:- module(hprolog, [ substitute_eq/4, % +OldVal, +OldList, +NewVal, -NewList memberchk_eq/2, % +Val, +List intersect_eq/3, % +List1, +List2, -Intersection list_difference_eq/3, % +List, -Subtract, -Rest take/3, % +N, +List, -FirstElements drop/3, % +N, +List, -LastElements split_at/4, % +N, +List, -FirstElements, -LastElements max_go_list/2, % +List, -Max or_list/2, % +ListOfInts, -BitwiseOr sublist/2, % ?Sublist, +List bounded_sublist/3, % ?Sublist, +List, +Bound chr_delete/3, init_store/2, get_store/2, update_store/2, make_get_store_goal/3, make_update_store_goal/3, make_init_store_goal/3, empty_ds/1, ds_to_list/2, get_ds/3, put_ds/4 % lookup_ht1/4 ]). :- use_module(library(lists)). :- use_module(library(assoc)). empty_ds(DS) :- empty_assoc(DS). ds_to_list(DS,LIST) :- assoc_to_list(DS,LIST). get_ds(A,B,C) :- get_assoc(A,B,C). put_ds(A,B,C,D) :- put_assoc(A,B,C,D). init_store(Name,Value) :- nb_setval(Name,Value). get_store(Name,Value) :- nb_getval(Name,Value). update_store(Name,Value) :- b_setval(Name,Value). make_init_store_goal(Name,Value,Goal) :- Goal = nb_setval(Name,Value). make_get_store_goal(Name,Value,Goal) :- Goal = nb_getval(Name,Value). make_update_store_goal(Name,Value,Goal) :- Goal = b_setval(Name,Value). /******************************* * MORE LIST OPERATIONS * *******************************/ % substitute_eq(+OldVal, +OldList, +NewVal, -NewList) % % Substitute OldVal by NewVal in OldList and unify the result % with NewList. substitute_eq(_, [], _, []) :- ! . substitute_eq(X, [U|Us], Y, [V|Vs]) :- ( X == U -> V = Y, substitute_eq(X, Us, Y, Vs) ; V = U, substitute_eq(X, Us, Y, Vs) ). % memberchk_eq(+Val, +List) % % Deterministic check of membership using == rather than % unification. memberchk_eq(X, [Y|Ys]) :- ( X == Y -> true ; memberchk_eq(X, Ys) ). % :- load_foreign_library(chr_support). % list_difference_eq(+List, -Subtract, -Rest) % % Delete all elements of Subtract from List and unify the result % with Rest. Element comparision is done using ==/2. list_difference_eq([],_,[]). list_difference_eq([X|Xs],Ys,L) :- ( memberchk_eq(X,Ys) -> list_difference_eq(Xs,Ys,L) ; L = [X|T], list_difference_eq(Xs,Ys,T) ). % intersect_eq(+List1, +List2, -Intersection) % % Determine the intersection of two lists without unifying values. intersect_eq([], _, []). intersect_eq([X|Xs], Ys, L) :- ( memberchk_eq(X, Ys) -> L = [X|T], intersect_eq(Xs, Ys, T) ; intersect_eq(Xs, Ys, L) ). % take(+N, +List, -FirstElements) % % Take the first N elements from List and unify this with % FirstElements. The definition is based on the GNU-Prolog lists % library. Implementation by Jan Wielemaker. take(0, _, []) :- !. take(N, [H|TA], [H|TB]) :- N > 0, N2 is N - 1, take(N2, TA, TB). % Drop the first N elements from List and unify the remainder with % LastElements. drop(0,LastElements,LastElements) :- !. drop(N,[_|Tail],LastElements) :- N > 0, N1 is N - 1, drop(N1,Tail,LastElements). split_at(0,L,[],L) :- !. split_at(N,[H|T],[H|L1],L2) :- M is N -1, split_at(M,T,L1,L2). % max_go_list(+List, -Max) % % Return the maximum of List in the standard order of terms. max_go_list([H|T], Max) :- max_go_list(T, H, Max). max_go_list([], Max, Max). max_go_list([H|T], X, Max) :- ( H @=< X -> max_go_list(T, X, Max) ; max_go_list(T, H, Max) ). % or_list(+ListOfInts, -BitwiseOr) % % Do a bitwise disjuction over all integer members of ListOfInts. or_list(L, Or) :- or_list(L, 0, Or). or_list([], Or, Or). or_list([H|T], Or0, Or) :- Or1 is H \/ Or0, or_list(T, Or1, Or). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sublist(L, L). sublist(Sub, [H|T]) :- '$sublist1'(T, H, Sub). '$sublist1'(Sub, _, Sub). '$sublist1'([H|T], _, Sub) :- '$sublist1'(T, H, Sub). '$sublist1'([H|T], X, [X|Sub]) :- '$sublist1'(T, H, Sub). bounded_sublist(Sublist,_,_) :- Sublist = []. bounded_sublist(Sublist,[H|List],Bound) :- Bound > 0, ( Sublist = [H|Rest], NBound is Bound - 1, bounded_sublist(Rest,List,NBound) ; bounded_sublist(Sublist,List,Bound) ). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% chr_delete([], _, []). chr_delete([H|T], X, L) :- ( H==X -> chr_delete(T, X, L) ; L=[H|RT], chr_delete(T, X, RT) ).