:- object(primes). :- info([ version is 1.0, author is 'Paulo Moura', date is 2006/04/14, comment is 'Simple example for comparing single and multi-threading calculation of prime numbers.']). :- threaded. :- public(st_prime_numbers/3). :- mode(st_prime_numbers(+integer, +integer, -list), one). :- info(st_prime_numbers/3, [ comment is 'Returns all prime numbers in the given interval using a single calculation thread.', argnames is ['Inf', 'Sup', 'Primes']]). :- public(mt_prime_numbers/3). :- mode(mt_prime_numbers(+integer, +integer, -list), one). :- info(mt_prime_numbers/3, [ comment is 'Returns all prime numbers in the given interval using two calculation threads.', argnames is ['Inf', 'Sup', 'Primes']]). st_prime_numbers(N, M, Primes) :- M > N, prime_numbers(N, M, [], Primes). mt_prime_numbers(N, M, Primes) :- M > N, N1 is N + (M - N) // 2, N2 is N1 + 1, threaded_call(prime_numbers(N, N1, [], Acc)), threaded_call(prime_numbers(N2, M, Acc, Primes)), threaded_exit(prime_numbers(N, N1, [], Acc)), threaded_exit(prime_numbers(N2, M, Acc, Primes)). prime_numbers(N, M, Primes, Primes) :- N > M, !. prime_numbers(N, M, Acc, Primes) :- ( is_prime(N) -> Acc2 = [N| Acc] ; Acc2 = Acc), N2 is N + 1, prime_numbers(N2, M, Acc2, Primes). is_prime(2) :- !. is_prime(Prime):- Prime > 2, Prime mod 2 =:= 1, Sqrt is sqrt(Prime), is_prime(3, Sqrt, Prime). is_prime(N, Sqrt, Prime):- ( N > Sqrt -> true ; Prime mod N > 0, N2 is N + 2, is_prime(N2, Sqrt, Prime) ). :- end_object.