:- object(translator). :- info([ version is 1.1, date is 2007/10/13, author is 'Paulo Moura', comment is 'Translator of logic propositions to clauses in conjunctive normal form.', source is 'Code partially based on an example found on the Clocksin and Mellish Prolog book.']). :- public(translate/2). :- mode(translate(+nonvar, -list), zero_or_one). :- info(translate/2, [ comment is 'Translates a proposition to a list of clauses.', argnames is ['Propostion', 'Clauses']]). :- public(step_by_step/2). :- mode(step_by_step(+nonvar, -list), zero_or_one). :- info(step_by_step/2, [ comment is 'Translates a proposition to a list of clauses, printing the result of each translation step.', argnames is ['Propostion', 'Clauses']]). :- private(gensym_counter_/1). :- dynamic(gensym_counter_/1). :- op(10, fy, ~ ). % negation :- op(20, yfx, & ). % conjunction :- op(30, yfx, v ). % disjunction :- op(40, xfx, =>). % implication :- op(40, xfx, <=>). % equivalence translate(P, Cs) :- remove_implications(P, P2), distribute_negation(P2, P3), remove_existential_quantifiers(P3, P4), convert_to_prenex_normal_form(P4, P5), remove_universal_quantifiers(P5, P6), convert_to_conjunctive_normal_form(P6, P7), convert_to_clauses(P7, Cs), print_clauses(Cs). step_by_step(P, Cs) :- nl, write('Processing proposition: '), write(P), nl, nl, write(' 1. Remove implications: '), remove_implications(P, P2), write(P2), nl, write(' 2. Distribute negation: '), distribute_negation(P2, P3), write(P3), nl, write(' 3. Remove existential quantifiers: '), remove_existential_quantifiers(P3, P4), write(P4), nl, write(' 4. Convert to prenex normal form: '), convert_to_prenex_normal_form(P4, P5), write(P5), nl, write(' 5. Remove universal quantifiers: '), remove_universal_quantifiers(P5, P6), write(P6), nl, write(' 6. Convert to conjunctive normal form: '), convert_to_conjunctive_normal_form(P6, P7), write(P7), nl, write(' 7. Convert to clauses: '), convert_to_clauses(P7, Cs), write(Cs), nl, nl, write('Clauses in Prolog-like notation:'), nl, print_clauses(Cs). remove_implications(all(X, P), all(X, P2)) :- !, remove_implications(P, P2). remove_implications(exists(X, P), exists(X, P2)) :- !, remove_implications(P, P2). remove_implications(P <=> Q, P2 & Q2 v ~P2 & ~Q2) :- !, remove_implications(P, P2), remove_implications(Q, Q2). remove_implications(P => Q, ~P2 v Q2) :- !, remove_implications(P, P2), remove_implications(Q, Q2). remove_implications(P & Q, P2 & Q2) :- !, remove_implications(P, P2), remove_implications(Q, Q2). remove_implications(P v Q, P2 v Q2) :- !, remove_implications(P, P2), remove_implications(Q, Q2). remove_implications(~P, ~P2) :- !, remove_implications(P, P2). remove_implications(P, P). distribute_negation(all(X, P), all(X, P2)) :- !, distribute_negation(P, P2). distribute_negation(exists(X, P), exists(X, P2)) :- !, distribute_negation(P, P2). distribute_negation(P & Q, P2 & Q2) :- !, distribute_negation(P, P2), distribute_negation(Q, Q2). distribute_negation(P v Q, P2 v Q2) :- !, distribute_negation(P, P2), distribute_negation(Q, Q2). distribute_negation(~P, P2) :- !, apply_negation(P, P2). distribute_negation(P, P). apply_negation(all(X, P), exists(X, P2)) :- !, apply_negation(P, P2). apply_negation(exists(X, P), all(X, P2)) :- !, apply_negation(P, P2). apply_negation(P & Q, P2 v Q2) :- !, apply_negation(P, P2), apply_negation(Q, Q2). apply_negation(P v Q, P2 & Q2) :- !, apply_negation(P, P2), apply_negation(Q, Q2). apply_negation(~P, P2) :- !, distribute_negation(P, P2). apply_negation(P, ~P). remove_existential_quantifiers(P, P2) :- remove_existential_quantifiers(P, P2, []). remove_existential_quantifiers(all(X, P), all(X, P2), Vars) :- !, remove_existential_quantifiers(P, P2, [X| Vars]). remove_existential_quantifiers(exists(X, P), P2, Vars) :- !, gensym(f, F), X =.. [F| Vars], remove_existential_quantifiers(P, P2, Vars). remove_existential_quantifiers(P & Q, P2 & Q2, Vars) :- !, remove_existential_quantifiers(P, P2, Vars), remove_existential_quantifiers(Q, Q2, Vars). remove_existential_quantifiers(P v Q, P2 v Q2, Vars) :- !, remove_existential_quantifiers(P, P2, Vars), remove_existential_quantifiers(Q, Q2, Vars). remove_existential_quantifiers(P, P, _). convert_to_prenex_normal_form(P, P2) :- collect_vars(P, P1, [], Vars), add_vars_at_front(Vars, P1, P2). collect_vars(all(X, P), P2, Acc, Vars) :- !, collect_vars(P, P2, [X| Acc], Vars). collect_vars(P & Q, P2 & Q2, Acc, Vars) :- !, collect_vars(P, P2, Acc, Acc2), collect_vars(Q, Q2, Acc2, Vars). collect_vars(P v Q, P2 v Q2, Acc, Vars) :- !, collect_vars(P, P2, Acc, Acc2), collect_vars(Q, Q2, Acc2, Vars). collect_vars(P, P, Vars, Vars). add_vars_at_front([], P, P). add_vars_at_front([X| Vars], P, P2) :- add_vars_at_front(Vars, all(X, P), P2). remove_universal_quantifiers(all(_, P), P2) :- !, remove_universal_quantifiers(P, P2). remove_universal_quantifiers(P & Q, P2 & Q2) :- !, remove_universal_quantifiers(P, P2), remove_universal_quantifiers(Q, Q2). remove_universal_quantifiers(P v Q, P2 v Q2) :- !, remove_universal_quantifiers(P, P2), remove_universal_quantifiers(Q, Q2). remove_universal_quantifiers(P, P). convert_to_conjunctive_normal_form(P v Q, R) :- !, convert_to_conjunctive_normal_form(P, P2), convert_to_conjunctive_normal_form(Q, Q2), distribute_disjunction(P2 v Q2, R). convert_to_conjunctive_normal_form(P & Q, P2 & Q2) :- !, convert_to_conjunctive_normal_form(P, P2), convert_to_conjunctive_normal_form(Q, Q2). convert_to_conjunctive_normal_form(P, P). distribute_disjunction(P & Q v R, P2 & Q2) :- !, convert_to_conjunctive_normal_form(P v R, P2), convert_to_conjunctive_normal_form(Q v R, Q2). distribute_disjunction(P v Q & R, P2 & Q2) :- !, convert_to_conjunctive_normal_form(P v Q, P2), convert_to_conjunctive_normal_form(P v R, Q2). distribute_disjunction(P, P). convert_to_clauses(P, Cs) :- convert_to_clauses(P, [], Cs). convert_to_clauses(P & Q, Acc, Cs) :- !, convert_to_clauses(Q, Acc, Acc2), convert_to_clauses(P, Acc2, Cs). convert_to_clauses(P, Acc, [cl(Pos, Negs)| Acc]) :- convert_to_clauses(P, [], Pos, [], Negs), !. convert_to_clauses(_, Cs, Cs). convert_to_clauses(P v Q, AccPos, Pos, AccNegs, Negs) :- !, convert_to_clauses(Q, AccPos, AccPos2, AccNegs, AccNegs2), convert_to_clauses(P, AccPos2, Pos, AccNegs2, Negs). convert_to_clauses(~P, Pos, Pos, AccNegs, [P| AccNegs]) :- !, not_member_of(P, Pos). convert_to_clauses(P, AccPos, [P| AccPos], Negs, Negs) :- !, not_member_of(P, Negs). /* convert_to_clauses(P & Q, {P2, Q2}) :- !, convert_to_clauses(P, P2), convert_to_clauses(Q, Q2). convert_to_clauses(P v Q, R) :- !, convert_to_clause(P v Q, R). convert_to_clauses(P, {P}). convert_to_clause(P & Q, R) :- !, convert_to_clauses(P & Q, {R}). convert_to_clause(P v Q, {P2, Q}) :- !, convert_to_clause(P, P2). convert_to_clause(P, P). */ not_member_of(P, [P| _]) :- !, fail. not_member_of(P, [_| Ps]) :- !, not_member_of(P, Ps). not_member_of(_, []). print_clauses([]) :- nl. print_clauses([cl(Pos, Negs)| Cs]) :- print_clause(Pos, Negs), nl, print_clauses(Cs). print_clause(Pos, []) :- !, print_disjunctions(Pos), write(' :- .'). print_clause([], Negs) :- !, write(':- '), print_conjunctions(Negs), write('.'). print_clause(Pos, Negs) :- !, print_disjunctions(Pos), write(' :- '), print_conjunctions(Negs), write('.'). print_disjunctions([P]) :- !, write(P). print_disjunctions([P| Ps]) :- !, write(P), write('; '), print_disjunctions(Ps). print_conjunctions([P]) :- !, write(P). print_conjunctions([P| Ps]) :- !, write(P), write(', '), print_conjunctions(Ps). gensym_counter_(0). gensym(Base, Atom) :- retract(gensym_counter_(Counter)), Counter2 is Counter + 1, number_codes(Counter2, Codes2), atom_codes(Number, Codes2), atom_concat(Base, Number, Atom), assertz(gensym_counter_(Counter2)). :- end_object.