/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: atts.yap * * Last rev: 8/2/88 * * mods: * * comments: attribute support for Prolog * * * *************************************************************************/ % :- yap_flag(unknown,error). % :- style_check(all). % % Code originally written by Arvin Bansal and Vitor Santos Costa % Includes nice extensions from Jan Wielemaker (from the SWI version). % :- module(coinduction, [ (coinductive)/1, op(1150, fx, (coinductive)) ]). :- use_module(library(error)). /** <module> Co-Logic Programming This simple module implements the directive coinductive/1 as described in "Co-Logic Programming: Extending Logic Programming with Coinduction" by Luke Somin et al. The idea behind coinduction is that a goal succeeds if it unifies to a parent goal. This enables some interesting programs, notably on infinite trees (cyclic terms). == :- use_module(library(coinduction)). :- coinductive stream/1. stream([H|T]) :- i(H), stream(T). % inductive i(0). i(s(N)) :- i(N). ?- X=[s(s(A))|X], stream(X). X= [s(s(A))|X], stream(X). A = 0, X = [s(s(0)),**] == This predicate is true for any cyclic list containing only 1-s, regardless of the cycle-length. @bug Programs mixing normal predicates and coinductive predicates must be _stratified_. The theory does not apply to normal Prolog calling coinductive predicates, calling normal Prolog predicates, etc. Stratification is not checked or enforced in any other way and thus left as a responsibility to the user. @see "Co-Logic Programming: Extending Logic Programming with Coinduction" by Luke Somin et al. */ :- meta_predicate coinductive(:). :- dynamic coinductive/3. %----------------------------------------------------- coinductive(Spec) :- var(Spec), !, throw(error(instantiation_error,coinductive(Spec))). coinductive(Module:Spec) :- coinductive_declaration(Spec, Module, coinductive(Module:Spec)). coinductive(Spec) :- prolog_load_context(module, Module), coinductive_declaration(Spec, Module, coinductive(Spec)). coinductive_declaration(Spec, _M, G) :- var(Spec), !, throw(error(instantiation_error,G)). coinductive_declaration((A,B), M, G) :- !, coinductive_declaration(A, M, G), coinductive_declaration(B, M, G). coinductive_declaration(M:Spec, _, G) :- !, coinductive_declaration(Spec, M, G). coinductive_declaration(Spec, M, _G) :- valid_pi(Spec, F, N), functor(S,F,N), atomic_concat(['__coinductive__',F,'/',N],NF), functor(NS,NF,N), match_args(N,S,NS), atomic_concat(['__stack_',M,':',F,'/',N],SF), nb_setval(SF, _), assert((M:S :- b_getval(SF,L), coinduction:in_stack(S, L, End), ( nonvar(End) -> true ; End = [S|_], M:NS) ) ), assert(coinduction:coinductive(S,M,NS)). valid_pi(Name/Arity, Name, Arity) :- must_be(atom, Name), must_be(integer, Arity). match_args(0,_,_) :- !. match_args(I,S1,S2) :- arg(I,S1,A), arg(I,S2,A), I1 is I-1, match_args(I1,S1,S2). %----------------------------------------------------- co_term_expansion((M:H :- B), _, (M:NH :- B)) :- !, co_term_expansion((H :- B), M, (NH :- B)). co_term_expansion((H :- B), M, (NH :- B)) :- !, coinductive(H, M, NH), !. co_term_expansion(H, M, NH) :- coinductive(H, M, NH), !. user:term_expansion(M:Cl,M:NCl ) :- !, co_term_expansion(Cl, M, NCl). user:term_expansion(G, NG) :- prolog_load_context(module, Module), co_term_expansion(G, Module, NG). %----------------------------------------------------- in_stack(_, V, V) :- var(V), !. in_stack(G, [G|_], [G|_]) :- !. in_stack(G, [_|T], End) :- in_stack(G, T, End). writeG_val(G_var) :- b_getval(G_var, G_val), write(G_var), write(' ==> '), write(G_val), nl. %----------------------------------------------------- /************************************** Some examples from Coinductive Logic Programming and its Applications by Gopal Gupta et al, ICLP 97 :- coinductive stream/1. stream([H|T]) :- i(H), stream(T). % inductive i(0). i(s(N)) :- i(N). **************************************/