% Boolean tests from Daniel Diaz
% 931127 adapted to Eclipse and CHRs by Thom Fruehwirth, ECRC

%From diaz@margaux.inria.fr Tue Nov 23 18:59:17 1993 
%
%I send you 3 programs schur.pl, pigeon.pl and queens.pl and a file
%b_bips.pl containing the necessary built-ins and libraries.




%---schur.pl---

/*-------------------------------------------------------------------------*/
/* Benchmark (Boolean)                  INRIA Rocquencourt - ChLoE Project */
/*                                                                         */
/* Name           : bschur.pl                                              */
/* Title          : Schur's lemma                                          */
/* Original Source: Giovanna Dore - Italy                                  */
/* Adapted by     : Daniel Diaz - INRIA France                             */
/* Date           : January 1993                                           */
/*                                                                         */
/* Color the integers 1,2...,N with 3 colors so that there is no monochrome*/
/* triplets (x,y,z) where x+y=z. Solution iff N<=13.                       */
/* The solution is a list [ [Int11,Int12,Int13],..., [IntN1,IntN2,IntN3] ] */
/* where Intij is 1 if the integer i is colored with the color j.          */
/*                                                                         */
/* Solution:                                                               */
/* N=4  [[0,0,1],[0,1,0],[0,0,1],[1,0,0]]                                  */
/*      [[0,0,1],[0,1,0],[0,1,0],[0,0,1]]                                  */
/*        ...                                                              */
/* N=13 [[0,0,1],[0,1,0],[0,1,0],[0,0,1],[1,0,0],[1,0,0],[0,0,1],[1,0,0],  */
/*       [1,0,0],[0,0,1],[0,1,0],[0,1,0],[0,0,1]] (first solution)         */
/*-------------------------------------------------------------------------*/

bschur:-	write('N ?'), read(N),
	cputime( Starttime),
	(schur(N,A),
%	 write(A), nl, 
	 fail 
	   ;
	 write('No more solutions'), nl),
	cputime( Cputime),
	Y is Cputime-Starttime,
	write('time : '), write(Y), nl.

cputime( Ts) :- 
	statistics( runtime, [Tm,_]),
	Ts is Tm/1000.


schur(N,A):-
	create_array(N,3,A),
	for_each_line(A,only1),
	pair_constraints(A,A),
	!,
%	labeling.
	array_labeling(A).




pair_constraints([],_):-
	!.

pair_constraints([_],_):-
	!.

pair_constraints([_,[K1,K2,K3]|A2],[[I1,I2,I3]|A1]):-
	and0(I1,K1),
	and0(I2,K2),
	and0(I3,K3),
	triplet_constraints(A2,A1,[I1,I2,I3]),
	pair_constraints(A2,A1).




triplet_constraints([],_,_).

triplet_constraints([[K1,K2,K3]|A2],[[J1,J2,J3]|A1],[I1,I2,I3]):-
	and0(I1,J1,K1),
	and0(I2,J2,K2),
	and0(I3,J3,K3),
	triplet_constraints(A2,A1,[I1,I2,I3]).






%--- pigeon.pl ---

/*-------------------------------------------------------------------------*/
/* Benchmark (Boolean)                  INRIA Rocquencourt - ChLoE Project */
/*                                                                         */
/* Name           : bpigeon.pl                                             */
/* Title          : pigeon-hole problem                                    */
/* Originated from:                                                        */
/* Adapted by     : Daniel Diaz - INRIA France                             */
/* Date           : January 1993                                           */
/*                                                                         */
/* Put N pigeons in M pigeon-holes. Solution iff N<=M.                     */
/* The solution is a list [ [Pig11,...,Pig1m], ... ,[Pign1,...,Pignm] ]    */
/* where Pigij = 1 if the pigeon i is in the pigeon-hole j                 */
/*                                                                         */
/* Solution:                                                               */
/* N=2 M=3 [[0,0,1],[0,1,0]]                                               */
/*         [[0,0,1],[1,0,0]]                                               */
/*         [[0,1,0],[0,0,1]]                                               */
/*         [[0,1,0],[1,0,0]]                                               */
/*         [[1,0,0],[0,0,1]]                                               */
/*         [[1,0,0],[0,1,0]]                                               */
/*-------------------------------------------------------------------------*/


bpigeon:-	write('N ?'), read(N), write('M ?'), read(M),
	cputime( Starttime),
	(bpigeon(N,M,A), 
%	 write(A), nl, 
	 fail 
	   ;
	 write('No more solutions'), nl),
	cputime( Cputime),
	Y is Cputime-Starttime,
	write('time : '), write(Y), nl.




bpigeon(N,M,A):-
	create_array(N,M,A),
	for_each_line(A,only1),
	for_each_column(A,atmost1),
	!,
	array_labeling(A).









%--- queens.pl ---

/*-------------------------------------------------------------------------*/
/* Benchmark (Boolean)                  INRIA Rocquencourt - ChLoE Project */
/*                                                                         */
/* Name           : bqueens.pl                                             */
/* Title          : N-queens problem                                       */
/* Original Source: Daniel Diaz - INRIA France                             */
/* Adapted by     :                                                        */
/* Date           : January 1993                                           */
/*                                                                         */
/* Put N queens on an NxN chessboard so that there is no couple of queens  */
/* threatening each other.                                                 */
/* The solution is a list [ [Que11,...,Que1N], ... ,[QueN1,...,QueNN] ]    */
/* where Queij is 1 if the the  is a queen on the ith line an jth row.     */
/*                                                                         */
/* Solution:                                                               */
/* N=4  [[0,0,1,0],         [[0,1,0,0],                                    */
/*       [1,0,0,0],          [0,0,0,1],                                    */
/*       [0,0,0,1],  and     [1,0,0,0],                                    */
/*       [0,1,0,0]]          [0,0,1,0]]                                    */
/*                                                                         */
/* N=8  [[0,0,0,0,0,0,0,1], (first solution)                               */
/*       [0,0,0,1,0,0,0,0],                                                */
/*       [1,0,0,0,0,0,0,0],                                                */
/*       [0,0,1,0,0,0,0,0],                                                */
/*       [0,0,0,0,0,1,0,0],                                                */
/*       [0,1,0,0,0,0,0,0],                                                */
/*       [0,0,0,0,0,0,1,0],                                                */
/*       [0,0,0,0,1,0,0,0]]                                                */
/*-------------------------------------------------------------------------*/


bqueens:-	write('N ?'), read(N),
	cputime( Starttime),
	(bqueens(N,A), 
%        write(A), nl,
	 fail
	   ; 
	 write('No more solutions'), nl),
	cputime( Cputime),
	Y is Cputime-Starttime,
	write('time : '), write(Y), nl.




bqueens(N,A):-
	create_array(N,N,A),
	for_each_line(A,only1),
	for_each_column(A,only1),
	for_each_diagonal(A,N,N,atmost1),
	!,
	array_labeling(A).








%--- b_bips.pl ---



%I also use the following shorthands:

and0(X,Y):-
	and(X,Y,0).
%	delay([X,Y],and(X,Y,0)).



or1(X,Y):-
	or(X,Y,1).


and0(X,Y,Z):-
	and(X,Y,XY),
	and(XY,Z,0).
%	delay([X,Y,Z],(
%	and(X,Y,XY),
%	and(XY,Z,0))).




or1(X,Y,Z):-
	or(X,Y,XY),
	or(XY,Z,1).


/*-------------------------------------------------------------------------*/
/* Prolog to Wam Compiler               INRIA Rocquencourt - ChLoE Project */
/* Version 1.0  -  C Run-time                           Daniel Diaz - 1991 */
/* Extended to FD Constraints (July 1992)                                  */
/*                                                                         */
/* Built-In: B predicates (booleans)                                       */
/*                                                                         */
/* b_bips.pl                                                               */
/*-------------------------------------------------------------------------*/

	/* Symbolic constraints */

%:- public only_one/1, at_least_one/1, at_most_one/1.

%only_one(L):- card(1,1,L).
%at_most_one(L):- card(0,1,L).


only_one(L):-
	at_least_one(L),
	at_most_one(L).




at_least_one(L):- 
	at_least_one1(L,1).


at_least_one1([X],X).

at_least_one1([X|L],R):- 
	at_least_one1(L,R1),
	or(X,R1,R).




at_most_one([]).

at_most_one([X|L]):-
	not_two(L,X),
	at_most_one(L).




not_two([],_).

not_two([X1|L],X):- 
	and0(X1,X),
	not_two(L,X).



	/* Array procedures */

%:- public create_array/3, for_each_line/2, for_each_column/2, for_each_diagonal/4, array_labeling/1.


	/*---------------------------------------------------------*/
	/*                                                         */
	/* An array NL x NC elements is represented as follows :   */
	/* A = [L_1, ..., L_NL] with L_i = [X_i_1, ..., X_i_NC]    */
	/* Hence :                                                 */
	/* A = [ [X_1_1,..., X_1_NC], ..., [X_NL_1,..., X_NL_NC] ] */
	/*---------------------------------------------------------*/

	% create_array(NL,NC,A)
	%     NL: nb of lines   NC:nb of columns   A:array
	%     creates an array (with unbound variables)
 
create_array(NL,NC,A):-
	create_array1(0,NL,NC,A),
	!.


create_array1(NL,NL,_,[]).

create_array1(I,NL,NC,[L|A]):-
	create_one_line(0,NC,L),
	I1 is I+1,
	create_array1(I1,NL,NC,A).




create_one_line(NC,NC,[]).

create_one_line(J,NC,[_|L]):-
	J1 is J+1,
	create_one_line(J1,NC,L).




	% for_each_line(A,P)
	%     A:array   P: program atom
	%     calls: array_prog(P,L) for each line L (L is a list)
 
for_each_line([],_).

for_each_line([L|A],P):-
	array_prog(P,L),
	for_each_line(A,P).




	% for_each_column(A,P)
	%     A:array   P: program atom
	%     calls:  array_prog(P,L) for each column L (L is a list)
 
for_each_column([[]|_],_):-
	!.

for_each_column(A,P):-
	create_column(A,C,A1),
	array_prog(P,C),
	for_each_column(A1,P).




create_column([],[],[]).

create_column([[X|L]|A],[X|C],[L|A1]):-
	create_column(A,C,A1).




	% for_each_diagonal(A,NL,NC,P)
	%     A:array   NL: nb of lines   
	%     NC:nb of columns   P: program atom
	%     calls:  array_prog(P,L) for each diagonal D (D is a list)
 
for_each_diagonal(A,NL,NC,P):-
	NbDiag is 2*(NL+NC-1),              % numbered from 0 to NbDiag-1
	create_lst_diagonal(0,NbDiag,LD),
	fill_lst_diagonal(A,0,NL,NC,LD,LD1),
	!,
	for_each_line(LD1,P).




create_lst_diagonal(NbDiag,NbDiag,[]).

create_lst_diagonal(I,NbDiag,[[]|LD]):-
	I1 is I+1,
	create_lst_diagonal(I1,NbDiag,LD).




fill_lst_diagonal([],_,_,_,LD,LD).

fill_lst_diagonal([L|A],I,NL,NC,LD,LD2):-
	I1 is I+1,
	fill_lst_diagonal(A,I1,NL,NC,LD,LD1),
	one_list(L,I,NL,0,NC,LD1,LD2).





one_list([],_,_,_,_,LD,LD).

one_list([X|L],I,NL,J,NC,LD,LD3):-
	J1 is J+1,
	one_list(L,I,NL,J1,NC,LD,LD1),
	NoDiag1 is I+J,
	NoDiag2 is I+NC-J+NL+NC-2,
	add_in_lst_diagonal(0,NoDiag1,X,LD1,LD2),
	add_in_lst_diagonal(0,NoDiag2,X,LD2,LD3).





add_in_lst_diagonal(NoDiag,NoDiag,X,[D|LD],[[X|D]|LD]).

add_in_lst_diagonal(K,NoDiag,X,[D|LD],[D|LD1]):-
	K1 is K+1,
	add_in_lst_diagonal(K1,NoDiag,X,LD,LD1).



array_prog(only1,L):- !,
	only_one(L).

array_prog(atmost1,L):- !,
	at_most_one(L).




array_labeling([]).

array_labeling([L|A]):-
	label_bool(L),
	array_labeling(A).


%--- end ---