/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith.yap * * Last rev: * * mods: * * comments: arithmetical optimization * * * *************************************************************************/ % the default mode is on expand_exprs(Old,New) :- (get_value('$c_arith',true) -> Old = on ; Old = off ), '$set_arith_expan'(New). '$set_arith_expan'(on) :- set_value('$c_arith',true). '$set_arith_expan'(off) :- set_value('$c_arith',[]). compile_expressions :- set_value('$c_arith',true). do_not_compile_expressions :- set_value('$c_arith',[]). '$c_built_in'(IN, M, OUT) :- get_value('$c_arith',true), !, '$do_c_built_in'(IN, M, OUT). '$c_built_in'(IN, _, IN). '$do_c_built_in'(G, M, OUT) :- var(G), !, '$do_c_built_in'(call(G), M, OUT). '$do_c_built_in'(Mod:G, _, GN) :- !, '$do_c_built_in'(G, Mod, GN0), (GN0 = (_,_) -> GN = GN0 ; GN = Mod:GN0). '$do_c_built_in'(\+ G, _, OUT) :- nonvar(G), G = (A = B), !, OUT = (A \= B). '$do_c_built_in'(call(G), _, OUT) :- nonvar(G), G = (Mod:G1), !, '$do_c_built_metacall'(G1, Mod, OUT). '$do_c_built_in'(depth_bound_call(G,D), M, OUT) :- !, '$do_c_built_in'(G, M, NG), % make sure we don't have something like (A,B) -> $depth_next(D), A, B. ( '$composed_built_in'(NG) -> OUT = depth_bound_call(NG,D) ; OUT = ('$set_depth_limit_for_next_call'(D),NG) ). '$do_c_built_in'(once(G), M, (yap_hacks:current_choice_point(CP),NG,'$$cut_by'(CP))) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG). '$do_c_built_in'(forall(Cond,Action), M, \+((NCond, \+(NAction)))) :- !, '$do_c_built_in'(Cond,M,ICond), '$do_c_built_in'(Action,M,IAction), '$clean_cuts'(ICond, NCond), '$clean_cuts'(IAction, NAction). '$do_c_built_in'(ignore(Goal), M, (NGoal -> true ; true)) :- !, '$do_c_built_in'(Goal,M,IGoal), '$clean_cuts'(IGoal, NGoal). '$do_c_built_in'(if(G,A,B), M, (yap_hacks:current_choicepoint(DCP),NG,yap_hacks:cut_at(DCP),NA; NB)) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG), '$do_c_built_in'(A,M,NA), '$do_c_built_in'(B,M,NB). '$do_c_built_in'((G*->A), M, (NG,NA)) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG), '$do_c_built_in'(A,M,NA). '$do_c_built_in'('C'(A,B,C), _, (A=[B|C])) :- !. '$do_c_built_in'(X is Y, _, P) :- nonvar(Y), % Don't rewrite variables !, ( number(Y), P = ( X = Y); % This case reduces to an unification '$expand_expr'(Y, P0, X0), '$drop_is'(X0, X, P1), '$do_and'(P0, P1, P) ). '$do_c_built_in'(Comp0, _, R) :- % now, do it for comparisons '$compop'(Comp0, Op, E, F), !, '$compop'(Comp, Op, U, V), '$expand_expr'(E, P, U), '$expand_expr'(F, Q, V), '$do_and'(P, Q, R0), '$do_and'(R0, Comp, R). '$do_c_built_in'(P, _, P). '$do_c_built_metacall'(G1, Mod, '$execute_wo_mod'(G1,Mod)) :- var(Mod), !. '$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :- var(G1), atom(Mod), !. '$do_c_built_metacall'(Mod:G1, _, OUT) :- !, '$do_c_built_metacall'(G1, Mod, OUT). '$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :- atom(Mod), !. '$do_c_built_metacall'(G1, Mod, call(Mod:G1)). '$do_and'(true, P, P) :- !. '$do_and'(P, true, P) :- !. '$do_and'(P, Q, (P,Q)). % V is the result of the simplification, % X the result of the initial expression % and the last argument is how we are writing this result '$drop_is'(V, V, true) :- var(V), !. % usual case '$drop_is'(V, X, X is V). % atoms % Table of arithmetic comparisons '$compop'(X < Y, < , X, Y). '$compop'(X > Y, > , X, Y). '$compop'(X=< Y,=< , X, Y). '$compop'(X >=Y, >=, X, Y). '$compop'(X=:=Y,=:=, X, Y). '$compop'(X=\=Y,=\=, X, Y). '$composed_built_in'(V) :- var(V), !, fail. '$composed_built_in'((yap_hacks:current_choice_point(_),NG,'$$cut_by'(_))) :- !, '$composed_built_in'(NG). '$composed_built_in'((_,_)). '$composed_built_in'((_;_)). '$composed_built_in'((_|_)). '$composed_built_in'((_->_)). '$composed_built_in'(_:G) :- '$composed_built_in'(G). '$composed_built_in'(\+G) :- '$composed_built_in'(G). '$composed_built_in'(not(G)) :- '$composed_built_in'(G). % expanding an expression: % first argument is the expression not expanded, % second argument the expanded expression % third argument unifies with the result from the expression '$expand_expr'(V, true, V) :- var(V), !. '$expand_expr'([T], E, V) :- !, '$expand_expr'(T, E, V). '$expand_expr'(A, true, A) :- atomic(A), !. '$expand_expr'(T, E, V) :- '$unaryop'(T, O, A), !, '$expand_expr'(A, Q, X), '$expand_expr'(O, X, V, Q, E). '$expand_expr'(T, E, V) :- '$binaryop'(T, O, A, B), !, '$expand_expr'(A, Q, X), '$expand_expr'(B, R, Y), '$expand_expr'(O, X, Y, V, Q, S), '$do_and'(R, S, E). % expanding an expression of the form: % O is Op(X), % after having expanded into Q % and giving as result P (the last argument) '$expand_expr'(Op, X, O, Q, Q) :- number(X), !, is( O, Op, X). '$expand_expr'(Op, X, O, Q, P) :- '$unary_op_as_integer'(Op,IOp), '$do_and'(Q, is( O, IOp, X), P). % expanding an expression of the form: % O is Op(X,Y), % after having expanded into Q % and giving as result P (the last argument) % included is some optimization for: % incrementing and decrementing, % the elementar arithmetic operations [+,-,*,//] '$expand_expr'(Op, X, Y, O, Q, Q) :- number(X), number(Y), !, is( O, Op, X, Y). '$expand_expr'(+, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$plus'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(-, X, Y, O, Q, P) :- var(X), number(Y), Z is -Y, !, '$expand_expr'(+, Z, X, O, Q, P). '$expand_expr'(-, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$minus'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(*, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$times'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(//, X, Y, O, Q, P) :- nonvar(Y), Y == 0, !, '$binary_op_as_integer'(//,IOp), '$do_and'(Q, is(O,IOp,X,Y), P). '$expand_expr'(//, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$div'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(/\, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$and'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(\/, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$or'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(<<, X, Y, O, Q, P) :- var(X), number(Y), Y < 0, Z is -Y, !, '$expand_expr'(>>, X, Z, O, Q, P). '$expand_expr'(<<, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$sll'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(>>, X, Y, O, Q, P) :- var(X), number(Y), Y < 0, Z is -Y, !, '$expand_expr'(<<, X, Z, O, Q, P). '$expand_expr'(>>, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$slr'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(Op, X, Y, O, Q, P) :- '$binary_op_as_integer'(Op,IOp), '$do_and'(Q, is(O,IOp,X,Y), P). '$preprocess_args_for_commutative'(X, Y, X, Y, true) :- var(X), var(Y), !. '$preprocess_args_for_commutative'(X, Y, X, Y, true) :- var(X), integer(Y), \+ '$bignum'(Y), !. '$preprocess_args_for_commutative'(X, Y, X, Z, Z = Y) :- var(X), !. '$preprocess_args_for_commutative'(X, Y, Y, X, true) :- integer(X), \+ '$bignum'(X), var(Y), !. '$preprocess_args_for_commutative'(X, Y, Z, X, Z = Y) :- integer(X), \+ '$bignum'(X), !. '$preprocess_args_for_commutative'(X, Y, Z, W, E) :- '$do_and'(Z = X, Y = W, E). '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- var(X), var(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- var(X), integer(Y), \+ '$bignum'(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :- var(X), !. '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- integer(X), \+ '$bignum'(X), var(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :- integer(X), \+ '$bignum'(X), !. '$preprocess_args_for_non_commutative'(X, Y, Z, W, E) :- '$do_and'(Z = X, Y = W, E). % These are the unary arithmetic operators '$unaryop'(+X ,+ ,X). '$unaryop'(-X ,- ,X). '$unaryop'(\(X) ,\ ,X). '$unaryop'(exp(X) ,exp ,X). '$unaryop'(log(X) ,log ,X). '$unaryop'(log10(X) ,log10 ,X). '$unaryop'(sqrt(X) ,sqrt ,X). '$unaryop'(sin(X) ,sin ,X). '$unaryop'(cos(X) ,cos ,X). '$unaryop'(tan(X) ,tan ,X). '$unaryop'(asin(X) ,asin ,X). '$unaryop'(acos(X) ,acos ,X). '$unaryop'(atan(X) ,atan ,X). '$unaryop'(atan2(X) ,atan2 ,X). '$unaryop'(sinh(X) ,sinh ,X). '$unaryop'(cosh(X) ,cosh ,X). '$unaryop'(tanh(X) ,tanh ,X). '$unaryop'(asinh(X) ,asinh ,X). '$unaryop'(acosh(X) ,acosh ,X). '$unaryop'(atanh(X) ,atanh ,X). '$unaryop'(floor(X) ,floor ,X). '$unaryop'(abs(X) ,abs ,X). '$unaryop'(float(X) ,float ,X). '$unaryop'(+(X) ,+ ,X). '$unaryop'(integer(X) ,integer,X). '$unaryop'(truncate(X) ,truncate,X). '$unaryop'(round(X) ,round ,X). '$unaryop'(ceiling(X) ,ceiling,X). '$unaryop'(msb(X) ,msb ,X). '$unaryop'(sign(X) ,sign ,X). '$unaryop'(float_fractional_part(X) ,float_fractional_part ,X). '$unaryop'(float_integer_part(X) ,float_integer_part ,X). '$unaryop'(lgamma(X) ,lgamma ,X). % These are the binary arithmetic operators '$binaryop'(X+Y ,+ ,X,Y). '$binaryop'(X-Y ,- ,X,Y). '$binaryop'(X*Y ,* ,X,Y). '$binaryop'(X/Y ,/ ,X,Y). '$binaryop'(X mod Y ,mod ,X,Y). '$binaryop'(X rem Y ,rem ,X,Y). '$binaryop'(X//Y ,// ,X,Y). '$binaryop'(X/\Y ,/\ ,X,Y). '$binaryop'(X\/Y ,\/ ,X,Y). '$binaryop'(X#Y ,'#' ,X,Y). '$binaryop'(X<<Y ,<< ,X,Y). '$binaryop'(X>>Y ,>> ,X,Y). '$binaryop'(X^Y ,^ ,X,Y). '$binaryop'(X**Y ,** ,X,Y). '$binaryop'(exp(X,Y) ,exp ,X,Y). '$binaryop'(max(X,Y) ,max ,X,Y). '$binaryop'(min(X,Y) ,min ,X,Y). '$binaryop'(gcd(X,Y) ,gcd ,X,Y). '$binaryop'(atan2(X,Y) ,atan2 ,X,Y). /* Arithmetics */ % M and N nonnegative integers, N is the successor of M succ(M,N) :- integer(M), !, '$plus'(M,1,N). succ(M,N) :- integer(N), !, N > 0, '$plus'(N,-1,M). succ(0,1).