% File : dgraphs.yap % Author : Vitor Santos Costa % Updated: 2006 % Purpose: Directed Graph Processing Utilities. :- module( wundgraphs, [ wundgraph_add_edge/5, wundgraph_add_edges/3, wundgraph_del_edge/5, wundgraph_del_edges/3, wundgraph_del_vertex/3, wundgraph_edges/2, wundgraph_neighbors/3, wundgraph_neighbours/3, wdgraph_to_wundgraph/2, wundgraph_to_undgraph/2, wundgraph_min_tree/3, wundgraph_max_tree/3]). :- reexport( library(wdgraphs), [ wdgraph_new/1 as wundgraph_new, wdgraph_add_vertex/3 as wundgraph_add_vertex, wdgraph_add_vertices/3 as wundgraph_add_vertices, wdgraph_vertices/2 as wundgraph_vertices, wdgraph_del_vertices/3 as wundgraph_del_vertices, wdgraph_edge/4 as wundgraph_edge, wdgraph_symmetric_closure/2 as wdgraph_to_wundgraph, wdgraph_to_dgraph/2 as wundgraph_to_undgraph, dgraph_to_wdgraph/2 as undgraph_to_wundgraph, wdgraph_min_path/5 as wundgraph_min_path, wdgraph_min_paths/3 as wundgraph_min_paths, wdgraph_max_path/5 as wundgraph_max_path, wdgraph_path/3 as wundgraph_path]). :- use_module( library(wdgraphs), [ wdgraph_add_edge/5, wdgraph_add_edges/3, wdgraph_del_edge/5, wdgraph_del_edges/3, wdgraph_del_vertex/3, wdgraph_edges/2, wdgraph_neighbors/3, wdgraph_symmetric_closure/2 ]). :- use_module(library(rbtrees), [ rb_new/1, rb_delete/4, rb_partial_map/4, rb_visit/2, rb_insert/4, rb_lookup/3 ]). :- use_module(library(lists), [ reverse/2 ]). wundgraph_add_edge(Vs0, V1, V2, K, Vs2) :- wdgraphs:wdgraph_new_edge(V1,V2,K,Vs0,Vs1), wdgraphs:wdgraph_new_edge(V2,V1,K,Vs1,Vs2). wundgraph_add_edges(G0, Edges, GF) :- dup_edges(Edges, DupEdges), wdgraph_add_edges(G0, DupEdges, GF). dup_edges([],[]). dup_edges([E1-(E2-K)|Edges], [E1-(E2-K),E2-(E1-K)|DupEdges]) :- dup_edges(Edges, DupEdges). wundgraph_edges(Vs, Edges) :- wdgraph_edges(Vs, DupEdges), remove_dups(DupEdges,Edges). remove_dups([],[]). remove_dups([V1-(V2-K)|DupEdges],NEdges) :- V1 @< V2, !, NEdges = [V1-(V2-K)|Edges], remove_dups(DupEdges,Edges). remove_dups([_|DupEdges],Edges) :- remove_dups(DupEdges,Edges). wundgraph_neighbours(V,Vertices,Children) :- wdgraph_neighbours(V,Vertices,Children0), ( del_me(Children0,V,Children) -> true ; Children = Children0 ). wundgraph_neighbors(V,Vertices,Children) :- wdgraph_neighbors(V,Vertices,Children0), ( del_me(Children0,V,Children) -> true ; Children = Children0 ). del_me([], _, []). del_me([K-_|Children], K1, NewChildren) :- ( K == K1 -> Children = NewChildren ; K @< K1 -> NewChildren = [K|ChildrenLeft], del_me(Children, K1, ChildrenLeft) ; NewChildren = [K|MoreChildren], compact(Children, MoreChildren) ). wundgraph_del_edge(Vs0,V1,V2,K,VsF) :- wdgraph_del_edge(Vs0,V1,V2,K,Vs1), wdgraph_del_edge(Vs1,V2,V1,K,VsF). wundgraph_del_edges(G0, Edges, GF) :- dup_edges(Edges,DupEdges), wdgraph_del_edges(G0, DupEdges, GF). wundgraph_del_vertex(Vs0, V, Vsf) :- rb_delete(Vs0, V, BackEdges, Vsi), del_and_compact(BackEdges,V,BackVertices), rb_partial_map(Vsi, BackVertices, del_edge(V), Vsf). del_and_compact([], _, []). del_and_compact([K-_|Children], K1, NewChildren) :- ( K == K1 -> compact(Children, NewChildren) ; K @< K1 -> NewChildren = [K|ChildrenLeft], del_and_compact(Children, K1, ChildrenLeft) ; NewChildren = [K|CompactChildren], compact(Children, CompactChildren) ). compact([], []). compact([K-_|Children], [K|CompactChildren]) :- compact(Children, CompactChildren). del_edge(_, [], []). del_edge(K1, [K-W|Children], NewChildren) :- ( K == K1 -> Children = NewChildren ; K @< K1 -> NewChildren = [K-W|ChildrenLeft], del_edge(K1, Children, ChildrenLeft) ; NewChildren = [K-W|Children] ). wundgraph_to_wdgraph(G, G). % simplistic algorithm to build a minimal spanning tree. % Just sort edges and then walk over each one. wundgraph_min_tree(G, T, C) :- rb_visit(G, Els0), generate_min_tree(Els0, T, C). generate_min_tree([], T, 0) :- !, wundgraph_new(T). generate_min_tree([El-_], T, 0) :- !, wundgraph_new(T0), wundgraph_add_vertex(T0, El, T). generate_min_tree(Els0, T, C) :- mk_list_of_edges(Els0, Edges), keysort(Edges, SortedEdges), rb_new(V0), rb_new(T0), add_sorted_edges(SortedEdges, V0, TreeEdges, 0, C), wundgraph_add_edges(T0, TreeEdges, T). wundgraph_max_tree(G, T, C) :- rb_visit(G, Els0), generate_max_tree(Els0, T, C). generate_max_tree([], T, 0) :- !, wundgraph_new(T). generate_max_tree([El-_], T, 0) :- !, wundgraph_new(T0), wundgraph_add_vertex(T0, El, T). generate_max_tree(Els0, T, C) :- mk_list_of_edges(Els0, Edges), keysort(Edges, SortedEdges), reverse(SortedEdges, ReversedEdges), rb_new(V0), rb_new(T0), add_sorted_edges(ReversedEdges, V0, TreeEdges, 0, C), wundgraph_add_edges(T0, TreeEdges, T). mk_list_of_edges([], []). mk_list_of_edges([V-Els|Els0], Edges) :- add_neighbs(Els, V, Edges, Edges0), mk_list_of_edges(Els0, Edges0). add_neighbs([], _, Edges, Edges). add_neighbs([V-W|Els], V0, [W-(V0-V)|Edges], Edges0) :- V0 @< V, !, add_neighbs(Els, V0, Edges, Edges0). add_neighbs([_|Els], V0, Edges, Edges0) :- add_neighbs(Els, V0, Edges, Edges0). add_sorted_edges([], _, [], C, C). add_sorted_edges([W-(V0-V)|SortedEdges], T0, NewTreeEdges, C0, C) :- ( rb_lookup(V0, Component, T0) -> ( rb_lookup(V, Component1, T0) -> ( Component \== Component1 -> /* edge that links two separate sub-trees (components) */ Component = Component1, Ti = T0 ; /* same component, can't add edge */ fail ) ; /* V is new */ rb_insert(T0, V, Component, Ti) ) ; ( rb_lookup(V, Component1, T0) -> /* V0 is new */ rb_insert(T0, V0, Component1, Ti) ; /* new edges, new tree */ rb_insert(T0, V0, NewComponent, T1), rb_insert(T1, V, NewComponent, Ti) ) ), !, NewTreeEdges = [(V0-(V-W)),(V-(V0-W))|TreeEdges], Ci is C0+W, add_sorted_edges(SortedEdges, Ti, TreeEdges, Ci, C). add_sorted_edges([_|SortedEdges], T0, NewTreeEdges, C0, C) :- add_sorted_edges(SortedEdges, T0, NewTreeEdges, C0, C).