/* YAP support for some low-level SWI stuff */ #define PL_KERNEL 1 #include #if HAVE_UNISTD_H #include #endif #if HAVE_SYS_TIMES_H #include #endif #include "Yap.h" #include "Yatom.h" #include "pl-incl.h" #include "YapText.h" #include "yapio.h" #if HAVE_MATH_H #include #endif #if __WINDOWS__ #include #define getpid _getpid #endif #ifdef HAVE_LIMITS_H #include #endif //#define LOCK() PL_LOCK(L_PLFLAG) //#define UNLOCK() PL_UNLOCK(L_PLFLAG) int fileerrors; PL_local_data_t lds; gds_t gds; static atom_t uncachedCodeToAtom(int chrcode) { if ( chrcode < 256 ) { char tmp[2]; tmp[0] = chrcode; tmp[1] = '\0'; return lookupAtom(tmp, 1); } else { pl_wchar_t tmp[2]; tmp[0] = chrcode; tmp[1] = '\0'; return (atom_t)YAP_LookupWideAtom(tmp); } } atom_t codeToAtom(int chrcode) { atom_t a; if ( chrcode == EOF ) return ATOM_end_of_file; assert(chrcode >= 0); if ( chrcode < (1<<15) ) { int page = chrcode / 256; int entry = chrcode % 256; atom_t *pv; if ( !(pv=GD->atoms.for_code[page]) ) { pv = PL_malloc(256*sizeof(atom_t)); memset(pv, 0, 256*sizeof(atom_t)); GD->atoms.for_code[page] = pv; } if ( !(a=pv[entry]) ) { a = pv[entry] = uncachedCodeToAtom(chrcode); } } else { a = uncachedCodeToAtom(chrcode); } return a; } word globalString(size_t size, char *s) { CACHE_REGS return Yap_CharsToString(s PASS_REGS); } word globalWString(size_t size, wchar_t *s) { CACHE_REGS return Yap_WCharsToString(s PASS_REGS); } int PL_rethrow(void) { GET_LD if ( LD->exception.throw_environment ) longjmp(LD->exception.throw_environment->exception_jmp_env, 1); fail; } int saveWakeup(wakeup_state *state, int forceframe ARG_LD) { return 0; } void restoreWakeup(wakeup_state *state ARG_LD) { } int callProlog(module_t module, term_t goal, int flags, term_t *ex ) { GET_LD term_t g = PL_new_term_ref(); functor_t fd; predicate_t proc; if ( ex ) *ex = 0; PL_strip_module(goal, &module, g); if ( !PL_get_functor(g, &fd) ) { PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_callable, goal); if ( ex ) *ex = exception_term; fail; } proc = PL_pred(fd, module); { int arity = arityFunctor(fd); term_t args = PL_new_term_refs(arity); qid_t qid; int n, rval; for(n=0; nencoding; } void Yap_SetDefaultEncoding(IOENC new_encoding) { GET_LD LD->encoding = new_encoding; } int PL_qualify(term_t raw, term_t qualified) { GET_LD Module m = NULL; term_t mname; if ( !(mname = PL_new_term_ref()) || !PL_strip_module(raw, &m, qualified) ) return FALSE; /* modules are terms in YAP */ Yap_PutInSlot(mname, (Term)m PASS_REGS); return PL_cons_functor(qualified, FUNCTOR_colon2, mname, qualified); } int valueExpression(term_t t, Number r ARG_LD) { REGS_FROM_LD YAP_Term t0 = Yap_Eval(Yap_GetFromSlot(t PASS_REGS) PASS_REGS); if (YAP_IsIntTerm(t0)) { r->type = V_INTEGER; r->value.i = YAP_IntOfTerm(t0); return 1; } if (YAP_IsFloatTerm(t0)) { r->type = V_FLOAT; r->value.f = YAP_FloatOfTerm(t0); return 1; } #ifdef O_GMP if (YAP_IsBigNumTerm(t0)) { r->type = V_MPZ; mpz_init(r->value.mpz); YAP_BigNumOfTerm(t0, r->value.mpz); return 1; } if (YAP_IsRationalTerm(t0)) { r->type = V_MPQ; mpq_init(r->value.mpq); YAP_RationalOfTerm(t0, r->value.mpq); return 1; } #endif return 0; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - toIntegerNumber(Number n, int flags) Convert a number to an integer. Default, only rationals that happen to be integer are converted. If TOINT_CONVERT_FLOAT is present, floating point numbers are converted if they represent integers. If also TOINT_TRUNCATE is provided non-integer floats are truncated to integers. Note that if a double is out of range for int64_t, it never has a fractional part. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ static int double_in_int64_range(double x) { int k; double y = frexp(x, &k); if ( k < 8*(int)sizeof(int64_t) || (y == -0.5 && k == 8*(int)sizeof(int64_t)) ) return TRUE; return FALSE; } int toIntegerNumber(Number n, int flags) { switch(n->type) { case V_INTEGER: succeed; #ifdef O_GMP case V_MPZ: succeed; case V_MPQ: /* never from stacks iff integer */ if ( mpz_cmp_ui(mpq_denref(n->value.mpq), 1L) == 0 ) { mpz_clear(mpq_denref(n->value.mpq)); n->value.mpz[0] = mpq_numref(n->value.mpq)[0]; n->type = V_MPZ; succeed; } fail; #endif case V_FLOAT: if ( (flags & TOINT_CONVERT_FLOAT) ) { if ( double_in_int64_range(n->value.f) ) { int64_t l = (int64_t)n->value.f; if ( (flags & TOINT_TRUNCATE) || (double)l == n->value.f ) { n->value.i = l; n->type = V_INTEGER; return TRUE; } return FALSE; #ifdef O_GMP } else { mpz_init_set_d(n->value.mpz, n->value.f); n->type = V_MPZ; return TRUE; #endif } } return FALSE; } assert(0); fail; } int _PL_unify_atomic(term_t t, PL_atomic_t a) { GET_LD if (IsApplTerm(a) || IsAtomTerm(a)) return Yap_unify(Yap_GetFromSlot(t PASS_REGS), a); return PL_unify_atom(t, a); } int _PL_unify_string(term_t t, word w) { CACHE_REGS return Yap_unify(Yap_GetFromSlot(t PASS_REGS), w); } word lookupAtom(const char *s, size_t len) { YAP_Atom at; /* dirty trick to ensure s is null terminated */ char *st = (char *)s; if (st[len]) st[len] = '\0'; if (len >= strlen(s)) { at = YAP_LookupAtom(st); } else { char * buf = PL_malloc(len+1); if (!buf) return 0; strncpy(buf,s,len); at = YAP_LookupAtom(buf); PL_free(buf); } Yap_AtomIncreaseHold(at); return (word)at; } atom_t lookupUCSAtom(const pl_wchar_t *s, size_t len) { YAP_Atom at; if (len >= wcslen(s)) { at = YAP_LookupWideAtom(s); } else { pl_wchar_t * buf = PL_malloc((len+1)*sizeof(pl_wchar_t)); if (!buf) return 0; wcsncpy(buf,s,len); at = YAP_LookupWideAtom(buf); PL_free(buf); } Yap_AtomIncreaseHold(at); return (atom_t)at; } /******************************* * OPTIONS * *******************************/ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Variable argument list: atom_t name int type OPT_ATOM, OPT_STRING, OPT_BOOL, OPT_INT, OPT_LONG pointer value - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ #define MAXOPTIONS 32 typedef union { bool *b; /* boolean value */ long *l; /* long value */ int *i; /* integer value */ char **s; /* string value */ word *a; /* atom value */ term_t *t; /* term-reference */ void *ptr; /* anonymous pointer */ } optvalue; int get_atom_ptr_text(Atom a, PL_chars_t *text) { if (IsWideAtom(a)) { pl_wchar_t *name = (pl_wchar_t *)a->WStrOfAE; text->text.w = name; text->length = wcslen(name); text->encoding = ENC_WCHAR; } else { char *name = a->StrOfAE; text->text.t = name; text->length = strlen(name); text->encoding = ENC_ISO_LATIN_1; } text->storage = PL_CHARS_HEAP; text->canonical = TRUE; succeed; } int get_atom_text(atom_t atom, PL_chars_t *text) { Atom a = YAP_AtomFromSWIAtom(atom); return get_atom_ptr_text(a, text); } int get_string_text(word w, PL_chars_t *text ARG_LD) { text->text.t = (char *)StringOfTerm(w); text->encoding = ENC_UTF8; text->length = strlen(text->text.t); text->storage = PL_CHARS_STACK; text->canonical = TRUE; return TRUE; } void PL_get_number(term_t l, number *n) { GET_LD YAP_Term t = valHandle(l); if (YAP_IsIntTerm(t)) { n->type = V_INTEGER; n->value.i = YAP_IntOfTerm(t); #ifdef O_GMP } else if (YAP_IsBigNumTerm(t)) { n->type = V_MPZ; mpz_init(n->value.mpz); YAP_BigNumOfTerm(t, n->value.mpz); } else { n->type = V_MPQ; mpq_init(n->value.mpq); YAP_RationalOfTerm(t, &n->value.mpq); #endif } } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Formatting a float. This is very complicated as we must write floats such that it can be read as a float. This means using the conventions of the C locale and if the float happens to be integer as .0. Switching the locale is no option as locale handling is not thread-safe and may have unwanted consequences for embedding. There is a intptr_t discussion on the very same topic on the Python mailinglist. Many hacks are proposed, none is very satisfactory. Richard O'Keefe suggested to use ecvt(), fcvt() and gcvt(). These are not thread-safe. The GNU C library provides *_r() variations that can do the trick. An earlier patch used localeconv() to find the decimal point, but this is both complicated and not thread-safe. Finally, with help of Richard we decided to replace the first character that is not a digit nor [eE], as this must be the decimal point. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ #define isDigit(c) ((c) >= '0' && (c) <= '9') intptr_t lengthList(term_t list, int errors) { GET_LD intptr_t length = 0; Word l = YAP_AddressFromSlot(list); Word tail; length = skip_list(l, &tail PASS_LD); if ( isNil(*tail) ) return length; if ( errors ) PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_list, wordToTermRef(l)); return isVar(*tail) ? -2 : -1; } int raiseStackOverflow(int overflow) { return overflow; } /******************************* * FEATURES * *******************************/ int PL_set_prolog_flag(const char *name, int type, ...) { va_list args; int rval = TRUE; int flags = (type & FF_MASK); va_start(args, type); switch(type & ~FF_MASK) { case PL_BOOL: { int val = va_arg(args, int); setPrologFlag(name, FT_BOOL|flags, val, 0); break; } case PL_ATOM: { const char *v = va_arg(args, const char *); #ifndef __YAP_PROLOG__ if ( !GD->initialised ) initAtoms(); #endif setPrologFlag(name, FT_ATOM|flags, v); break; } case PL_INTEGER: { intptr_t v = va_arg(args, intptr_t); setPrologFlag(name, FT_INTEGER|flags, v); break; } default: rval = FALSE; } va_end(args); return rval; } int PL_unify_chars(term_t t, int flags, size_t len, const char *s) { PL_chars_t text; term_t tail; int rc; if ( len == (size_t)-1 ) len = strlen(s); text.text.t = (char *)s; text.encoding = ((flags&REP_UTF8) ? ENC_UTF8 : \ (flags&REP_MB) ? ENC_ANSI : ENC_ISO_LATIN_1); text.storage = PL_CHARS_HEAP; text.length = len; text.canonical = FALSE; flags &= ~(REP_UTF8|REP_MB|REP_ISO_LATIN_1); if ( (flags & PL_DIFF_LIST) ) { tail = t+1; flags &= (~PL_DIFF_LIST); } else { tail = 0; } rc = PL_unify_text(t, tail, &text, flags); PL_free_text(&text); return rc; } X_API int PL_handle_signals(void) { return Yap_HandleInterrupts( ); } void outOfCore() { fprintf(stderr,"Could not allocate memory: %s", OsError()); exit(1); } int priorityOperator(Module m, atom_t atom) { YAP_Term mod = (YAP_Term)m; if (!m) mod = YAP_CurrentModule(); return YAP_MaxOpPriority(YAP_AtomFromSWIAtom(atom), mod); } int currentOperator(Module m, atom_t name, int kind, int *type, int *priority) { YAP_Term mod = (YAP_Term)m; int opkind, yap_type; if (!m) mod = YAP_CurrentModule(); switch (kind) { case OP_PREFIX: opkind = 2; break; case OP_INFIX: opkind = 0; break; case OP_POSTFIX: default: opkind = 1; } if (!YAP_OpInfo(YAP_AtomFromSWIAtom(name), mod, opkind, &yap_type, priority)) { return FALSE; } switch(yap_type) { case 1: *type = OP_XFX; break; case 2: *type = OP_XFY; break; case 3: *type = OP_YFX; break; case 4: *type = OP_XFX; break; case 5: *type = OP_XF; break; case 6: *type = OP_YF; break; case 7: *type = OP_FX; break; default: *type = OP_FY; break; } return 1; } int numberVars(term_t t, nv_options *opts, int n ARG_LD) { return Yap_NumberVars(YAP_GetFromSlot(t), n, opts->singletons); } /******************************* * PROMOTION * *******************************/ int check_float(double f) { #ifdef HAVE_FPCLASSIFY switch(fpclassify(f)) { case FP_NAN: return PL_error(NULL, 0, NULL, ERR_AR_UNDEF); break; case FP_INFINITE: return PL_error(NULL, 0, NULL, ERR_AR_OVERFLOW); break; } #else #ifdef HAVE_FPCLASS switch(fpclass(f)) { case FP_SNAN: case FP_QNAN: return PL_error(NULL, 0, NULL, ERR_AR_UNDEF); break; case FP_NINF: case FP_PINF: return PL_error(NULL, 0, NULL, ERR_AR_OVERFLOW); break; case FP_NDENORM: /* pos/neg denormalized non-zero */ case FP_PDENORM: case FP_NNORM: /* pos/neg normalized non-zero */ case FP_PNORM: case FP_NZERO: /* pos/neg zero */ case FP_PZERO: break; } #else #ifdef HAVE__FPCLASS switch(_fpclass(f)) { case _FPCLASS_SNAN: case _FPCLASS_QNAN: return PL_error(NULL, 0, NULL, ERR_AR_UNDEF); break; case _FPCLASS_NINF: case _FPCLASS_PINF: return PL_error(NULL, 0, NULL, ERR_AR_OVERFLOW); break; } #else #ifdef HAVE_ISNAN if ( isnan(f) ) return PL_error(NULL, 0, NULL, ERR_AR_UNDEF); #endif #ifdef HAVE_ISINF if ( isinf(f) ) return PL_error(NULL, 0, NULL, ERR_AR_OVERFLOW); #endif #endif /*HAVE__FPCLASS*/ #endif /*HAVE_FPCLASS*/ #endif /*HAVE_FPCLASSIFY*/ return TRUE; } int promoteToFloatNumber(Number n) { switch(n->type) { case V_INTEGER: n->value.f = (double)n->value.i; n->type = V_FLOAT; break; #ifdef O_GMP case V_MPZ: { double val = mpz_get_d(n->value.mpz); if ( !check_float(val) ) return FALSE; clearNumber(n); n->value.f = val; n->type = V_FLOAT; break; } case V_MPQ: { double val = mpq_get_d(n->value.mpq); if ( !check_float(val) ) return FALSE; clearNumber(n); n->value.f = val; n->type = V_FLOAT; break; } #endif case V_FLOAT: break; } return TRUE; } int PL_get_list_nchars(term_t l, size_t *length, char **s, unsigned int flags) { Buffer b; CVT_result result; if ( (b = codes_or_chars_to_buffer(l, flags, FALSE, &result)) ) { char *r; size_t len = entriesBuffer(b, char); if ( length ) *length = len; addBuffer(b, EOS, char); r = baseBuffer(b, char); if ( flags & BUF_MALLOC ) { *s = PL_malloc(len+1); memcpy(*s, r, len+1); unfindBuffer(flags); } else *s = r; succeed; } fail; } void * PL_malloc_uncollectable(size_t sz) { return malloc(sz); } int PL_get_list_chars(term_t l, char **s, unsigned flags) { return PL_get_list_nchars(l, NULL, s, flags); } int PL_unify_wchars_diff(term_t t, term_t tail, int flags, size_t len, const pl_wchar_t *s) { PL_chars_t text; int rc; if ( len == (size_t)-1 ) len = wcslen(s); text.text.w = (pl_wchar_t *)s; text.encoding = ENC_WCHAR; text.storage = PL_CHARS_HEAP; text.length = len; text.canonical = FALSE; rc = PL_unify_text(t, tail, &text, flags); PL_free_text(&text); return rc; } int PL_get_wchars(term_t l, size_t *length, pl_wchar_t **s, unsigned flags) { GET_LD PL_chars_t text; if ( !PL_get_text(l, &text, flags) ) return FALSE; PL_promote_text(&text); PL_save_text(&text, flags); if ( length ) *length = text.length; *s = text.text.w; return TRUE; } int PL_get_nchars(term_t l, size_t *length, char **s, unsigned flags) { GET_LD PL_chars_t text; if ( !PL_get_text(l, &text, flags) ) return FALSE; if ( PL_mb_text(&text, flags) ) { PL_save_text(&text, flags); if ( length ) *length = text.length; *s = text.text.t; return TRUE; } else { PL_free_text(&text); return FALSE; } } int PL_get_chars(term_t t, char **s, unsigned flags) { return PL_get_nchars(t, NULL, s, flags); } char * Yap_TermToString(Term t, char *s, size_t sz, size_t *length, int *encoding, int flags) { CACHE_REGS Int l; Int myASP = LCL0-ASP; yhandle_t CurSlot = Yap_StartSlots(); Yap_StartSlots( ); l = Yap_InitSlot(t PASS_REGS ); { IOENC encodings[3]; IOENC *enc; char *r, buf[256]; encodings[0] = ENC_ISO_LATIN_1; encodings[1] = ENC_WCHAR; encodings[2] = ENC_UNKNOWN; for(enc = encodings; *enc != ENC_UNKNOWN; enc++) { int64_t size; IOSTREAM *fd; if (s) { r = s; } else { r = buf; } fd = Sopenmem(&r, &sz, "w"); fd->encoding = *enc; if ( PL_write_term(fd, l, 1200, flags) && Sputcode(EOS, fd) >= 0 && Sflush(fd) >= 0 ) { *encoding = *enc; size = Stell64(fd); if ( *enc == ENC_ISO_LATIN_1 ) { *length = size-1; } else { *length = (size/sizeof(pl_wchar_t))-1; } /* found, just check if using local space */ if (r == buf) { char *bf = malloc(*length+1); if (!bf) { Yap_CloseSlots(CurSlot); ASP = LCL0-myASP; return NULL; } strncpy(bf,buf,*length+1); r = bf; } Yap_CloseSlots(CurSlot); ASP = LCL0-myASP; return r; } else { Sclose(fd); } } /* failed */ if ( r != s && r != buf ) { Sfree(r); } } Yap_CloseSlots(CurSlot); ASP = LCL0-myASP; return NULL; } char * Yap_HandleToString(term_t l, size_t sz, size_t *length, int *encoding, int flags) { char *r, buf[4096]; int64_t size; IOSTREAM *fd; r = buf; fd = Sopenmem(&r, &sz, "w"); fd->encoding = ENC_UTF8; if ( PL_write_term(fd, l, 1200, flags) && Sputcode(EOS, fd) >= 0 && Sflush(fd) >= 0 ) { size = Stell64(fd); *length = size-1; char *bf = malloc(*length+1); if (!bf) return NULL; strncpy(bf,buf,*length+1); Sclose(fd); r = bf; return r; } /* failed */ if ( r != buf ) { Sfree(r); } return NULL; } X_API int PL_ttymode(IOSTREAM *s) { GET_LD if ( s == Suser_input ) { if ( !truePrologFlag(PLFLAG_TTY_CONTROL) ) /* -tty in effect */ return PL_NOTTY; if ( ttymode == TTY_RAW ) /* get_single_char/1 and friends */ return PL_RAWTTY; return PL_COOKEDTTY; /* cooked (readline) input */ } else return PL_NOTTY; } char * PL_prompt_string(int fd) { if ( fd == 0 ) { atom_t a = PrologPrompt(); /* TBD: deal with UTF-8 */ if ( a ) { Atom at = YAP_AtomFromSWIAtom(a); if (!IsWideAtom(at) && !IsBlob(at)) { return RepAtom(at)->StrOfAE; } } } return NULL; } X_API void PL_prompt_next(int fd) { GET_LD if ( fd == 0 ) LD->prompt.next = TRUE; } /* just a stub for now */ int warning(const char *fm, ...) { va_list args; va_start(args, fm); fprintf(stderr,"warning: %s\n", fm); va_end(args); return TRUE; } #if defined(HAVE_SELECT) && !defined(__WINDOWS__) && !defined(__CYGWIN__) #ifdef __WINDOWS__ #include #endif static int input_on_fd(int fd) { fd_set rfds; struct timeval tv; FD_ZERO(&rfds); FD_SET(fd, &rfds); tv.tv_sec = 0; tv.tv_usec = 0; return select(fd+1, &rfds, NULL, NULL, &tv) != 0; } #else #define input_on_fd(fd) 1 #endif PL_dispatch_hook_t PL_dispatch_hook(PL_dispatch_hook_t hook) { PL_dispatch_hook_t old = GD->foreign.dispatch_events; GD->foreign.dispatch_events = hook; return old; } X_API int PL_dispatch(int fd, int wait) { if ( wait == PL_DISPATCH_INSTALLED ) return GD->foreign.dispatch_events ? TRUE : FALSE; if ( GD->foreign.dispatch_events && PL_thread_self() == 1 ) { if ( wait == PL_DISPATCH_WAIT ) { while( !input_on_fd(fd) ) { if ( PL_handle_signals() < 0 ) return FALSE; (*GD->foreign.dispatch_events)(fd); } } else { (*GD->foreign.dispatch_events)(fd); if ( PL_handle_signals() < 0 ) return FALSE; } } return TRUE; } /* SWI: int PL_get_arg(int index, term_t t, term_t a) YAP: YAP_Term YAP_ArgOfTerm(int argno, YAP_Term t)*/ X_API int _PL_get_arg__LD(int index, term_t ts, term_t a ARG_LD) { REGS_FROM_LD YAP_Term t = Yap_GetFromSlot(ts PASS_REGS); if ( !YAP_IsApplTerm(t) ) { if (YAP_IsPairTerm(t)) { if (index == 1){ Yap_PutInSlot(a,HeadOfTerm(t) PASS_REGS); return 1; } else if (index == 2) { Yap_PutInSlot(a,TailOfTerm(t) PASS_REGS); return 1; } } return 0; } Yap_PutInSlot(a,ArgOfTerm(index, t) PASS_REGS); return 1; } /* SWI: int PL_get_atom(term_t t, YAP_Atom *a) YAP: YAP_Atom YAP_AtomOfTerm(Term) */ int PL_get_atom__LD(term_t ts, atom_t *a ARG_LD) { REGS_FROM_LD YAP_Term t = Yap_GetFromSlot(ts PASS_REGS); if ( !IsAtomTerm(t)) return 0; *a = YAP_SWIAtomFromAtom(AtomOfTerm(t)); return 1; } X_API int PL_put_atom__LD(term_t t, atom_t a ARG_LD) { REGS_FROM_LD Yap_PutInSlot(t,MkAtomTerm(SWIAtomToAtom(a)) PASS_REGS); return TRUE; } int PL_put_term__LD(term_t d, term_t s ARG_LD) { REGS_FROM_LD Yap_PutInSlot(d,Yap_GetFromSlot(s PASS_REGS) PASS_REGS); return 1; } term_t PL_new_term_ref__LD(ARG1_LD) { REGS_FROM_LD term_t to = Yap_NewSlots(1 PASS_REGS); return to; } int PL_is_atom__LD(term_t ts ARG_LD) { REGS_FROM_LD Term t = Yap_GetFromSlot(ts PASS_REGS); return !IsVarTerm(t) && IsAtomTerm(t); } int PL_is_variable__LD(term_t ts ARG_LD) { REGS_FROM_LD YAP_Term t = Yap_GetFromSlot(ts PASS_REGS); return IsVarTerm(t); } X_API int PL_unify__LD(term_t t1, term_t t2 ARG_LD) { REGS_FROM_LD return Yap_unify(Yap_GetFromSlot(t1 PASS_REGS),Yap_GetFromSlot(t2 PASS_REGS)); } int PL_unify_atom__LD(term_t t, atom_t at ARG_LD) { REGS_FROM_LD YAP_Term cterm = MkAtomTerm(YAP_AtomFromSWIAtom(at)); return YAP_Unify(Yap_GetFromSlot(t PASS_REGS),cterm); } /* SWI: int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ int PL_unify_integer__LD(term_t t, intptr_t i ARG_LD) { REGS_FROM_LD Term iterm = MkIntegerTerm(i); return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm); } /* SWI: int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_int64__LD(term_t t, int64_t n ARG_LD) { REGS_FROM_LD #if SIZEOF_INT_P==8 Term iterm = MkIntegerTerm(n); return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm); #elif USE_GMP YAP_Term iterm; char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", (long long int)n); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", (long long int)n); #else sprintf(s, "%lld", (long long int)n); #endif mpz_init_set_str (&rop, s, 10); iterm = YAP_MkBigNumTerm((void *)&rop); return YAP_Unify(Yap_GetFromSlot(t PASS_REGS),iterm); #else if ((long)n == n) return PL_unify_integer(t, n); // use a double, but will mess up writing. else { union { int64_t i; double d; } udi_; udi_.i = n; return PL_unify_float(t, udi_.d); } #endif } Procedure resolveProcedure(functor_t f, Module module) { return RepPredProp(PredPropByFunc((Functor)f, MkAtomTerm(module->AtomOfME))); } #ifdef _WIN32 #include #if O_PLMT /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PL_w32thread_raise(DWORD id, int sig) Sets the signalled mask for a specific Win32 thread. This is a partial work-around for the lack of proper asynchronous signal handling in the Win32 platform. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ static int thread_highest_id = 0; X_API int PL_w32thread_raise(DWORD id, int sig) { int i; CACHE_REGS if ( sig < 0 || sig > MAXSIGNAL ) return FALSE; /* illegal signal */ PL_LOCK(L_PLFLAG); for(i = 0; i <= thread_highest_id; i++) { PL_thread_info_t *info = GD->thread.threads[i]; if ( info && info->w32id == id && info->thread_data ) { Sfprintf(GLOBAL_stderr, "post %d %d\n\n\n",i, sig); Yap_external_signal(i, sig); //raiseSignal(info->thread_data, sig); if ( info->w32id ) PostThreadMessage(info->w32id, WM_SIGNALLED, 0, 0L); PL_UNLOCK(L_PLFLAG); DEBUG(1, Sdprintf("Signalled %d to thread %d\n", sig, i)); return TRUE; } } PL_UNLOCK(L_PLFLAG); return FALSE; /* can't find thread */ } #else int PL_w32thread_raise(DWORD id, int sig) { return PL_raise(sig); } #endif #endif /*__WINDOWS__*/ extern size_t PL_utf8_strlen(const char *s, size_t len); X_API size_t PL_utf8_strlen(const char *s, size_t len) { return utf8_strlen(s, len); } void PL_add_to_protocol(const char *buf, size_t n) { protocol(buf, n); } void PL_license(const char *license, const char *module) { /* unimplemented */ } bool systemMode(bool accept) { return FALSE; } term_t Yap_fetch_module_for_format(term_t args, YAP_Term *modp) { YAP_Term nmod; YAP_Term nt = YAP_StripModule(YAP_GetFromSlot(args), &nmod); *modp = YAP_SetCurrentModule(nmod); if (!nt) { return args; } return YAP_InitSlot(nt); } extern word pl_readline(term_t flag); word pl_readline(term_t flag) { return 0; } static Term StreamPosition(IOSTREAM *st) { GET_LD Term t[4]; if (!st) st = Suser_input; t[0] = MkIntegerTerm(st->posbuf.charno); t[1] = MkIntegerTerm(st->posbuf.lineno); t[2] = MkIntegerTerm(st->posbuf.linepos); t[3] = MkIntegerTerm(st->posbuf.byteno); return Yap_MkApplTerm(FunctorStreamPos,4,t); } extern Term Yap_StreamPosition(IOSTREAM *st); Term Yap_StreamPosition(IOSTREAM *st) { return StreamPosition(st); } IOSTREAM *Yap_Scurin(void); IOSTREAM * Yap_Scurin(void) { GET_LD return Scurin; } int isWideAtom(atom_t atom) { Atom a = (Atom)atomValue(atom); return IsWideAtom(a); } wchar_t * nameOfWideAtom(atom_t atom) { Atom a = (Atom)atomValue(atom); return RepAtom(a)->WStrOfAE; } access_level_t setAccessLevel(access_level_t accept) { GET_LD bool old; old = LD->prolog_flag.access_level; LD->prolog_flag.access_level = accept; return old; } static bool vsysError(const char *fm, va_list args) { static int active = 0; switch ( active++ ) { case 1: PL_halt(3); case 2: abort(); } #ifdef O_PLMT Sfprintf(Serror, "[PROLOG SYSTEM ERROR: Thread %d\n\t", PL_thread_self()); #else Sfprintf(Serror, "[PROLOG SYSTEM ERROR:\n\t"); #endif Svfprintf(Serror, fm, args); #if defined(O_DEBUGGER) Sfprintf(Serror, "\n\nPROLOG STACK:\n"); PL_backtrace(10, 0); Sfprintf(Serror, "]\n"); #endif /*O_DEBUGGER*/ #ifdef HAVE_GETPID Sfprintf(Serror, "\n[pid=%d] Action? ", getpid()); #else Sfprintf(Serror, "\nAction? "); #endif Sflush(Soutput); ResetTty(); PL_halt(3); return FALSE; /* not reached */ } bool sysError(const char *fm, ...) { va_list args; va_start(args, fm); vsysError(fm, args); va_end(args); PL_fail; } Int Yap_source_line_no( void ) { GET_LD return source_line_no; } Atom Yap_source_file_name( void ) { GET_LD return YAP_AtomFromSWIAtom(source_file_name); } atom_t accessLevel(void) { GET_LD switch(LD->prolog_flag.access_level) { case ACCESS_LEVEL_USER: return ATOM_user; case ACCESS_LEVEL_SYSTEM: return ATOM_system; } return NULL_ATOM; } #define SKIP_VERY_DEEP 1000000000L #define SKIP_REDO_IN_SKIP (SKIP_VERY_DEEP-1) #define WFG_TRACE 0x01000 #define WFG_TRACING 0x02000 #define WFG_BACKTRACE 0x04000 #define WFG_CHOICE 0x08000 #define TRACE_FIND_NONE 0 #define TRACE_FIND_ANY 1 #define TRACE_FIND_NAME 2 #define TRACE_FIND_TERM 3 typedef struct find_data_tag { int port; /* Port to find */ bool searching; /* Currently searching? */ int type; /* TRACE_FIND_* */ union { atom_t name; /* Name of goal to find */ struct { functor_t functor; /* functor of the goal */ Record term; /* Goal to find */ } term; } goal; } find_data; int tracemode(debug_type doit, debug_type *old) { GET_LD if ( doit ) { debugmode(DBG_ON, NULL); doit = TRUE; } if ( old ) *old = debugstatus.tracing; if ( debugstatus.tracing != doit ) { debugstatus.tracing = doit; printMessage(ATOM_silent, PL_FUNCTOR_CHARS, "trace_mode", 1, PL_ATOM, doit ? ATOM_on : ATOM_off); } if ( doit ) /* make sure trace works inside skip */ { debugstatus.skiplevel = SKIP_VERY_DEEP; if ( LD->trace.find ) LD->trace.find->searching = FALSE; } succeed; } int debugmode(debug_type doit, debug_type *old) { GET_LD if ( old ) *old = debugstatus.debugging; if ( debugstatus.debugging != doit ) { if ( doit ) { debugstatus.skiplevel = SKIP_VERY_DEEP; if ( doit == DBG_ALL ) { doit = DBG_ON; } } debugstatus.debugging = doit; printMessage(ATOM_silent, PL_FUNCTOR_CHARS, "debug_mode", 1, PL_ATOM, doit ? ATOM_on : ATOM_off); } succeed; } int getAccessLevelMask(atom_t a, access_level_t *val) { if ( a == ATOM_user ) *val = ACCESS_LEVEL_USER; else if ( a == ATOM_system ) *val = ACCESS_LEVEL_SYSTEM; else return FALSE; return TRUE; } int currentBreakLevel(void) { GET_LD return LD->break_level; } #if THREADS PL_thread_info_t * SWI_thread_info(int tid, PL_thread_info_t *info) { if (info) GD->thread.threads[tid] = REMOTE_PL_local_data_p(tid)->thread.info = info; return REMOTE_PL_local_data_p(tid)->thread.info; } static int recursive_attr(pthread_mutexattr_t **ap) { static int done; static pthread_mutexattr_t attr; int rc; if ( done ) { *ap = &attr; return 0; } PL_LOCK(L_THREAD); if ( done ) { PL_UNLOCK(L_THREAD); *ap = &attr; return 0; } if ( (rc=pthread_mutexattr_init(&attr)) ) goto error; #ifdef HAVE_PTHREAD_MUTEXATTR_SETTYPE if ( (rc=pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) ) goto error; #else #ifdef HAVE_PTHREAD_MUTEXATTR_SETKIND_NP if ( (rc=pthread_mutexattr_setkind_np(&attr, PTHREAD_MUTEX_RECURSIVE_NP)) ) goto error; #endif #endif done = TRUE; PL_UNLOCK(L_THREAD); *ap = &attr; return 0; error: PL_UNLOCK(L_THREAD); return rc; } int recursiveMutexInit(recursiveMutex *m) { int rc; pthread_mutexattr_t *attr; if ( (rc=recursive_attr(&attr)) ) return rc; return pthread_mutex_init(m, attr); } #endif