find_rootp)). :- info([ version is 1.0, date is 2006/4/21, author is 'Paulo Nunes', comment is 'Bisection algorithm.']). find_root(Function, A, B, Error, Zero) :- Function::eval(A, Fa), Function::eval(B, Fb), ( Fa > 0.0, Fb < 0.0 -> true ; Fa < 0.0, Fb > 0.0 ), X0 is (A + B) / 2, Function::eval(X0, F0), bisection(Function, A, B, X0, F0, Error, Zero). bisection(_, _, _, Xn1, 0.0, _, Xn1) :- !. bisection(_, Xn1, Xn, _, _, Error, Xn1) :- abs(Xn1 - Xn) < Error, !. bisection(Function, An, Bn, _, _, Error, Zero) :- Xn1 is (An + Bn) / 2, Function::eval(Xn1, Fn1), Function::eval(An, FAn), ( Fn1*FAn < 0.0 -> An1 is An, Bn1 is Xn1 ; An1 is Xn1, Bn1 is Bn ), bisection(Function, An1, Bn1, Xn1, Fn1, Error, Zero). :- end_object. :- object(newton, implements(find_rootp)). :- info([ version is 1.0, date is 2006/4/21, author is 'Paulo Nunes', comment is 'Newton algorithm.']). find_root(Function, Xa, Xb, Deviation, Zero) :- X0 is (Xa + Xb) / 2, newton(Function, X0, Deviation, Zero). newton(Function, X0, Deviation, Zero) :- Xn1 is X0, Function::eval(Xn1, Fn1), Function::evald(Xn1, DFn1), Ac is -(Fn1 / DFn1), newton(Function, Xn1, Deviation, Fn1, Ac, Zero). % test deviation newton(_, Xn1, Deviation, _, Ac, Xn1) :- abs(Ac) < Deviation, !. % test solution newton(_, Xn1, _, 0.0, _, Xn1) :- !. % calc newton(Function, Xn, Deviation, _, Ac, Zero) :- Xn1 is Xn + Ac, Function::eval(Xn1, Fn1), Function::evald(Xn1, DFn1), Ac1 is (-(Fn1 / DFn1)), newton(Function, Xn1, Deviation, Fn1, Ac1, Zero). :- end_object. :- object(muller, implements(find_rootp)). :- info([ version is 1.0, date is 2006/4/21, author is 'Paulo Nunes', comment is 'Muller algorithm.']). find_root(Function, Xa, Xb, Deviation, Zero) :- Xc is (Xa + Xb) / 2, muller(Function, Xa, Xc, Xb, Deviation, Zero). muller(Function, Xa, Xb, Xc, Deviation, Zero) :- Function::eval(Xa, Ya), Function::eval(Xb, Yb), Function::eval(Xc, Yc), H1 is (Xb - Xa), DDba is ((Yb - Ya) / H1), Ac is (Deviation + 1), muller(Function, Xa, Xb, Xc, Deviation, Ya, Yb, Yc, Ac, H1, DDba, Zero). % complex muller(_, _, _, complex, _, _, _, _, _, _, _, complex) :- !. % test deviation muller(_, _, _, Xc, Deviation, _, _, _, Ac, _, _, Xc) :- abs(Ac) < Deviation, !. % test solution muller(_, _, _, Xc, _, _, _, 0.0, _, _, _, Xc) :- !. % calc muller(Function, Xa, Xb, Xc, Deviation, _, Yb, Yc, _, _, DDba, Zero) :- H2n is (Xc - Xb), DDcbn is ((Yc - Yb) / H2n), Cn is ((DDcbn - DDba) / (Xc - Xa)), Bn is (DDcbn + H2n * Cn), Rn is (Bn * Bn - 4.0 * Yc * Cn), % complex % write(Rn), ( Rn < 0.0 -> muller(Function, _, _, complex, Deviation, _, _, _, _, _, _, Zero), !, fail ; V is sqrt(Rn) ), ( Bn > 0.0 -> Dn is (Bn + V) ; Dn is (Bn - V) ), Acn is (-(2 * Yc / Dn)), Xan is Xb, Xbn is Xc, Xcn is Xc + Acn, Yan is Yb, Ybn is Yc, Function::eval(Xcn, Ycn), H1n is H2n, DDban is DDcbn, muller(Function, Xan, Xbn, Xcn, Deviation, Yan, Ybn, Ycn, Acn, H1n, DDban, Zero). :- end_object.